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Part I of this series [I. Math. Phys. 9, 1722 (1968)1 introduced in detail the general method of trans
forming integrodifferential transport equations to partial differential equations. The treatment there is 
restricted to isotropic transport in slab geometry. This part extends the method to time-dependent 
anisotropic transport for slab geometry. Generating functions are used as an analytic tool to define 
appropriate transformations whose inverses are known. The general solution of the transport equation 
considered are expressed in terms of expansion modes. The expansion coefficients are determined by a 
combination of Fourier transforms and orthogonality relations. Fourier transforms in the time variable 
are used instead of the usual Laplace transforms. The solutions of the initial-value problem and its analog 
with the role of space and time interchanged are given. 

1. INTRODUCflON 

Our approach is based on applying the generating
function techniques to the spherical-harmonics method. 
The time-dependent isotropic transport and the 
stationary anisotropic transport treated by Case, 
Mika, and others1,2 will be included as special cases 
of the treatment below. Therefore this work can also 
be regarded as a natural supplement to the work of 
Case and others. 

In this paper generating functions are used as 
analytic tools for the transformation of the integro
differential time-dependent transport equation for 
slab geometry with anisotropic scattering into a 
partial differential equation. The new equation is 
solved to yield analytic expressions for the solution of 
the corresponding transport equation. 

In the first part of this series,3 which will henceforth 
be referred to as I, our approach was applied to the 
stationary isotropic transport equation in general 
slab geometry. The notation of I will be followed here. 

2. TIME-DEPENDENT ANISOTROPIC TRANS
PORT IN SLAB GEOMETRY WITH AXIAL 

SYMMETRY 

The axially symmetric transport equation under 
consideration takes the form 

o 0 C (1 
ot 'ljJ + ft OZ 'ljJ + 'ljJ = 2. J_/(ft' ft')'ljJ(z, ft', t) dft'· 

(2.1) 
Equation (2.1) has been normalized so that the 
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constant velocity v is 1 and the total cross section (1 is I. 
The scattering functionf(U, p:) has the form 

N 

I(ft, ft') = 2,akPift)Pk(u'), 00 = 1. (2.2) 
k=l 

The angular distribution 'ljJ(z, ft, t) is expanded in 
Legendre polynomials so that 

00 2n + 1 
'ljJ(z, ft, t) = 2,--ln(z, t)P n(u), 

1'=0 2 
(2.3) 

where 

(I I 'ljJ(z, ft, t)P n(u) dft, for n::::: 0, 
In(z, t) = -1 (2.4) 

0, for n < 0. 

Application of the relation 

(2n + I)Pn(ft) = (n + I)Pn+I(u) + nPn-I{ft) (2.5) 

to Eqs. (2.1)-(2.3) yields the recurrence relation 

o 0 0 
(2n + 1) 0/1' + (n + I) ozln+I + n ozln-l 

+ (2n + 1)ln - canln = 0, (2.6) 

where an = ° for n > N. 
The generating function for the expansion coeffi

cients/n(z, t) is defined by 
00 

X(z, t; n = 2, {nln(z, t) ({ = ~ + i1]). (2.7) 
1'=0 

Substituting (2.4) into (2.7) gives the following 
transformation of the angular distribution 'P(z, ft, t) 
to the generating function X(z, t; 0: 

X(z, t; n = L:'P(z,ft, t) ~o{nPn(u) dft 

-II 'P(Z, ft, t) dft 
- -1 [1 _ 2ft{ + {2]*' I{' < 1. 

(2.8) 
1993 
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Applying the generating function Eq. (2.7) to the 
recurrence relations of Eq. (2.6), or, equivalently, 
applying the integral transform (2.8) to (2.1), gives 

(1 + ,2) 0
2 + 2, 0

2 
, 0 2, (] 

OZO, X ot(]~ X + oz X + 0, X 

o N a + - X + X - c I 2. lk)(Z, t; ogk = 0, (2.9) 
ot k=O k! 

where X(k)(Z, t, 0) is the kth derivative of X with 
respect to , evaluated at ,= O. From Eq. (2.8) 
follows as in Sec. 2 of I: 

Then integrating from 0 to , and simplifying yields 

N a 
(1 - w)Go,w(O = cI __ k_ gk,k. (2. 13 a) 

k=O 2k + 1 

Because of Eq. (2.12a), this equation is satisfied if and 
only if 

1 - w = C, ak = 2k + 1 for k = 1,' .. ,N. 

(2. 13 b) 

The gk'S for k = 1, ... , N are arbitrary. From (2.3), 
(2.7), and (2.10) it follows that the solution of the 
transport equation (2.1) corresponding to (2.13) is 

"P(z, p" t) = p(p,)e-(l-C)t, (2.14) Theorem 2.1: Only the solutions of Eq. (2.9) which are 
analytic in 'for I" < 1 are generating functions (2.7) 
for the Fourier coefficients fn(z, t) of (2.3). where pep,) is an arbitrary polynomial of degree not 

greater than N. Unless all conditions of Eqs. (2.13b) 
of are satisfied, no solution for (2.11) exists for A = 0. 

(b) A ~ 0: Define the variable v by 
Equation (2.9) can be solved by the method 

separation of variables if we let 

XA,W(Z, t; 0 = e-;,ze-wtG;.,w(O, 

where G;.,w(') satisfies 

[2,(1 - w) - A(1 + '2)]~ G;.w(O d, ' 
N 

(2.10) 

+ (1 - w - AOG;.,w(O - c Iakgk,k = O. (2.11) 
k=O 

For the moment A, ware arbitrary constants and 

1 (k) (0) 
gk = k! Gl,w . (2.12a) 

An appropriate normalization is to require G;. w(O) = 
1, i.e., ' 

(2. 12b) 

For' = 0, Eq. (2.11) becomes -Ag1 + 1 - w - c = 
O. Thus 

gl = (1 - w - C)jA for A ~ O. (2. 12c) 

By successive differentiation of (2.11), the remaining 
gk'S can likewise be determined. Hence the term in 
(2.11) involving the sum may be regarded as known if 
C, ak , A, w, and, are known. Equation (2.11) can be 
solved explicitly for both A = 0 and A ~ O. 

(a) A = 0: Equation (2.11) becomes 

(1 - W)[2' ~ Go,w + Go,w] = c fakgk,k. d, k=O 

Multiplying by the integrating factor ,-! yields 

d! N k-! 
(1 - w) -[2~ Gow] = cIakgk~ . d, ' k=l 

v = (l - W)jA. (2.15) 

Dividing Eq. (2.11) by -A yields 

[1 - 2v' + ,2] ~ G).ro + (' - v)G, w d, ' A, 

C N + - I akgk,k = O. (2.16) 
A k=O 

If [1 - 2v~ + '2] = 0, G;. com is determined from 
the remaining terms of (2:16), since ak and gk are 
known. If [1 - 2v' + '2] ~ 0, multiplying (2.16) by 
the integrating factor [1 - 2v' + '2]-! yields 

~ {[1 - 2v' + '2]tG).ro} d, ' 
c N ,k 

= - - Iakgk • (2.17) 
A k=O [1 - 2v' + ,2]t 

Integration from' = 0 to " which is carried out in the 
Appendix, yields G ;.,w( O. It is convenient to distinguish 
between two cases for the expression of G;. W(O, 
corresponding to v E [-1, 1] and v ¢ [-1, 1]. ' 

(i) For v E [-1, 1] we have 

G;.,w(~) 

N-l { N 
=!~ Kb)'! + [1 - 2v' + ,2]-! 1 - ~ l:oakgkQiv) 

+ £ ~ a P (v) 10 v - , + [1 - 2v' + '2]!} 
, £., kgk k g [1 2]! ' 
II.k=O - v 

(2.18) 

where Pk(v) and Qk(V) are the Legendre polynomials 
of the first and second kind, respectively, and K!(v) is 
a polynomial in v and depends on c, A, and aI, ... , an 
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as parameters. Some explicit forms of K!(v) are given in 
the Appendix. Since, for all v E [-1, 1], [1 - 2v~ + 
~2] has no zeros in the region I" < 1, G A,ro(~) of (2.18) 
is analytic in ~ for all I" < 1 and hence by Theorem 
2.1 is a factor of the generating function XA,ro' 
[Remember that A :F ° and ware related to v by 
(2.15).] 

(ii) For v¢: [-1, 1], it is convenient to write the 
solution in the form 

The requirement that G;.,ro(O be analytic for 
I~I < 1 to satisfy Theorem 2.1 and the fact that 
[1 - 2v~ + ~2]! vanishes inside I~I < 1 at 

L = v - (v - 1)[('1' + 1)/('1' - I)]! (2.20) 

requires that 

lim [1 - 2v~ + ~2]!G;.,ro(O = 0, ,-+,-
or, equivalently, from Eq. (2.19) 

(2.21) 

We call Eq. (2.21) the characteristic equation and 
its roots for a given A will be denoted by vA i' There is 
also the option to give w instead of A. Recalling (2.15), 
the characteristic equation for a given w can be 
written in the form 

(2.22) 

To evaluate the number of roots of (2.21) and (2.22), 
define A(z) by 

or 

c N 
Aiz) = 1 - - .2akgk(Z)Qk(Z) (2.23) 

Ak~O 

cz N 
Aro(z) = 1 - -- .2akgiz)Qiz). (2.24) 

1 - w k~O 

From explicit expressions for the functions gk(Z) 
and Qk(Z), it follows that the function A(z) is holo
morphic in the plane cut on the real axis from -1 
to + 1. Hence, using the argument principle, the 
number ofroots in the cut plane can be expressed for a 

given A or a given w as 

1 
N;. = -flc arg Aiz), 

27T 

1 
N ro = - flc arg Aro(z), 

27T 
(2.25) 

where the contour c encircles the cut on the real axis 
from -1 to + 1 clockwise. 

The set of all admissible v for a fixed A or w will be 
called the spectral set SA or Sro, respectively: 

S;. = SAPUS;,c, 

SAP = {v:A;.(V) = O}, 

S;.c = {v:I ~ v ~ -I}. 

(2.26) 

A similar definition holds for Sro. Further, let S (8) dv 
denote a Stieltjes-type integral operator over the sum 
of the discrete terms for all possible VA i (or Vro i) plus 
over the integral E-l dv. Then the gen~ral solution of 
Eq. (2.9) for the generating function corresponding 
to a given A is 

xiz, t; 0 = r dvAiv)G;.,I_;'V(Oe-;'Ze-(I-;'vlt, (2.27) 
j(8;') 

where A;.(v) is the expansion coefficient function, and 
the generating function Xro(z, t, 0 corresponding to 
a given w is 

XwCz, t; 0 
=] dvA (v)G (Y)e-(I-ro)Z/Ve-rot ro (l-ro)/v,ro ':> • 

(8ro) 
(2.28) 

The scalar flux or particle density p(z) is given by 
X(z, t; 0 at ~ = 0, as follows from Eq. (2.8). Since we 
normalized G;.,ro(O) == 1, this is 

(2.29) 

and 

In particular, for w = 0, Pro~o(z, t) is the known 
result for the stationary anisotropic transport equa
tion.l,2 

Thus, letting w = ° is physically meaningful. 
Letting w be pure imaginary also leads to physically 
meaningful results in the study of pulsed neutron 
experiments or excitations of neutron waves." In 
general, for applications, only a partial range for A 
or w is needed and the corresponqing equations 
(2.27) and (2.29) or (2.28) and (2.30) are integrated 
over this range to yield the solution of the generating 
function and the particle density. 

• N. Corngold, Proceedings of the Symposium on Pulsed Neutron 
Research (International Atomic Energy Agency, Karlsruhe, 1965). 
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3. INVERSION OF THE GENERATING 
FUNCTION AND THE GENERAL SOLUTION 

OF (2.1) 

The method of inverting the transform (2.8) to 
obtain the solution ofthe angular distribution "P(z, p" t) 
of (2.1) from the generating function X(z, t; ') is 
identical to that given in Sec. 3 of I: For A and w 
given so that v E S, we have 

( ) ~ 2n + 1 1 (n) • 
"PJ.,m Z, p" t = k -- - XJ.,m(z, t, O)p n(P,) 

n=O 2 n! 

= e-;'ze-(JJt<l>;.,m(P,) (v E S). (3.1) 

It follows, by inserting (3.1) into (2.1), that <l>J.m(p,) 
satisfies the equation ' 

(1 - w - Ap')<I>;.,m(p,) = ~ L>(p" P,')<I>;.,m(p,') dp,'. 

(3.2a) 
Because of (2.15), 

(1 - w - Ap,) == A(v - p,) == (1 - w)(v - p,)/v. 

(3.2b) 

Given A(or w), <I>;.,m will be called an eigenfunction 
of (3.2) belonging to the eigenvalue v = (1 - w)/A, 
provided v E S. [Using the middle term of (3.2b), Eq. 
(3.2a) reduces to the eigenvalue problem 

(v - p,)cf>(p,) = f L>(p" p,']cf>(p,') dp,', 

where c' = c/ A is now a complex number. The isotropic 
case of this equation is presented in Ref. 1.] 

Following the steps of Sec. 3 of I, but using (3.1) 
and the results of the previous section, we obtain 

c 1 N 
<I>;.,m(P,) = - -- !akgkPiv) 

2.1 v - P,1c=0 

N-1 21 + 1 + ! -- Kz(v)PZ{p,), 
1=0 2 

vE[-l,l], (3.4a) 

where P denotes the principal value 

PA(v) = HA(v + iO) + A(v - iO)}, (3.4b) 
1 <Xl 

P -- = ! (2n + l)Qiv)P n(P,), (3.4c) 
v - p, n=O 

(}(v - p,) = ! 2n + 1 P iv)P n(p,). (3.4d) 
n=O 2 

The eigenfunctions obey the orthogonality relations 
(3.5) and (3.6) given below. For the continuous part 
of the spectrum v E [-1, 1], for A fixed and w = 1 -
AV, we have 

L~;"l-;'.(P,)<I>;"l-;"'(P,) dp, = L(A, v)(}(v - v'), (3.5a) 

where 

L(A, v) = A1(v)A;:(v), (3.5b) 

and, for w fixed and A = (1 - w)/v, we have 

l:<I>(l-m)/v,m(p,)<I>(l-m)/v',m(P,)P, dp, = M(w, v)(}(v - v'), 
(3.6a) 

where 

M(w, v) = vA~(v)A~(v), (3.6b) 

and A+ and A- are the limits of A(z) as z approaches 
v E [-1, 1] from the positive or negative sides of the 
cut from -1 to 1. It will be assumed here, as in Ref. 2, 
and in the rest of this treatment that A+(v)A-(v) ~ 0 
for v E (-1,1]. For the case A+(v)A-(v) = 0 we refer 
to Mika.2 The orthogonality relations for the discrete 
part of the spectrum v ¢ [-1, 1], V E S, are 

f~),'l-)..(P,)<I>),'l-)'V'(P,) dp, = L(A, v)b.,v" (3.5c) 

where, from Eq. (3.3), 

L(A, v) = f~f'l-;'V(P,) dp, 

with 

and 

2S2 N-l 
= -2- + ! (21 + 1)Kz(v)[2sQb) + ,Kz(v)], 

v-I 1=0 
(3.5d) 

C N 
S = - !akg/c(v)Pk(v) {v: A(v) = O} (3.5e) 

2AIc=0 

L:<I>(l-(JJ)/v,m(P,)<I>(l-(JJ)/v',ro(P,)P, dp, = M(w, v)(}v,v" 

(3.6c) 
Here 

M(w, v) = Lll<l>~l-m)/.,m (p,)p, dp, 

2vs
2 + 2 I v-I =-- s og--

v2 -1 v+1 
N-l 

+ ! {2(21 + l)sKb)Qb)v 
1=0 

21 + 1 1 + -- Kz{v)Kz+1(v) + - Kz{v)KI_1(V), 
2 2 

{v: A(v)} = O. (3.6d) 
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The solutions of the transport equation (2.1), for 
given A or w corresponding to (2.27) and (2.28) for 
the generating function X(z, t; ~), take the form 

tp;.cz, ft, t) = r dvA..(v)e-.l.ze-U-.l.v)tcD.l..I_.l.V(ft), (3.7a) 
J(S.l.) 

til (z 11 t) =f dvA (v)e-(I-ro)zfve-rotcD (II) 
TW 'r' W (l-ro)fv ro r , (SW) • 

where, in particular at z = 0, t = 0, 

tp..(O, ft, 0) = r dvA..(v)cD.l..I_.l.v({t), 
J(S.l.) 

tpw(O, ft, 0) = r dvAro(v)cDu_W)fV weft). 
J(Sw) . 

(3.8a) 

(3.7b) 

(3.8b) 

For an infinite medium the orthogonality relations 
(3.5) and (3.6) can be used to evaluate the expansion 
coefficients of the representations (3.7) and (3.8). 
These representations are possible because of full
and partial-range completeness theorems for functions 
of ft. The full-range completeness theorem is: 

Theorem 3.1: Any arbitrary function tp(ft) which 
obeys the H* condition for all ft E [-1, 1], [i.e., 

(3.9a) 

where A and yare positive numbers and, in the 
neighborhood of ± 1, 

tp*(ft) 
tp(ft) = 1ft ± 11'" 0::::;; b ::::;; 1, (3.9b) 

where tp*(ft) satisfies (3.9a)J can be represented in the 
form (3.7b) or (3.8b) for any given·A. or w. 

However, we look for the general representation 
of solutions to the transport equation (2.1) and not 
merely for representations of arbitrary functions of p. 
At a first glance, the general solution of the transport 
equation (2.1) may be expected to be the double 
integral of (3.7) [or (3.8)] over all A = Al + iA2 ¢ 0 
(or all w). This combination, however, overdeter
mines the solution; a line integral suffices, as for the 
initial-value problem presented below. 

Consider an initial angular distribution tp(z, ft, 0) 
which obeys the H* condition in ft and possesses a 
Fourier transform in z. By Theorem 3.1 the Fourier 
transform of tp(z, p, 0) can always be represented 
in the form 

2
1 f+<Xl dz ei.l.Ztp(z, ft, 0) = r dv Aa(v)cDa.l-i.l.v({t), 
TT -<Xl ) (Si.l.) 

(3.10) 

where, using the orthogonality relations (3.5), 

A . ..(v) = 1 f+<Xldz ea. 
• 27TL(iA, v) -00 

X L:dp tp(z, ft, O)cDi.l..I-i.l.v(ft). (3.11) 

The inverse of the Fourier transform (3.10) is 

tp(z, ft, 0) =f+oo dA. e-iAz r dv Ai.l.(v)cDi.l..I-iA.(ft). 
-00 ) (Si.l.) 

(3.12) 

Thus a solution of the transport equation (2.1) which 
has the initial angular distribution tp(z, p, 0) given 
above is [see (3.1)J 

tp(z, ft, t) = {+oooo dA e-a• 

X r dv Ai..(v)e-U-i.l.v)tcDi.l..I_i.l.v({t). 
J(Si.l.) 

(3.13) 

Equation (3.13) is a representation for solutions ofthe 
transport equation (2.1) and, for isotropic scattering, 
agrees with that given in Ref. 1. In the infinite medium, 
the expansion coefficients Ai.l.(V) are given by (3.11). 
This representation also leads to an expression for the 
initial-value infinite-medium Green's function and 
hence1•3 to the solution of the transport equation for 
arbitrary source distributions. The expression is 
similar to that given by Case and Zweifel (Ref. 1, 
Chap. 7) for the special case of isotropic scatter
ing. 

The representation (3.13), however, is not approp
riate for the Milne problem (Ref. 1, p. 183). This is not 
surprising since the Fourier transform approach for 
the stationary isotropic transport equation leads only 
to an asymptotic solution and does not account for the 
expansion modes belonging to the continuum. 

Case and Zweifel (Ref. 1, Chap. 7) also give a 
representation of the angular distribution for the 
time-dependent isotropic transport equation in terms 
of Laplace transforms with respect to time. A gener
alization of their work to the anisotropic case is 
strai.ghtforward and will be omitted here. Instead, a 
representation based on Fourier transforms in the 
time variable will be discussed. As mentioned above , 
the representation (3.8) is complete and physically 
meaningful for w = 0 (stationary case) or w pure 
imaginary (pulsed reactors, fixed neutron waves'). 
Thus a linear combination of (3.8) for pure imaginary 
w, i.e., a Fourier transform in the time variable, is 
expected to yield a representation of solutions to the 
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transport equation (2.1): 

( 
1 - iw ) x exp - --v- Z <l>u-;w)/v,wCu), 

(3.14) 
where 

and, using the orthogonality relations (3.6), 

Aiw(p) = 1 J+oodt eiwt 
27TM(w, v) -00 

x L:d,u ,u1p(0,,u, t)<I>U-irol/v.iw(,u). (3.16) 

If the angular distribution 1p(z, ,u, t) (a) obeys the 
H* condition in ,u, (b) if it is known at a fixed point in 
space, say z = 0, for all times t, and (c) if it has a 
Fourier transform in time, then the general angular 
distribution will be given by (3.14) with the expansion 
coefficients defined by (3.16). This result is analogous 
to the initial-value problem treated above, i.e., from 
the time history of 1p at a fixed point (the measuring 
point) we can calculate 1p for any other point (,u, z, t). 

As an application of the above representations the 
case of purely absorbing media will be shown to be a 
limit case for anisotropic scattering. 

The restriction of the scattering function I(fl-, ,u') 
to be nonnegative and S f(P, ,u') d,u' = 1 require1•2 

that a/c S 2k + 1. In the limit case N --* 00 and 
ale = 2k + l, if(P, ,u') takes the form 

00 2k + 1 
H(P, ,u') = L-' - P/c(,u)P/c(,u') = b(p - ,u'). (3.17) 

/c=o 2 

Then the transport equation (2.1) reduces to 

~ 1p(z,,u, t) + ,u! 1p(z,,u, t) + 1p(z,,u, t) ot uZ 

= C1p(z,,u, t). (3.18) 

This equation is equivalent to the case of a purely 
absorbing medium treated in Ref. 1. The trans
formation (renormalization) z --* z/(l - c), t --* t/(l -
c) reduces Eq. (3.18) to the transport equation (2.1) 
with c = O. Hence the representation of the general 

solution 1p(z,,u, t) of (3.18), as deduced from Eq. 
(3.13), is 

1p(z,,u, t) = L+oooo d}, e-o.zL: dv Ai.«v)e-l1- c- i ;'vltb(v - ,u) 

(3.19) 

where 

(3.20) 

The representation as deduced from (3.14) is 

( 
1 - c - iw ) x exp - v z b( v - ,u) 

J+OO. ( 1 - c - iw ) = -00 dw e-,wtAiW(,u) exp - v z , 

(3.21) 
where 

(3.22) 

Since here <1>;. w(,u) = b(v - ,u), v = (1 - c - w)/). E 

[ -1, 1], The'orem 3.1 is satisfied for arbitrarily 
prescribed }. or w. Further, since the functions 
{e-i;'z: }, E (- 00, oo)} [or {e-iwt : w E (- 00, cD)}] form 
a complete basis for functions of z (or of t) which 
possess Fourier transforms (this includes the b 
function), the general solutions of the transport 
equation (3.18) have the above representations (3.19) 
or (3.21). This simple example should be a reminder 
that scattering functions f(,u, ,u'), for which the 
expansion (2.2) has (N = oo)-many terms, need 
individual attention. 

4. TIME-DEPENDENT ISOTROPIC TRANSPORT 
IN GENERAL SLAB GEOMETRY 

Time-dependent isotropic transport with axially 
symmetric slab geometry is treated above (the special 
case of transport with general geometry and a/c = 0 
for k ~ 1). Stationary isotropic transport in general 
slab geometry was treated in I. Here we combine these 
two problems and solve the time-dependent transport 
equation for isotropic scattering in general slab 
geometry 

o a c 1211' II 
- 1p + ,u - 1p + 1p = - d4> d,u 1p(z,,u, 4>, t). ot oz 47T 0 -1 

(4.1) 

As in I, the angular distribution is expanded in 
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general spherical harmonics so that 

"f(Z, fl, cp, t) 

= i ! 2n + 1 (n - m)!fnm(z, t)Y;:'(fl, cp). 
n~Om~-n 41T (n+m)! 

(4.2) 

The expansion coefficients are given by 

fnm(z, t) = [2"dCPJ
1
dfl"f(Z, fl, cp, t)Y::'*(fl, cp). Jo -1 

(4.3) 

The restriction of the angular distribution "f to be real 
implies3 that 

f = (_I)m(n - m)!f* . (4.4) 
n,-m (n + m)! nm 

Substituting Eq. (4.2) into (4.1) and using the known 
properties of the spherical harmonics3,5 yields 

o 0 
(2n + 1) a/nm + (n + 1 - m) ozfn+1,m 

o 
+ (n + m) ilz fn- 1,m + (2n + l)fnm 

- cfnmtJnotJmO = O. (4.5) 

Since the second subscript m of fnm is the same for all 
terms in (4.5), this set of equations can be solved 
separately for each value of m. Equation (4.4) makes 
it sufficient to solve (4.5) for m ;;::: O. 

For m = 0, the system (4.5) is a special case of 
(2.6) with ak = 0 for k ;;::: 1 and has been solved. 
For each m fixed where m > 0, we define a generating 
function for the Fourier coefficientsj~m of the angular 
distribution "f by 

00 

Xm(z, t; 0 == L ~nfnm(z, t), m > O. (4.6) 
n=m 

As in I, Xm can be shown to be a transform of the 
angular distribution "f(z, fl, cp, t) and to be analytic in 
~ for 1'1 < 1. Applying this transform to Eq. (4.1) or, 
equivalently, multiplying Eq. (4.5) by ~n, summing 
over n, and using the definition of Xm above yields 

(1 ~2) 0
2 

21 0
2 

+ OZO, Xm + ~ oto~ Xm 

+ [em + 1)~ - ~J:zXm + ~Xm 
o 

+ n o~Xm + Xm = O. (4.7) 

Here again (see Theorem 2.1), only the solutions of 
Eq. (4.7) which are analytic in ~ for I" < 1 are 
generating functions for the Fourier coefficients fnm 
of (4.2). 

5 E. W. Hobson, The Theory of Spherical and Ellipsoidal Har
monics (Cambridge University Press, London, 1931). 

Equation (4.7) can be solved by the method of 
separation of variables if we let 

Xm,A,w = e-Aze-rotGm,A,w(O, 

where Gm,A,W(O satisfies 

[2(1 - w)~ - A(1 + ~2)] :~ Gm,A,Wm 

(4.8) 

+ [1 - w - (m + I)A~ + ~AJGm'A,wm = O. 
(4.9) 

For A = 0, multiplying Eq. (4.9) by the integrating 
factor ~-! yields 

(1 - w) :~ [2~!Gm,o,wm] = O. 

By integrating the last equation from ~ = 0 to ~ we get 

(1 - w)2~!Gm,o,wm - [(1 - w)2~!Gm,o,wm],~o = O. 

(4.10) 

Hence Gm 0 w(~) == 0 unless w = 1, in which case 
G mOl (0 i~' an arbitrary function of ~. The corre
spa'nding solution of the transport equation (4.1) is 
given by 

"fm,O,1 = e-teimt/>Y(fl), m =F 0, Y(fl) arbitrary. 

(4.11) 

For A =F 0, dividing by -A and defining v = (1 - w)/ 
A reduces Eq. (4.9) to Eq. (4.16) of I. Thus the corre
sponding elementary solutions of the transport equa
tion (4.1) are 

l-w 
v = -- E[-I,I]. 

A 
(4.12a) 

Therefore 

<l>m,A,w = eimt/>tJ(fl - v), v = (1 - W)/A E [-1,1] 

(4.12b) 

form a complete set for arbitrary functions of fl. 
Equations (4.11) and (4.12), which were derived for 
m > 0, hold for all integers m =F 0 because of (4.4). 

The general solution of the transport equation (4.1) 
corresponding to (3.13), but with ak = 0 for k ;;::: 1, is 

"f(z, fl, cp, t) 

=J+oo dA e-iAz{1 dv A. (v)e-(1-iAV)I<l>. . (II.) 
1.1 zl,l-zAv r 

-00 (SiA) 

(4.13) 
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The expansion coefficients A;;. (v) , Am ;;.(ft) can be edited this report and Doris Haight typed the manu
determined as in Sec. 4 of I and Sec.' 3 above. For script. 
example, if the initial distribution "f(z, ft, cP, 0) is 
given, obeys the H* condition in ft, and possesses a APPENDIX: INTEGRATION OF (2.17) FROM 
Fourier transform in z, then (4.13) is the solution for , = 0 TO ~ 
the initial-value problem when we let The integrals involved are of the type 

Am.o.(ft) = ~ 12rr dcpJ+oo dz eo.z"f(z, ft, cP, O)e-im4>, 
47T 0 -00 

m ¥= 0, (4.14) 

and [using the orthogonality relation (3.5) with ak = 0 
for k ~ 1] 

Ai.b) = 47T2L~j}" v) frr dcp f
1
dft 

X L+oooo dz eo.z"f(z, ft, cP, O)<I>o.,l-i)..(ft)· (4.15) 

In particular, let the initial distribution "f(z, ft, cP, 0) 
be a product of 15 functions: 

"f(z, ft, cP, 0; Zo, fto, CPo) 

= -.l 15(z - zo)15(ft - fto)15(cp - CPo). (4.16) 
27T 

Then Eqs. (4.14) and (4.15) yield the following simple 
expansion coefficients corresponding to (4.16): 

Hence, from Eqs. (4.13), (4.17), (4.18), and (5.9) ofI, 
the general solution of the transport equation (4.1) 
having the initial distribution (4.16) is 

"f(z, ft, cP, t; zo, fto, CPo) 

= _1_ J+oo d)' e-i).(z-zo) 
87T3 

-00 

X { r dv e~~I:)'V); <l>o.,l-i)..(ftO)<I>o.,l-iJ..(ft) 
)(8;).) I ,v 

+ e-(1-o.l')t15(ft - fto)[27T15(cp - CPo) -1]}. (4.19) 

As expected, the angular distribution (4.19) indeed 
reduces to (4.16) when t = 0 (see Ref. 7 ofI). Expres
sions similar to (4.13)-(4.19) hold for the repre
sentation corresponding to (3.14) based on Fourier 
transforms in the time variable. 
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k a positive integer. 

From Refs. 3 and 6: 

10 = log {~ - v + (1 - 2v~ + ~2)!} 
1 - v 

__ I {[V - ~ + (1 - 2v~ + ~2)!} - og , 
1 + V 

II = [1 - 2v~ + eJ! - 1 + vIo. 

Further, for k > 1, 

~k-l 

h = [1 - 2v~ + ~2]! -
k 

(AI) 

(A2) 

(A3) 

+ (2k - l)v I _ k - 1 I (A4) 
k k-l k k-2' 

Equations (A2)-(A4) are sufficient to determine Ik 
for all positive integers k. A more convenient expres
sion for Ik can be deduced from the above by mathe
matical induction and is 

where Uk-l is a polynomial in ~ and v of degree k - 1 
in ~ and k - 2 in v, 

Uo = 0, U1 = ~/2, (A6a) 

and the rest of the Uk- 1 are determined from the 
recurrence relation 

~k-l (2k - 1 )v k - 1 
uk-l~, v) = k + k Uk - 2 - -k- Uk-3' 

(A6b) 
Clearly, 

(A6c) 

Further, Wk_1(V) is a polynomial of degree k - 1 in v 
defined in terms of Legendre polynomials by 

Wk_1(V) = Pk(V)QO(v) - Qk(V). (A 7) 

Integrating (2.17) from ~ = 0 to ~ and using (A5) 

6 G. Petit Bois, Tables of Indefinite Integrals (Dover Publications, 
Inc., New York, 1961). 
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yields 

(1 - 2v{ + {2)tG;.,roC{) - 1 

C N 
= - - ~akgklk 

Ak=1l 

c iN = - - (1 - 2v{ + {2) ~ akgk{ Uk- 1({, v) + Wk_1(V)} 
A k=l 

c N C N 
+ - ~akgkWk-l(V) - - ~akgkPiv)Io. (AS) 

Ak=l Il k=O 

Since uk-la, v) is a polynomial in { of degree k - 1, 
the right-hand side of (AS) can be written in the form 

JOURNAL OF MATHEMATICAL PHYSICS 

where Kz(v) is a polynomial in v and depends on c, A, 
and the parameters al" .. ,aN' In particular, using 
(A6c), it follows that 

c N 
Ko(v) = - - ~akgkWk-b) (A lOa) 

Ak=l 
and, using (A6b), 

c 
KN_1(v) = - - aNgN' (AI0b) 

Nil 

K N_2(v) = - - aNgNv C[ 2N - 1 
A N(N - 1) 

+ N ~ 1 a N-lgN-} (AlOe) 

and so on. The expressions (2.1S) to (2.21) for 
GA.,wC') and the characteristic equation follow directly 
from (AS), (A9), (A2), and (A7). 
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In a recent publication, Wolf and Shewell gave a formal solution to the inverse diffraction problem, 
i.e .• to finding the field distribution in the plane z = 0 from the knowledge of the field in an arbitrary 
plane Z = Zl > 0 in the half-space into which the field is propagated. The solution involved the use of a 
singular kernel. In the present paper the inverse diffraction problem is treated in a rigorous manner. Our 
method makes use of the representation of the field as an angular spectrum of plane waves and demon
strates the usefulness of this type of representation. It is shown that by the use of a suitable truncation 
procedure one may avoid the use of a singular kernel or the generalized function theory. 

1. INTRODUCTION 

In a recent note, Wolf and ShewelP gave the solution 
to the inverse diffraction problem. The problem may 
be formulated as follows. Consider a monochromatic 
wave field 

VCR, t) = UCR) exp (-iwt) (1.1) 

which is well behaved in the half-space z> O. The 
space-dependent part U(R) obeys the Helmholtz 
equation 

(V'2 + k2)U(R) = 0 (k = w/c), (1.2) 

where c is the velocity of light. It is assumed that U 
obeys the Sommerfeld radiation condition at infinity 
in the half-space z > O. If the field distribution U(R2) 
in the plane z = Z2 is given, is it possible to derive an 

• Research supported by the Air Force Office of Scientific 
Research. 

1 E. Wolf and J. R. Shewell, Phys. Letters.!SA (1967).417; 26A 
(1967) 104. 

expression for the field U(R1) at any point R = Rl in 
any plane z = Zl such that 0 =::;; Zl =::;; Z2 ? 

The solution, which may be regarded as the 
inverse of one of Rayleigh's diffraction formulas,2 
was given as follows: 

U(Rl) = II U(R2)K(Rl' R2) dS2 , (1.3) 

where the integration extends over the plane Z = Z2 

and the kernel K(Rl' R2) may be expressed in the form 

K(R1 , R2) = - .L ~ [exp ( - ikr)/r J + S(Rl' R2), 
2'1T iJz2 

2 The Rayleigh formula may be written in the form 

U(R 2} = f J U(Rl)K(R., R I ) dS1 , 

where 
K(R2, R

I
) = _1-.!.. (exp (ik JRI - R2 J») 

21T ilZ2 JR! - R.J 
and the integration is carried out over the plane z = ZI • 

(1.4) 



                                                                                                                                    

EXACT SOLUTION OF THE TRANSPORT EQUATION. II 2001 

yields 

(1 - 2v{ + {2)tG;.,roC{) - 1 

C N 
= - - ~akgklk 

Ak=1l 

c iN = - - (1 - 2v{ + {2) ~ akgk{ Uk- 1({, v) + Wk_1(V)} 
A k=l 

c N C N 
+ - ~akgkWk-l(V) - - ~akgkPiv)Io. (AS) 

Ak=l Il k=O 

Since uk-la, v) is a polynomial in { of degree k - 1, 
the right-hand side of (AS) can be written in the form 

JOURNAL OF MATHEMATICAL PHYSICS 

where Kz(v) is a polynomial in v and depends on c, A, 
and the parameters al" .. ,aN' In particular, using 
(A6c), it follows that 

c N 
Ko(v) = - - ~akgkWk-b) (A lOa) 

Ak=l 
and, using (A6b), 

c 
KN_1(v) = - - aNgN' (AI0b) 

Nil 

K N_2(v) = - - aNgNv C[ 2N - 1 
A N(N - 1) 

+ N ~ 1 a N-lgN-} (AlOe) 

and so on. The expressions (2.1S) to (2.21) for 
GA.,wC') and the characteristic equation follow directly 
from (AS), (A9), (A2), and (A7). 

VOLUME 9, NUMBER 12 DECEMBER 1968 

Inverse Wave Propagator* 

EAMON LALOR 
Department of Physics and Astronomy, University of Rochester, Rochester, New York 

(Received 16 February 1968) 

In a recent publication, Wolf and Shewell gave a formal solution to the inverse diffraction problem, 
i.e .• to finding the field distribution in the plane z = 0 from the knowledge of the field in an arbitrary 
plane Z = Zl > 0 in the half-space into which the field is propagated. The solution involved the use of a 
singular kernel. In the present paper the inverse diffraction problem is treated in a rigorous manner. Our 
method makes use of the representation of the field as an angular spectrum of plane waves and demon
strates the usefulness of this type of representation. It is shown that by the use of a suitable truncation 
procedure one may avoid the use of a singular kernel or the generalized function theory. 

1. INTRODUCTION 

In a recent note, Wolf and ShewelP gave the solution 
to the inverse diffraction problem. The problem may 
be formulated as follows. Consider a monochromatic 
wave field 

VCR, t) = UCR) exp (-iwt) (1.1) 

which is well behaved in the half-space z> O. The 
space-dependent part U(R) obeys the Helmholtz 
equation 

(V'2 + k2)U(R) = 0 (k = w/c), (1.2) 

where c is the velocity of light. It is assumed that U 
obeys the Sommerfeld radiation condition at infinity 
in the half-space z > O. If the field distribution U(R2) 
in the plane z = Z2 is given, is it possible to derive an 

• Research supported by the Air Force Office of Scientific 
Research. 

1 E. Wolf and J. R. Shewell, Phys. Letters.!SA (1967).417; 26A 
(1967) 104. 

expression for the field U(R1) at any point R = Rl in 
any plane z = Zl such that 0 =::;; Zl =::;; Z2 ? 

The solution, which may be regarded as the 
inverse of one of Rayleigh's diffraction formulas,2 
was given as follows: 

U(Rl) = II U(R2)K(Rl' R2) dS2 , (1.3) 

where the integration extends over the plane Z = Z2 

and the kernel K(Rl' R2) may be expressed in the form 

K(R1 , R2) = - .L ~ [exp ( - ikr)/r J + S(Rl' R2), 
2'1T iJz2 

2 The Rayleigh formula may be written in the form 

U(R 2} = f J U(Rl)K(R., R I ) dS1 , 

where 
K(R2, R

I
) = _1-.!.. (exp (ik JRI - R2 J») 

21T ilZ2 JR! - R.J 
and the integration is carried out over the plane z = ZI • 

(1.4) 



                                                                                                                                    

2002 EAMON LALOR 

r = IRI - R2 1, and S(R1 , R2) is a singular integral 
defined formaIIy by the equation 

S(Rl , R2) 

Rl == (Xl' Yl , Zl), R2 == (X2, Y2 , Z2), 

and Jo is the Bessel function of the first kind and zero 
order. 

It is the aim of the present paper to derive a solution 
to this problem in a mathematically rigorous manner 
and to demonstrate that it is possible to avoid 
difficulties associated with the use of a singular kernel 
in Eq. (l.3) while at the same time expressing the 
solution in such a way that it may be used in the 
treatment of physical problems. 

2. MATHEMATICAL PRELIMINARIES3 

Let us consider a scalar wave field U(x,y, z) which 
satisfies the following conditions: 

(a) it is a solution of the Helmholtz equation 

(\72 + k2)U(X,y, z) = 0 when z > 0; 

(b) it assumes given boundary values 

U(x,y,O) =/(x,y), 

where/(x,y) has the following properties: 
(i) it is sectionaIIy continuous in the xy plane; 
(ii) outside a certain circle of radius Ro, it is con

tinuous and has continuous derivatives such that 

If(x,y)1 < BIR, 1f,,(x,y)1 < BjR, 

1!u(x,y)1 < BIR, 

where R = (x2 + y2)!- and B is a constant independent 
of X andy; 

(iii) it is square-integrable, i.e., 
00 

IIlf(X, y)1
2 

dx dy < 00; 
-00 

(c) it is regular for z > 0 and satisfies the following 
conditions: 

(i) in the domain R = [X2 + y2 + Z2]!- > Ro of the 
half-space z > 0 there exists a constant C such that 
U and the derivative aU/oR satisfy the inequalities 

IUI<~, I~~I<~; 
3 Reference 5, which was written after this paper was submitted, 

considers some of the mathematical points of this section in more 
detail and with greater precision. 

(ii) in any solid sector -7T12 + b < () < 7T/2 - b 
of the domain R > Ro, z > 0 there exists a constant 
D(b) such that for all points (x, y, z) of the sector 

I aU - ikU I < D . oR R2 

Conditions (a), (b), and (c) ensure that the solu
tion to the boundary-value problem is unique and 
that we are dealing with physically reasonable fields. 4 

One may show5 that the solution U(x, y, z) which 
satisfies conditions (a), (b), and (c) may be represented 
as an angular spectrum of plane waves, i.e., in the form 

00 

U(x, y, z) = (2:rII A(p, q) 
-00 

where 
x exp [ik(px + qy + mz)] dp dq, (2.1) 

m = [1 - p2 - q2]!-, when p2 + q2 ~ 1, 

= +i[p2 + q2 - I]!-, when p2 + q2 > I, (2.2) 

for all x and y and for z Z O. In (2.1), A(p, q) is defined 
as 

00 

A(p, q) = II U(x, y, 0) exp [-ik(px + qy)] dx dy; 
-00 

(2.3) 
however, in Ref. 5 it is shown that 

A(p, q) = II U(x, y, z) 
-00 

X exp [-ik(px + qy + mz)] dx dy 

for all z Z O. (2.4) 

If we substitute from (2.4) for A(p, q) (with x = X2' 
Y = Y2' Z = Z2) into (2.1) (with x = Xl' Y = YI' 
Z = ZI) we obtain 

00 00 

U(Xl' Yl, Z1) = (2:)2 II dp dq II dX2 dY2 U(X 2 , Y2' Z2) 

-00 -00 

x exp {-ik[p(X2 - Xl) 

+ q(Y2 - Yt) + m(Z2 - Z1m· (2.5) 

Equation (2.5) already expresses the field distribution 
U(RI) at any point (Xl' YI ,Z1) in terms of the field 
distribution U(R2) in the plane z = Z2' It should be 
noted that Eq. (2.5) is valid irrespective of the relative 
values of Z1 and Z2, i.e., irrespective of whether 

4 R. K. Lutleburg, Mathematical Theory of Optics (University of 
California Press, Berkeley, 1966), p. 311. Note, however, that the 
conditions satisfied by U(x, y, z) in this reference are weaker than 
those in the present paper [condition (b.iii) of our Sec. 2 is an 
additional condition, not made by Luneburg]. 

6 E. Lalor, J. Opt. Soc. Am. 58, 1235 (1968). 
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Zl ~ Z2 provided only that Zl ~ 0, Z2 ~ 0. This 
equation is not, however, very useful for practical 
calculations since it involves fourfold integrations. 

Let us now consider (2.5) with Zl < Z2 (solution of 
the inverse diffraction problem) and let us split the 
domain of integration into two parts: 

U(Xl' Yl' Zl) 
00 

= c~r II dp dq II dX2 dY2 U(X2, Y2' Z2) 
Dl -00 

X exp { - ik[p(X2 - Xl) + q(Yz - Y1) + m(Z2 - Zl)]} 
00 

+ (2:rII dp dq II dX2 dY2 U(X 2, Yz, Z2) 
D2 -00 

X exp {-ik[p(X2 - Xl) 

+ q(Yz - Yl) + m(Z2 - Zl)]}' (2.6) 

where DI is the domain p2 + q2 ~ I and D2 is the 
domain p2 + q2 > 1. It will be useful to add to the 
first term on the right of (2.6) the integral (shown in 
Appendix A to be convergent) 

00 

I = (2~)2II dp dq II dX2 dY2U(X2, Y2, Z2) 

D2 -00 

x exp { - ik[p(X2 - Xl) + q(Yz - Y1)]} 

X exp [_k(p2 + q2 - 1)!(z2 - Zl)] (2.7) 

and to subtract the same integral from the second 
term on the right of (2.6). Then (2.6) becomes 

U(X1' Y1 , Zl) = U(1) (Xl' Yl , ZI) 

+ U(2)(Xl , Yl, Zl), (2.8) 
where 

U(l)(x l , Y1' Zl) 
00 00 

= G7SII dPdqII dx2dY2 U(X2'Y2,Z2) 
-ex) -00 

X exp { - ik[p(X2 - Xl) 

+ q(Y2 - Y1) + m1(z2 - Zl)]}, (2.9) 
with 

m1 = (1 - p2 - q2)!, when p2 + q2 ~ 1, 

when p2 + q2 > 1, 

(2.10) 

= _i(P2 + q2 - I)!, 

and 

U(2)(X1, Yl , Zl) 
00 

= 2~2 II dp dq II dX2 dYzU(x2, Y2' Z2) 
D2 -00 

X exp { - ik[p(X2 - Xl) + q(Yz - Y1)]} 

X sinh [k(p2 + q2 - 1)!(Z2 - Zl)]' (2.11) 

We will now examine separately the behavior of 
U(l) and U(2). 

3. THE BEHAVIOR OF U(1)(X1' Y1' Zl) 

The integral (2.9) for U(1)(xl , Yt, Zl) may be re
written as follows: 

00 00 

= (2:)2
I

J dp dq[JI U(X2' Y2, Z2) 
-00 -00 

X exp [-ik(pX2 + qYz)] dX 2 dY2] 

X (exp {-ik[pXl + qYl + m(zl - Z2)]})*' (3.1) 

where the asterisk denotes complex conjugation. We 
note from (2.2) and (2.10) that mi is equal to m. 

We now make use of the following well-known 
result (Parseval's theorem) of Fourier transform theory 
(Ref. 6, p. 48). If I(x) and g(x) are square-integrable, 
i.e., are such that 

L:lf(X)1 2 dx < 00 and L:lg(XW dx < 00, 

then 

L:J(y)g(y)* dy = 27T L:f(x)g(x)* dx, (3.2) 

where J(y) and g(y) are the Fourier transform of I(x) 
and g(x), respectively: 

J(y) = L:f(x)e-iXY dx, g(y) = L:g(y)e-iXY dx. 

Now, let us define O(p, q, Z2) as the Fourier transform 
of U(x2 , 12 , Z2) with respect to the first two variables: 

00 

O(p, q, Z2) = II U(X2' Y2, Z2) 
-00 

Moreover, as is shown in Appendix B, 

exp {-ik[pXl + qYt + m(zl - Z2)]} 

= V(p, q, Z2), (3.4) 
where 

V(X2' Yz, Z2) = - .1 ~ [exp (ikr)/r]. (3.5) 
27T OZ2 

In (3.5) the dependence of V upon Xl' Yt, and Zl is 
suppressed and r = IRI - R21. Therefore using (3.3), 
(3.4), (3.5), and Parseval's theorem (3.2), U(1), given 
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by (3.1), may be expressed in the form 
00 

U(l)(X1 , Yl, Zl) = - 2~ II U(X2, Y2, Z2) 
-00 

(3.6) 

The use of Parseval's theorem is justified since 
conditions (a), (b), and (c) of Sec. 2 imply that 
U(x2 ,}2, Z2) is square-integrable,5 i.e., that 

00 

IIIU(X2, Y2, z2)1 2 dX2 dYz < 00, if Z2 ~ 0, (3.7) 
-00 

and, as is easily verified, 
00 

IIW(X2 , Y2, Z2W dX2 dY2 < 00 when Z2> o. 
-00 

4. THE BEHAVIOR OF U(2l(x1 , Yl' Zl) 

It is convenient to rewrite Eq. (2.11) in the form 

U(2)(XI' Yl' Zl) 
co 

= ;i::: ::2 II dp dq[ff U(x2, Y2, Z2) 
D2T -co 

x exp [-ik(pX2 + qY2)] dX2 dY2] 

x exp [ik(pXl + qYl)] 

x sinh [k(p2 + q2 - 1)!(z2 - Zl)J, (4.1) 

where D2T is defined as the (p, q) domain such that 
1 ~ (P2 + q2) ~ T. Or, in a more compact form, 

00 

U(2)(Xl' Yl' Zl) = lim k
2

2 fff(p, q) O(p, q, Z2) dp dq, 
p .... oo 277" 

-00 (~2) 

where 

f(p, q) = exp [ik(PXl + qYl)] 

X sinh [k(p2 + q2 - 1)f(Z2 - Zl)] 

if 1 ~ (p2 + q2)! ~ T, 
= 0 otherwise. 

There is a well-known theorem in Fourier analysis 
(Ref. 6, p. 49) which states that if f(x) and g(x) are 
square-integrable, then 

L:f(X)g(X) dx = L:l(y)g(y) dy. (4.3) 

Thus we see that since f(p, q) is square-integrable 
{because of the truncation and sincef(p, q) is bounded 

• R. R. Goldberg, Fourier Transforms (Cambridge University 
Press, Cambridge, England, 1961). 

by sinh [k(T2 - 1)(z2 - Zl)]} and since U(X2,Y2, Z2) 
is also square-integrable [cf. Eq. (3.7)1 we may 
rewrite Eq. (4.2) as 

U(2)(XI , Yl, Zl) 

(4.4) 

-00 

or 

-00 

D2T 

X exp [ik(pXl + qYl)] exp [-ik(pX2 + qY2)] dp dq. 

(4.5) 

It is now convenient to change to polar coordinates: 

p = r cos 0, q = r sin 0, 

Xl - X2 = Rl cos qJ, Yl - Y2 = Rl sin qJ. 

Equation (4.5) becomes 

U(2)(Xl' Yl' Zl) 

-00 

{T (21T 
X Jl r dr Jo dO sinh [k(r - 1)f(Z2 - Z2)] 

X exp [ikrRl cos (0 - IP)]. (4.6) 

The integral 

I = l.. {
21r

dO exp [ikrRI cos (0 - IP)] 
277" Jo 

is the well-known integral representation of? Jo(krRI)' 
Using this fact, (4.6) may be rewritten as 

U(2)(X1 , YI' Zl) 

where 

ST(RI' R2) 

-00 

== fIT Jo(krRI) sinh [k(r2 - 1)f(z2 - zl)Jr dr. (4.8) 

Combining (3.6) with (4.7) according to (2.8), we 
finally obtain the following expression for the field in 
the plane Z = Zl in terms of the field in the plane 

7 P. M. Morse and H. Feshbach, Methods of Theoretical Physics 
(McGraw-Hill Book Company, Inc., New York, 1953), p. 621. 
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Z = Z2: 

U(X1' Y1' Z1) 
00 

= - 2~ II U(X2' Y2, Z2) 
-00 

-00 

(4.9) 
where ST(Rl , R2) is defined by (4.8). 

The form (4.7) avoids the use of a singular kernel 
and gives a rigorous way of operating with the 
singular kernel introduced by Wolf and Shewell.1 
Examination of the form of U(2)(Xl , Yl' Zl) reveals 
that it is composed entirely of inhomogeneous waves, 
which, as is well known. carry information about 
spatial periodicities that are smaller than a wavelength. 

Though the integral for U(2)(xl , Yl' Z1) in Eq. 
(4.7) converges, it is evident that even a small per
turbation of U(x2, X2, Z2) away from its exact value 
may cause it to diverge. This instability is a mathe
matical consequence of the type of boundary-value 
problem considered. This fact would seem to limit 
the practical value of calculating with this term since 
experimental measurement of U(X2' Y2 , Z2) will never 
be precise. 

However, if information about spatial periodicities 
that are smaller than a wavelength is not required, as, 
for instance, in most questions of practical interest in 
optics, the term U(2) could simply be neglected. It 
should also be noted that the response of any physical 
detector is frequency-dependent and in fact any real 
detector is unable to resolve frequencies higher than 
some finite value. This physical cutoff ensures that in 
practical calculations one is never required to proceed 
to the limit in Eq. (4.7). 

ACKNOWLEDGMENT 

It is a pleasure to acknowledge the constant 
encouragement and assistance of Professor Emil 
Wolf during the course of this work. 

APPENDIX A: THE CONVERGENCE OF THE 
INTEGRAL I IN EQUATION (2.7) 

The convergence of the integral defined in (2.7), 

1= C:rII dp dq II dX2 dY2U(X2, Y2' Z2) 

D. 

X exp {-ik[p(X2 - Xl) + q(Y2 - Yl)]} 

X exp [- k(p2 + q2 - l)t(Z2 - Z1)], 

may be shown by the following argument. On carrying 
out the integrations over the X2Y2 plane, it takes the 
form 

1= (2:rII dp dqA(p, q) exp [ik(pX1 + qY1)] 

Since 2Z2 - ZI is greater than zero, we see from (2.1) 
that 

, = (2:rIf dp dqA(p, q) 

X exp {ik[px1 + qYl + m(2z2 - ZI)]} + I. (A2) 

Since the left-hand side of (A2) is finite and since, as 
we shall show, the first term on the right-hand side of 
(A2) converges, I must be finite. To show that the 
first term 

GlTfff dp dqA(p, q) 

D, 

X exp [ik(pX1 + qY1 + m(2z2 - Z1))] == II (A3) 

on the right of (A2) is finite we note first that if II 
diverges then certainly the integral 

ff'A(P, q)1 dp dq diverges. (A4) 

D, 

Let us now assume that II does not converge. We shall 
show that this assumption leads to a contradiction. 
We now divide the domain of integration Dl into 
two domains D1> and D1<, where Dl> consists of the 
set of points in Dl for which IA(P, q)1 ~ 1 and D1< 
consists of the set of points in Dl for which 
IA(P, q)1 < 1. Obviously Dl = Dl> + D1<. The inte
gral 

IIIA(P, q)1 dp dq 

D,< 

is evidently finite; therefore our assumption implies 
that the integral 

IIIA(P, q)1 dp dq diverges. 

D, > 

In the domain Dl> , 

IA(P, q)1 2 ~ IA(P, q)1 (A5) 
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and therefore the integral 

ff'A(P, q)1 2 dp dq diverges. 

D 1 > 

This implies that the integral 
00 

ff'A(P, qW dp dq diverges. 

-00 

However, we know from condition (b.iii) of Sec. 2, 
Eq. (2.3), and Parseval's theorem, that 

00 

f f'A(P, qW dp dq < 00. (A6) 
-00 

Thus we have a contradiction. Hence 11 converges. 
This completes the proof. 

APPENDIX B: PROOF OF RELATION (3.4) 

We shall now show that the Fourier transform of 

we obtain 

00 

= (2
k
7Sff dp dq exp {ik[p(X2 - Xl) 

-00 

The inversion of the order of differentiation and 
integration is justified since the integral on the right 
of (B3) is uniformly convergent for Z2 - Zl > 15, 
where 15 is any positive number. This may be seen by 
applying the Weierstrass M test9 because the integrand 
is dominated by lexp (ikm6) I and since this expo
nential is absolutely integrable over the p, q plane. 
Now since V(X2' Y2' Z2) is square-integrable, i.e., 
since 

00 

f f lV(X2, Y2, Z2W dX2 dY2 < 00, 

-00 

V(X2' Y2, Z2) = - ~ ~ [exp (ikr)jr] (B1) it has a Fourier representation, 
27T OZ2 

is exp {-ik[pXl + qYt + m(zl - Z2)]}' We start with 
the well-known formula due to Weyl8: 

where m is defined by (2.2). On differentiating both 
sides of (B2) with respect to Z2 and interchanging the 
order of differentiation and integration on the right, 

00 

= (2:)2f5 V"(p, q, Z2) exp [ik(pX2 + qY2)] dp dq. 

-00 (B4) 

Since V(x2 , 12, Z2) is given by (Bl), comparison of 
(B4) and (B3) shows that 

V(p, q, Z2) = exp {-ik[pXl + qYl + m(zl - Z2)]}' 

This completes the proof. 

8 H. WeyJ, Ann. Physik 60, 481 (1919). Equation (B2) is a • E. T. Copson, An Introduction to the Theory of Functions of a 
straightforward modification of the result given in this paper. Complex Variable (Oxford University Press, London, 1935), p. III. 
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Response of a Many-Particle System to Quasistatic Changes in Volume* 

N. S. GILLIS 
Sandia Laboratory, Albuquerque, New Mexico 

(Received 21 May 1968) 

A study is made ~f the Ii~ear ~issipative .pro.cesses associated with viscous flow in a many-particle 
~y~t~m. Central to thIs stu~y IS a dIrect e.xanun~tlO~ of the Ii~ear-response properties of the system when 
It IS Influenc~~ by a dynamIcal perturbatIOn whIch Induces a tIme-dependent change in the size and shape 
of the contaInIng v~lume of th~ system. By examini.ng the line~r response of the pressure-tensor operator 
to such a perturbatIon, we derIve .correlatIOn-functIOn expressIOns for the coefficients of viscosity 1J and ~ 
and for the shear and bulk modulI Go and Ko. Essential to this discussion is the careful examination of the 
b.eh~vior of c~rtain spect.ral functions at ftnit~ volume. It is found that in order to carry through the analy
SIS In.a conslste?t fash~o~, one must reqUIre. that th~se spectral functions exhibit a special singular 
behavIOr. In partIcula~, It IS found that th~ sta~lc modulI. Go and Ko are related to the singular parts of the 
relevant spectral fu~ctlOns, whereas.the vlsco~lty coeffiCIents are related to the nonsingular parts of these 
same spectral functIOns. The expressIOns obtaIned are compared with the familiar Kubo-Moriexpressions 
for the coefficients of viscosity 1J and ~. 

I. INTRODUCTION 

In a previous paperl we carried out a detailed study 
of the response of a macroscopic system to an external 
perturbation. A major part of that analysis was 
devoted to an examination of the properties of the 
time-dependent correlation functions from which the 
transport properties could be derived. The present 
study again concerns itself with the response of a macro
scopic system, but from a somewhat more restricted 
point of view. In particular, we concern ourselves with 
a detailed study of the equilibrium and nonequilibrium 
phenomena associated with the visco-elastic processes 
which may be set up in the system. The analysis is 
carried out within the context of a linear-response 
calculation, employing a dynamical perturbation 
which induces a time-dependent change in the size 
and shape of the containing volume of the system. 
The dynamical perturbation chosen is that of a "box 
potential" U(r) which becomes infinite at the spatial 
boundaries of the system. In order to eliminate the 
explicit presence of U(r) in the dynamical perturbation, 
a canonical transformation is employed which induces 
a scale transformation on the field operators. This 
then allows us to take the large-volume limit at an 
appropriate point in the calculation. 

Because the volume of the system is in effect con
strained by the dynamical perturbation employed, one 
must examine carefully the behavior of the relevant 
correlation functions atfinite volume. Asin the infinite
volume case, certain frequency-dependent spectral 
functions derived from these correlation functions 

. • This work was supported by the U.S. Atomic Energy Commis
SIOn. 

1 R. D. Puff and N. S. Gillis, Ann. Phys. (N.Y.) 46, 364 (1968). 
Hereafter in the text this will be referred to as (PG). 

exhibit D(W) singularities. Only by taking proper 
account of their singular nature and carrying out the 
large volume limit correctly can the calculations be 
carried through in a consistent fashion. In the course 
of our analysis, we obtain correlation-function ex
pressions for the coefficients of viscosity ~ and 'Y} and 
for the compressional and shear moduli Ko and Go. 
We find that Ko and Go are related to the singular 
parts of certain spectral functions, whereas ~ and 'Y} 

are obtained from the nonsingular parts of these same 
spectral functions. In the large-volume limit the 
expressions arrived at are consistent with those found 
previously for the infinite-volume system. 1 

The present work is an extension of an earlier 
calculation of Montroll.2 In that calculation, Montroll 
restricted himself to a consideration of the shear 
viscosity alone and did not choose to consider those 
processes for which volume changes could occur. 
The present work attempts to be more general and, 
at the same time, allows for the singular nature of the 
relevant spectral functions. 

In the following section we concern ourselves with 
a brief discussion of the phenomenological equations 
of viscosity, preparatory to the full-fledged micro
scopic linear-response theory to be presented in Sec. 
III. 

II. PHENOMENOLOGICAL EQUATIONS 

In this section we will concern ourselves with a brief 
discussion of the constitutive equations of hydro
dynamics. Our primary goal here will be to recast the 
equations in a form which explicitly exhibits the 
parameters directly related to the external mechanical 

• E. W. Montroll. Rendiconti della Scuola lnternazionale di 
Fisica, Corso 10 (Edizione Nicola Zanichelli Bologna Italy 1959) 
p.242. ' '" 

2007 
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perturbation which alters the shape and size of the 
containing volume. 

The constitutive equations which we will be con
cerned with are, in linearized form, 

T;;(rt) = f5iiP(rt) - 1J(Viv;(rt) + Vivi(rt» 

- f5i;(~ - i1J)(V • vert»~, (1) 

JE(rt) = (Po + ~o)v(rt) - KVT(rt). (2) 

Tii and Yare the momentum-flux tensor and energy 
current, respectively, vert) and T(rt) represent the 
local velocity and temperature of a fluid element, 
Po and ~o are the equilibrium pressure and energy 
density, 1J and ~ are the shear and bulk coefficients of 
viscosity, and K is the thermal conductivity. Finally, 
we define the local pressure pert) as follows: If 
P o(Po, To) represents the equilibrium pressure as a 
function of the equilibrium-particle density and 
temperature Po and To, then pert) == Po(p(rt), T(rt». 
Equations (1) and (2), together with the conservation 
laws for particle density, momentum density, and 
energy density, provide a complete hydrodynamic 
description of a single-component fluid. 

In what follows, we will be interested primarily in 
momentum-relaxation processes which occur in a 
fluid exhibiting both shear and bulk viscosities. In this 
respect it is well to note that, for adiabatic processes, 
(1) and (2) will not be coupled by the conservation 
laws. To see this, we remember first of all that adia
baticity requires that the entropy per unit mass re
mains constant. In terms of the entropy per unit 
volume s(rt), this implies that 

s(rt) - So = [(pert) - Po)/ Po]so' (3) 

Thus, considering pert) as a function of pert) and 
s(rt), for small deviations from equilibrium we have 

P(p(rt), serf»~ = P(Po, so) + (iJp/iJp).{p(rt) - Po) 

+ (iJP/iJs)/s(rt) - so). (4) 

Substituting (3) into (4) results in 

P(p(rt), s(rt» = P(Po, so) + Ko[(p(rt) - Po)/ Po], (5) 

where Ko == - V(iJP/iJV)SN is the static compressional 
modulus. Equation (5), together with (1) and the 
momentum- and particle-density conservation laws, 
provides a closed set of equations which can be solved 
independently of the equations describing thermal 
relaxation processes. 

For our purposes it will be useful to consider a 
somewhat more general situation than that described 
by (1) by formally examining the case of a single
component fluid with a nonzero static shear modulus. 

Now, for a strained elastic solid, the stress tensor 
takes the form 

Tii(rt) = f5iiPo - GO(Viai(rt) + Via;(rt» 

- f5ii(Ko - iGoW • a(rt), (6) 

where a(rt) represents the vector displacement of an 
element of material from its equilibrium position and 
Go is the static shear modulus. We can represent both 
the hydrodynamic limit and the elastic-solid limit, 
and also any intermediate case (visco-elastic fluid), if 
we write the time-Fourier transform of 

as 

f5Tij(rw) = -G(w)(Viaj(rw) + Vjai(rw» 

- f5ij(K(w) - iG(w»V. a(rw). (7) 

The parameters G(w) and K(w) are, in general, 
frequency-dependent and complex; they exhibit dis
persion of the form 

G(w) = Go - iW1J(w), 

K(w) = Ko - iw~(w). (8) 

The extreme hydrodynamic limit is characterized by 
Go = ° with 1J and ~ real constants (in the absence of 
dispersion). Ko will, in general, be nonzero unless the 
fluid is incompressible. On the other hand, the elastic 
limit is characterized by 1J, ~ = 0; Go, Ko nonzero. 

We now rewrite (7) as 

f5Tii(rw) = -GO(Viaj(rw) + Viai(rw» . 

- f5i;(Ko - iGo)V. a(rw) - 1J(Vivi(rw) 

+ V;v;(rw» - f5;;({ - i1J)V • v(rw), (9) 

where v(rw) = -iwa(rw). 
The expression (9) represents the response of the 

stress tensor when the system is taken from some 
equilibrium situation to a nonequilibrium state in 
which the "driving forces" Via; and Vivj are nonzero. 
To accomplish this latter situation, we expose the 
system to a well-defined external mechanical dis
turbance. Further, it will be desirable to put (9) into 
a more convenient form by eliminating the "driving 
forces" Viai , Viv j in terms of parameters directly 
related to the external perturbation. 

Let the original equilibrium situation be that in 
which the system is enclosed in a cubical box whose 
sides are defined by the planes 

X= 0, X= L o, 

y= 0, Y= Lo, 

Z=O, Z=Lo' 

(10) 
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The nonequilibrium state is to be simulated by allow
ing the sides of the box to move in time, i.e., at time t 
we have 

where 

x = 0, X = LI(t), 

Y = 0, Y = L2(t), 

Z = 0, Z = L 3(t), 

L/(t) = LoeEdtl = Lo + €/(t)Lo + O(€2), 

€/(t) = €/e-iwt; 1= 1,2,3. 

(11) 

Consider the expression (4). If we integrate (4) over 
the volume Vet) = L1(t)L2(t)L3(t), we obtain 

r d3rP(rt) = PoV(t) + (OP) [N(t) - PoV(t)] Jv op s 

where 

+ (OP) [Set) - soV(t)], as p 

N(t) = Jv d3rp(rt), 

Set) = J/3rs(rt). 

Clearly, the total number of particles remains constant, 
so that 

N(t) = No = PoVo' 
Also, 

Vet) = Vo(l + i>lt) + O(€2»). 

It is important to note at this point that we are con
sidering a thermally isolated system; i.e., a system 
influenced only by a change in an external field. For 
such a system and for small deviations from equilib
rium, one can show that3 

Set) = So Vo + O( €€). 

Thus, for a quasi static change in the volume of the 
system, 

r da.-[P(rt) - Po] = - VoKo.! €/(t) + O(€2). Jv I 

The above relation is valid under the assumption that 
the change in the total entropy is of second order. 
This is somewhat less restrictive than the adiabatic 
assumption, which would require statements about the 
local entropy density. The point here is that, as long 
as we are concerned only with the response of the 
spatially integrated local pressure, we may neglect all 
terms due to changes in the entropy. 

We can apply considerations similar to the above 
to the general expression (7). Integrating over the 

3 See, e.g., L. D. Landau and E. M. Lifshitz, Statistical Physics 
(Addison-Wesley Pub\. Co., Inc., Reading, Mass., 1958), pp. 36 ff. 

volume Vet) results in 

J/3ro'I;j(rw) = -G(w) L[dQ;alw) + dQja;(w)] 

- (K(w) - jG(w» JndQ. a(w), (12) 

where we have converted integrals over the volume 
V(t) to integrals over the surface of the containing 
volume Q(t). By imposing the condition that the 
material adhere to the walls, we arrive at the following 
physical boundary conditions: 

a.l (t) = €;(t)Lo + O( €2), at wall surface i, 

all(t) = 0, at all wall surfaces. (13) 

a..L and all are the normal and tangential components 
(respectively) of a at the wall surface. Equation (13) 
in conjunction with (12) yields the result 

J/3ro 'I; l rw) = -2G(W)VO€iOij 

- (K(w) - jG(W»VOOij.! €/ + O(€2). (14) 
I 

In Eq. (14) we have a constitutive equation which 
expresses the linear response of the integrated stress 
tensor in terms of the parameters €i defining the 
external perturbation. The form of (14) is particularly 
useful, since it will permit direct comparison with the 
exact linear response calculation to be presented in the 
following section. 

III. LINEAR-RESPONSE CONSIDERATIONS 

Our goal in this section will be to examine in detail 
the change in the average value of the pressure-tensor 
operator4 T;j(rt) when the system is influenced by an 
external time-dependent perturbation which alters the 
shape and size of the containing volume of the system. 

As is well known, the general quantum-statistical 
average of an operator representing some dynamical 
quantity O(rt) is defined by 

(O(r»(t) == Tr [w(t)O(r)]. (15) 

Here, OCr) is the operator in the SchrOdinger picture, 
and wet) is the density-matrix operator satisfying the 
equation of motion 

i £ wet) = [H(t), wet)]. at 
We suppose that the Hamiltonian H(t) of our system 
may be written as 

H(t) = {Ho + H1(t), t> to, 
Ho, t < to. 

• That there exists a well-defined operator Tij(rt) has been shown 
in (PO). See Eq. (2.3) of Ref. I. 
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H 1(t) is to be regarded as a time-dependent perturba
tion (as yet unspecified) on the unperturbed system 
Hamiltonian Ho. 

Now, we wish to examine the linear response of our 
system to a time-dependent change in volume. In 
order to do this, we confine our system in equilibrium 
to a finite volume Vo by introducing a static "box 
potential" U(r) which becomes infinite at the spatial 
boundaries of the system. We then vary the shape and 
size of the containing volume by performing a time
dependent scal~ transformation on U(r) , i.e., we 
make the replacement 

U(x, y, z) ---+ U(xe-'l(t), ye-'2(t), ze-·3(t». (16) 

Since we are ultimately concerned with the large
volume limit of the system, the geometry of the 
containing volume is irrelevant. However, for de
finiteness we assume that U(r) represents the region 
defined by (10), whereas the scale-transformed U 
represents the region defined by (11). The Hamiltonian 
of the system containing the "box potential" we denote 
by H.(t). Thus, 

H.(t) = - d3r(Vl/(r». (V1p(r» /1
2 f 

2M 

+! f d3rd3r' V(lr - r'I)1j/ (r)1p t(r')1p(r')1p(r) 

+ f d3r' 1pt(r')1p(r')U(x' e-'l(t), y' e-'2 (t), z' e-·3 (t». 

(17) 

Clearly, if we expand H.(t) to terms linear in E(t), 
our choice for H1(t) must involve U(r) explicitly. In 
order to avoid the explicit presence of U(r) in our 
perturbation expansion, we perform a canonical 
transformation on the field operators. Introducing 
the unitary transformation 

R == exp [ -i tEz{t)SH} 

discussed in the Appendix, we rewrite (15) as 

where 

(O(r»(t) = Tr [Rtw(t)O(r)R] 

= Tr [w(t)O(r)], 

w == RtwR, 

0= RtOR. 

w.(t) satisfies the equation of motion 

i~W(t) = [H.(t) - I€t(t)SIl' wet)], at t 

(18) 

(19) 

where 

H.(t) == RtH.(t)R. 

We can interpret (19) by observing that wet) develops 
in time according to the effective Hamiltonian 

Heff(t) == H.(t) - I €t(t)SIl' (20) 
I 

Up to terms linear in E, (20) may be written 

Ho == (H.(t)).=o = (H.(t».=o· 

It is to be noted that (oH.loEt)o does not contain 
U(r) explicitly. Indeed, we easily find that 

(oH.) = -fd3rTn(r). 
OE t .=0 

The usual linear-response analysis can now be carried 
through using the dynamical perturbation 

H1(t) = - t [Et(t) f d3rTH(r) + €t(t)Su} (21) 

Thus, the linear-response statement derived from (15) 
reads 

(O(r»(t) = (O(rt)o -i t 1: dt<[Ez(t') f d3r'Tzz(r't') 

+ Et(t')SH(t'), O(rt) J)o. (22) 

All operators on the right-hand side of (22) are to be 
treated as Heisenberg operators developing in time 
according to Ho. O(rt) to terms linear in E may be 
written 

O(rt) = O(rt) + i I EI(t)[SH(t), O(rt)]. 
t 

The above expression, in conjunction with (22), 
yields 

t5(O(r»(t) = -i Ijtdt'Et(t')([Tzt(t'), O(rt)])o 
I to 

+ i I rtdt'Et(t')([SH(t'), O(rt)])o, (23) 
I Jto 

where Tij(t) has been used to denote the spatially 
integrated stress tensor. In obtaining the final ex
pression (23), we have integrated once by parts in (22) 
and noted that Et(tO) = O. The equilibrium average 
( .• ·)0 in (23) is carried out with respect to the 
equilibrium-density matrix 

_() exp f3(flN - H 0) 
Weq = W to = -~--'-"------"-'--

Tr [exp f3(flN - Ho)] 
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It is important to notice at this point that the 
Hamiltonian Ho, which appears in w.(to) and which 
determines the time dependence of the field operators, 
contains the static box potential U(r). In general, 
then, neither the total momentum operator nor the 
total angular-momentum operator commutes with 
the Hamiltonian of the system. Hence, equilibrium 
correlation functions of the general form 

(A(rt)B(r'O»o - (A(r»o(B(r'»o 

will be functions of rand r', separately, and not 
merely functions of the magnitude of r - r'. Only in 
the large-volume limit will we be able to invoke space
translational and rotational invariance. Time-trans
lational invariance still holds, of course, and the usual 
arguments involving time reversal remain unchanged. 

The expression (23) is useful in that it does not 
exhibit the "box potential" explicitly. In principle, 
then, one could at this point calculate all relevant 
quantities by quantizing the field operators in a finite 
cubical volume, thus taking into account the implicit 
presence of the "box potential" by imposing on the 
fields the requirement that they vanish at the spatial 
boundaries of the system. This, of course, can be 
accomplished by expanding the field operators in 
terms of the appropriate complete set of eigenfunc
tions. Indeed, the results of the following calculations 
will serve to illustrate some special features of the 
equilibrium correlation functions for a finite system. In 
particular, we will see explicitly that general statements 
about the large-volume limit require careful discussion. 

Let us now apply (23) to an actual physical 
situation. We suppose that at time t = - 00 the 
system occupies a volume Vo. At this initial time we 
begin to increase the volume quasi statically , so that 
for t > - 00 the system occupies a volume Vet) > Vo. 
In (23) we set to = - 00 and choose El(t) to be inde
pendent of I and of the special form 

( ) 
_ {EO exp (ell), -00 ~ t < 0, 

El t -
EO, t ;?: O. 

(24) 

This form corresponds to a quasistatic increase in 
volume, since we take (J.. to be a small positive real 
constant. The adiabatic limit (J.. --+ 0+ for our volume 
change will be taken at the end of calculations in
volving the time dependence, but it should be em
phasized that we are always working with finite 
volume. If a final thermodynamic limit Vo --+ 00 is 
required, we will take this limit last. The discussion 
below will clarify the distinction between the two 
limiting processes Vo --+ 00, (J.. --+ 0+ and (J.. --+ 0+, 
Vo --+ 00, and will emphasize the difference between 
the physical processes involved in the two cases. 

The choice (24) for El(t) implies that for any time 
t > 0 the system will have undergone a volume change 

t5 V = (VO exp (3Eo) - Yo) 

= 3EoVo + 0(e2
). 

We now define time-Fourier transforms (spectral 
functiops) of the equilibrium commutator functions 
as follows: 

([A(rt), R(r't')])o ==f+oo dw e-iwCt-t')([A(r), R(r')])"" 
-00 27T 

(25) 

Equations (24) and (25) allow us to rewrite (23) in the 
convenient form 

t5(O(r»(t) 

= -iEo([O(rt), r(t)])o 

_ 3E
O
f+00 dw e-iwt(l _ ~)([o(r), P])w 

-00 27T W - 1(J.. W 

3 f+OO dw ([O(r), P])w 
+ EO - -'-"--'--""---= 

-00 27T W 

+ iEOf+oo dw e-iwt(l - ~) ([O(r), r])w' (26) 
-00 27T W - 1(J.. 

In the above we have introduced the definition P for 
the spatially integrated pressure operator (= t Tr Tii)' 
Also, 

ret) == L SII(t). 
I 

It is of interest to apply (26) to the case where 
O(rt) = pert), since this simple example will provide 
insight into the formalism to be employed in the later 
discussion of a more complex situation. In this respect 
it is imperative that we outline some general consider
ations on the properties of the spectral functions 
appearing in (26). 

Suppose for the moment that our system exhibits 
space-translational invariance. Then, as was shown in 
detail in (PG), we would have 

That the sole contribution to (27) in the space-trans
lational case is of the form t5( w) follows from the fact 
that pert) satisfies a differential conservation law. 

We now destroy the space-translational invariance 
of the system, either by introducing a "box potential" 
into the Hamiltonian or by imposing appropriate 
boundary conditions on the field operators. One can 
then ask the question whether or not there exists a 
statement analogous to (27) for the finite-volume 
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system. Indeed, the appropriate generalization of (27) 
is 

r dV ([p(r), P(r')])", = 2m5(w)C
l
(r) + C

2
(rw). (28) 

Jv w 

Here, C2(rw) is a smooth function of w for w f'oo.I 0 and 

lim Cl(r) = (p)o, 
v .... 00 

lim C2(rw) = o. (28') 
v .... 00 

The essential point to note here is that the spectral 
function (27) or (28) exhibits an w~(w) singularity, 
irrespective of whether the system is constrained to 
finite volume or not. More generally, one may make 
the following statement concerning a spectral function 
of the form ([A(r), B(r')])"" where A and B are two 
intensive operators possessing the same parity under 
time reversal (this last implies that the spectral 
function is an odd function of w): If the k = 0 com
ponent of the translationally invariant ([A(r), B(r')])", 
exhibits a contribution of the form w~(w), then a 
similar contribution will exist in the finite-volume case. 
The crux of the argument supporting this assertion 
may be put forth as follows: Suppose the spatial 
dependence of the spectral function ([A(r), B(r')])ro is 
expanded in a multiple Fourier sum in wave-vector 
space with respect to the complete set of eigenfunctions 

CPk(r) == (8fV)! sin k1x sin k 2y sin k 3y, 

ki = 1TndL, ni = 0, ±l, ±2, .. " 

which vanish at the boundaries of the cubical volume 
(10). It is found that the w~(w) contribution arises 
from a sum over the subset of Fourier components 
with kl = k2' Kl = K2, where (kl , k2) and (Kl' K2) 
are the relative and center-of-mass wave vectors of 
two pairs of particles, respectively. A spatial inte
gration over r', followed by the large-volume limit, 
yields the same w~(w) contribution as we would 
obtain if we allowed the volume to become infinite 
first and then integrated over all space (thus yielding 
the k = 0 component of the space-translational case). 
In conclusion, we can assert that in all situations to 
which (26) has been applied, in order to carry through 
the calculations in a consistent manner, one must 
assume that the presence of an w~(w) singularity in 
the spectral function ([A(r), B(r')])", is independent 
of any volume constraint imposed on the system. 

The above behavior of ([A(r), B(r')])", as a function 
of w is in marked contrast to the behavior of the other 
spectral function of interest ([p(r), r»",. It is a prop
erty of the structure of the operator S that this 

function is well behaved at w = 0 for the case of the 
system constrained to a finite volume. Since ([p(r), 
r»", is an even function of w, one might anticipate a 
~(w) singularity. However, the subset of Fourier 
components such that kl = k2' Kl = K2 is zero for 
this function, and hence the ~(w) contribution, does 
not appear. We can also make this argument from 
a somewhat different point of view. It follows from 
(A2) that 

([p(r), r])", = iw([p(r), Q])"" Q == L Qll' 
I 

From general time-reversal arguments, we know that 
([p(r), Q»", is odd in w. If, now, for finite volume we 
can show that this function is well behaved for w f'oo.I 0, 
then it will follow that 

([p(r), r])", ,...." O(w2), w -+ O. 

To support the above assertion we consider the follow
ing easily derived sum rule: 

! r d3rf+00 dw ([p(r), Q])ro = .!.[~ (Q)o] . 
vJv -00 21T w V oft pv 

Clearly, for finite V the right-hand side of the above 
expression is well defined. This, in turn, implies that 
([p(r), Q»", is well defined at w = O. 

The above discussion is sufficient to provide us 
with all the information we need in order to evaluate 
the linear response (26) with O{rt) = pert). Substi
tuting (28) into (26) and allowing IX -+ 0+ yields 

~(p{r)(t > 0) = -iEo([p{rt), r(t)])o 

f+OO dw + 3Eo - C2{rw). (29) 
-00 21T 

We easily evaluate the equal-time commutator in (29): 

i([p{rt), r»o = V • [r(p{r)o]. 

The subsequent large-volume limit then yields 

b(p{r){t > 0) = -3Eo(p)o 

~V 
= - Vo (p)o, (30) 

as a consequence of (28'). This result is equivalent to 
the thermodynamic statement 

(OP) 1 
~V SN = - V p. 

At first glance it appears that only the smooth part 
of the spectral function (28) contributes to the response 
(29). However, this is misleading, since Cl(r), C2{rw), 
and ([p(rt), r(t)])o are connected by the exact sum 
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rule [see Eq. (2.21) of (PG)]: 

Cir) + - C2(rw) = ti([p(rt), r(t)])o 
J

+OO dw 

-00 217 

+ V[~ (p(r»o] . av (JJl 

Thus, (29) may be rewritten as 

b(p(r»(t> 0) = -3€oCI (r) - 3€OV[~ (p(r»o] av /iJl 

(31) 

in terms of the b(w) contribution CI(r). In the large
volume limit 

CI(r) -+ (p)o, 

v[~ (p(r»o] -+ 0, av (JJl 

and we again recapture the result (30). 

One can carry out a calculation completely anal
ogous to the above for the energy-density operator 
b(r). The statement corresponding to (29) in this case 
would read 

b(b(r»(t> 0) = -i€o([b(rt), r(t)])o + oG} 
Evaluating the equal-time commutator and employing 
the familiar virial-theorem expression for the equilib
rium pressure [see Eq. (2.12) of (PG)] yields 

b(b(r»(t > 0) = -3€o[(b)o + (P)o], 

which is equivalent to the thermodynamic result 

[~ E] = - .!.[E + p]. 
bV V SN V V 

In conclusion to this preliminary discussion, Ofl.e 
should note an additional interesting point with 
respect to the linear-response analysis of pert) and 
bert). If we had taken the large-volume limit V -+ CJ"J 

before taking the adiabatic limit IX -+ 0+, then it is 
easy to show that we would have obtained zero 
response in both cases, corresponding to the thermo
dynamic results 

( bP) _ ° av {JJl- , 

(ab) _ ° av /iJl- • 

The preceding introductory considerations now 
allow us to proceed to the primary goal of this section; 
i.e., to examine the linear response of the stress
tensor operator under the influence of a time
dependent change in the volume of the system. In so 

doing, we will be able to make a direct comparison 
with the phenomenological considerations of Sec. II 
and thus obtain correlation-function expressions for 
the parameters Ko, Go, " and 'I}. Instead of the choice 
(24) for €!(t), we now consider a somewhat more 
general situation in which the €!(t) have the form 

€!(t) = EO! exp (IXt - iwt), - OC! ::;; t ::;; O. 

Ifwe agree to look at the system at time t = 0, we will 
have that 

€!(O) = €o!, 

€!(O) = -iw€o!. 

The desired linear-response statement can now be 
obtained by a slight modificiation of (26): we set 
t = 0, make the replacement IX -+ IX - iw, and take 
account of the fact that the €!(t) are no longer inde
pendent of I. Then, with O(rt) = Tii(rt), we have 

-J+OO dw' ([T;;(r)',Tu])w'(1 _ , w' .) 
-00 217 W W - W - IIX 

+ iJ+oo dw' ([T;;(r), Su])w' (1 _ , w' .)}. 
-00 217 W - W - IIX 

(32) 

It is convenient at this point to eliminate the first two 
terms in (32) by employing the exact sum rule (All). 
Thus, 

-J+OO dw' ([T;i(r)',Tz!])w'(1 _ , w' .) 
-00 217 W W - W - IIX 

.J+oo dw' ( W') } + I - ([T;;(r), Su])w' 1 -, .. 
-00 217 W - OJ - IIX 

(33) 

Before proceeding further with (33), we examine the 
properties of the spectral function ([Tij(r), Twl>w/w. 
It was shown in (PG) that, for the spatially infinite 
system, this function has both a b(w) contribution and 
a contribution regular at w = 0, i.e., 

Bmm(w), in general, is nonzero for the translationally 
invariant system, since Tii(rt) is a nonconserving 
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operator. Now, within the spirit of the discussion fol
lowing (26), we generalize (34) to read 

([T;ir), T;m])w .11() ( ) () ( ~=-'--'-----'-"=-.::: = 27TU W biilm r + BiJlm rw, 35) 
w 

for the finite-volume system. In the large-volume 
limit, of course, 

bmm(r) -+ bwm , 

Biilm(rw) -+ Bijlm(W). (36) 

The previous arguments concerning the spectral 
function ([p(r), r]\, hinge on the structure of the 
operators Su and hence remain essentially unchanged 
for ([Tij(r), SliDw' Thus, we conclude that 

([Tij(r), SuD", f"-' O(w2), w --+ 0, 

for a system constrained to a finite volume. Keeping 
the property (36) in mind, we can now substitute (35) 
into (33) and take the limit (J. -+ 0+. This yields 

c5(T;;(r»(w) = ! EOI{[~ (T;j(r»,] - bi;!l(r)} 
I OEI '=0 

- iw ! EOlt[Bim(rO)] + O(W2). (37) 
I 

In the large-volume limit, 

[~ (T;;(r»,] -+ c5i; V [~(P)o] = 0 (l). 
OE I <=0 oV fJll V 

Furthermore, symmetry considerations imply that we 
may write 

biilm(r) -+ c5iAmb(1) + (c5i!c5jm + c5;mc5 jl)b(2), 

Bi;lm(rw)-+ c5i;OlmB(l\w) + (c5i/o;m + c5imc5jl)B(2)(W). 

(38) 
Hence, in the V -+ 00 limit, (37) becomes 

c5(T;;(r»(w) = c5u{ -2E;b(2) - (tEI)b(l) 

- 2E;OB(2)(0» - (tEI)OB(l)(O»}. 

(39) 

Comparison with the constitutive equations of Sec. 
n allows us to make the identifications 

([Ti;(r), Tlm(r')])w and the macroscopic parameters 
" 1}, K o, and Go, we recall (34) as well as (38). These 
relations allow us to write 

J dV ([p(r),:(r')])w = 27Tc5(w)Ko 

+ (B(1)(w) + tB(2)(W», 

f dV ([T;m(r),;m(r')])w = 27Tc5(w)Go + B(2)(W), 

l=;f=m. (41) 

We see, then, that the weights of the c5(w) parts of the 
relevant correlation functions are directly related to 
the static parameters Ko and Go, whereas the zero
frequency components of the nonsingular parts of 
these same correlation functions provide us with 
the dynamic coefficients, and 1}. 

IV. CONCLUSION 

In the preceding sections we adopted a microscopic 
viewpoint in order to examine in detail the relaxation 
processes which occur in a many-particle system 
subjected to a time-dependent change in volume. 
Basic to this discussion was the realization that certain 
frequency-dependent spectral functions possessed 
singular contributions of the form c5(w). We ap
proached the problem within the framework ofa linear 
response analysis, employing a time-dependentdynam
ical perturbation which altered the shape and size 
of the containing volume of the system. As a test of 
the method, we analyzed two cases in which the 
answer was known in advance; i.e., the linear response 
of the particle density pert) and the energy density 
bert) to an adiabatic change in volume. We subse
quently applied the method to the stress-tensor 
operator and succeeded in relating the macroscopic 
parameters YJ and , to spectral functions defined in 
terms of the stress- tensor operator. A consistent 
formulation of the problem was found to require that 
these spectral functions exhibit a singular behavior of 
the form o(w); further, it was shown that the static 
parameters Go and Ko were intimately related to this 
singular behavior. To be explicit, we found that 

Ko - iG 0 = b(I), 

Go = b(2), 

, - f1} = tB(1)(O), 

1} = tB(2)(O). 

(40) - c5ijc5 lm27Tc5(w)(Ko - iGo) 

- (c5ilc5;m + c5imc5;z)27Tc5(W)Go] 

In order to exhibit more clearly the connection between 
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Now, it should be noted that (42) is identical to the 
usual Kubo-Mori formulas5 for ~ and 1] ifwe ignore 
the singular contributions from the spectral function 

f d3r' ([Til(r), 2m (r')])w • 

In not adequately taking into account the singular 
behavior of this function, the Kubo-Mori formu
lation does not provide us with an insight into the 
relation which exists between the static parameters 
Ko and Go and the microscopic theory. Further, the 
original Kubo-Mori formulation required the use of 
a local equilibrium-density matrix, as well as coarse
grained time averages. Neither the local equilibrium 
assumption nor the coarse-graining procedure is 
needed in the present formulation. 

In general, the function ({Tilr), T1m(r')])w is 
extremely complicated. However, as we saw in (PG), 
in the infinite-volume limit the k -- 0 limit of this 
function can be related to a simpler spectral function 
constructed from the current-current commutator. 
Thus, within the framework of the present linear
response treatment, all of the information relating to 
visco-elastic processes is contained in the spectral 
function of the current-current commutator. 
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APPENDIX: SOME FORMAL OPERATOR 
RELATIONS 

In this Appendix we consider the properties of a 
set of Hermitian operators Slm (I, m = 1, 2, 3) 
defi!led as follows: 

Slm = ~ J d3r(rz}m(r) + rmit(r», (AI) 

where j(r) is the momentum-density operator. The 
operators Slm are related to another set of Hermitian 
operators Qlm' 

Qzm := ; J d3r r1rmP(r), (A2) 

by the equality 
Sim = Qlm' 

If we now define the unitary transformation 

Rim := exp (-iESlm), 
then 

R1mtp(r)R;m = tp(r) - iE[Slm' tp(r)J 

(A3) 

+ (1/2!) (-iE)2[Slm' [Slm, tp(r)]] + .... 
5 R. Kubo, J. Phys. Soc. Japan 12, 1203 (1956); H. Mori, ibid. 

11, 1029 (I 956); H. Mori, Phys. Rev. 112, 1829 (1958). 

Noting that 

-i[Slm,1p(r)] = t(t5lm + rz'Vm + rmVI)tp(r), 

we immediately obtain 

Rim tp(r)R~m = exp [iE (151m + rl ~ + r m ~)J tp(r). 
arm orl 

(A4) 

We consider first the case I = m. From (A4) we have 
that 

Rutp(r)R;l = exp [iE + Erl~] tp(r). (A5) 
arl 

Now, for an arbitrary function/(x) we note that 

a a 
- f(xeE

) = x - f(xeE
). (A6) 

OE ox 

Formal expansion of/(xe<) in a Taylor series in E and 
use of (A6) results in 

f(xe<) = f(x) + E[.E... f(xeE
)] 

OE 0 

+ 1. E2[OZ f(xe<)] + ... 
21 OE2 

0 

=f(x) + E(X~)f(X) + l.E2(X~)i(x) + ... 
ax 2! ox 

= exp (EX :Jf(X). 

Thus, from (A5) we obtain 

Rll tp(r)Ril = exp (iE)tp(xeE
, y, z), 

R22tp(r)R~2 = exp (iE)tp(X, ye<, z), 

R33tp(r)R~3 = exp (!E)tp(X, y, ze<). 

(A7) 

(A7) tells us that Ru has the effect of generating a 
scale transformation on the x coordinate of the field 
operator tp(r) , and RZ2 and R33 have similar effects on 
the y and z coordinates. 

We can now analyze (A2) for the case 1:;E: m in a 
manner similar to the above. Indeed, we find that 

t R1Ztp(r)R12 = tp(U1(x, y, E), U2(X, y, E), z), 

R23tp(r)R~3 = tp(x, Uz(z, y, E), U1(z, y, E», (A8) 

R31tp(r)R~1 = tp(U1(x, z, E), y, U2(x, z, E», 

where 

U1(x, y, E) = x cosh (E/2) + y sinh (E/2), 

U2(x, y, E) = y cosh (E/2) + x sinh (E/2). 

Thus, Rim generates a two-dimensional "rotation" 
of the coordinates r I an d r m in a hyperbolic space 
which preserves the quantity rf - r;'. 
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In concluding this section, we derive a class of sum 
rules, a special example of which was employed in the 
text in obtaining Eq. (33). We denote an equilibrium 
average using the Hamiltonian H. [see Eq. (17)] as 
( ... ) •. Thus, the average of some operator A(r, t) in 
this ensemble is given by 

(A(r,O». = Tr {exp [f3(flN - H.)]A(r,O)} 

Tr {exp [f3(flN - H.)]} 

_ Tr {exp [f3(flN - D.)]RtA(r, O)R} 

- Tr {exp [f3(flN - D.)]} 

where 

R == II RIl , 
I 

- t H. = R H.R. 

(A9) 

yields 

[!l (A(r, 0».].=0 = - i([A(rt), Su(t)])o 

+ loP dAJ d
3
r'[(A(r, -iA)~tCr'»o 

- (A(r)>o<~tCr'»o]. (AIO) 

If we introduce the spectral function ([A(r), Tu(r')])"" 
then one easily shows [see (PG) , Eq. 2.36] that the 
last term in (AlO) may be written as 

f+OO dw ([A(r), TzI(r')1)", . 

-00 217 W 

Thus, (AIO) becomes 

f+OO dw ([A(r), Tzl(r')])", = [~ (A(r,O».J 
-00 217 w OE 0 

+ i([A(rt), Sll(t)])O, (All) 
A direct differentiation of (A9) with respect to El which is the desired result. 
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This paper derives and interprets the constants of the charge's motion. The physical meaning of these 
constants and their use in discussing the over-all motion of the charge are presented. 

I. INTRODUCTION 

Since the magnetic-monopole field is of use as a 
workable approximation to actual fields, e.g., exterior 
stellar magnetic fields, any direct physical insight 
which can be gained into the field's effect on the 
motion of a charged particle is of interest. The 
detailed geometry of the particle's trajectory was 
established by Poincare! and Ferraro.2 The trajectory 
is, in fact, a geodesic on a circular cone whose vertex 
coincides with the monopole position. 

Van Allen3 has utilized the differential-geometric 
properties of geodesics on circular cones to construct 
a constant of the motion and he has related this 

• Research Associate, National Academy of Science-National 
Research Council; now at Cornell University. 

1 H. Poincare, Compt. Rend. 123, 530 (1896). 
• V. C. A. Ferraro, Electromagnetic Theory (Ath1one Press, 

University of London, 1956). 
3 J. A. Van Allen, J. Geophys. Res. 70, 1240 (1965). 

constant to an adiabatic invariant. The analysis to 
follow establishes the constants of the motion, 
including that of Van Allen, in a systematic way 
without recourse to differential geometry. It is shown 
that the rather complicated geometric interpretation 
of the particle's motion need not be involved in any 
way in establishing the existence and the physical 
meaning of the constants. Of course, if one wished, 
one could derive the complete trajectory as well as the 
constants by using the method presented here. 

n. HAMILTONIAN FORMULATION 

We use the standard spherical-polar coordinates 
(r, (), rp) with the origin at the monopole. The orthog
onal directions are denoted by the unit vectors ir , is, 
and iq>. The magnetic field of the monopole B = 
i,.BorUr2 is derivable from the vector potential A = 
- (iq>Bor~ cot ()/r, with Bo (gauss) being a constant 
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In concluding this section, we derive a class of sum 
rules, a special example of which was employed in the 
text in obtaining Eq. (33). We denote an equilibrium 
average using the Hamiltonian H. [see Eq. (17)] as 
( ... ) •. Thus, the average of some operator A(r, t) in 
this ensemble is given by 

(A(r,O». = Tr {exp [f3(flN - H.)]A(r,O)} 

Tr {exp [f3(flN - H.)]} 

_ Tr {exp [f3(flN - D.)]RtA(r, O)R} 

- Tr {exp [f3(flN - D.)]} 

where 

R == II RIl , 
I 

- t H. = R H.R. 

(A9) 

yields 

[!l (A(r, 0».].=0 = - i([A(rt), Su(t)])o 

+ loP dAJ d
3
r'[(A(r, -iA)~tCr'»o 

- (A(r)>o<~tCr'»o]. (AIO) 

If we introduce the spectral function ([A(r), Tu(r')])"" 
then one easily shows [see (PG) , Eq. 2.36] that the 
last term in (AlO) may be written as 

f+OO dw ([A(r), TzI(r')1)", . 

-00 217 W 

Thus, (AIO) becomes 

f+OO dw ([A(r), Tzl(r')])", = [~ (A(r,O».J 
-00 217 w OE 0 

+ i([A(rt), Sll(t)])O, (All) 
A direct differentiation of (A9) with respect to El which is the desired result. 
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This paper derives and interprets the constants of the charge's motion. The physical meaning of these 
constants and their use in discussing the over-all motion of the charge are presented. 

I. INTRODUCTION 

Since the magnetic-monopole field is of use as a 
workable approximation to actual fields, e.g., exterior 
stellar magnetic fields, any direct physical insight 
which can be gained into the field's effect on the 
motion of a charged particle is of interest. The 
detailed geometry of the particle's trajectory was 
established by Poincare! and Ferraro.2 The trajectory 
is, in fact, a geodesic on a circular cone whose vertex 
coincides with the monopole position. 

Van Allen3 has utilized the differential-geometric 
properties of geodesics on circular cones to construct 
a constant of the motion and he has related this 

• Research Associate, National Academy of Science-National 
Research Council; now at Cornell University. 

1 H. Poincare, Compt. Rend. 123, 530 (1896). 
• V. C. A. Ferraro, Electromagnetic Theory (Ath1one Press, 

University of London, 1956). 
3 J. A. Van Allen, J. Geophys. Res. 70, 1240 (1965). 

constant to an adiabatic invariant. The analysis to 
follow establishes the constants of the motion, 
including that of Van Allen, in a systematic way 
without recourse to differential geometry. It is shown 
that the rather complicated geometric interpretation 
of the particle's motion need not be involved in any 
way in establishing the existence and the physical 
meaning of the constants. Of course, if one wished, 
one could derive the complete trajectory as well as the 
constants by using the method presented here. 

n. HAMILTONIAN FORMULATION 

We use the standard spherical-polar coordinates 
(r, (), rp) with the origin at the monopole. The orthog
onal directions are denoted by the unit vectors ir , is, 
and iq>. The magnetic field of the monopole B = 
i,.BorUr2 is derivable from the vector potential A = 
- (iq>Bor~ cot ()/r, with Bo (gauss) being a constant 
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and ro (cm) an arbitrary radial distance from the 
origin. As the Lagrangian of a particle with rest mass 
mo, charge e(esu) in this field, we adopt the form 

L = tmocgapu"uP + (ejc)gapu" AP, 

in which ua , the 4-velocity, is 

( yjC)~) 
(yjc)O 

u" -
- (yjc)rp , 

iy 
the 4-potential Aa is 

A" ~ (_ B,':I "r cot 0 cw 0 j-
the metric tensor for flat space-time is 

gall = (~ ~ ,,}n' 0 ~) , 
o 0 0 1 

and y = (1 - v2jc2)-!, v being the 3-velocity magni
tude. One finds in the standard way that the 4-
momentum is 

( m~~:o ) 
Pa= , 

moyr2 sin2 O~ - (ejc)Bo'~ cos 0 

ImoYc 
and hence that the Hamiltonian H = gappauP - L is 

H =-- PI +- P2 1 [2 1 2 
2moc ,2 

1 ( eBo 2 a)2 2J + 2 • 2 Pa + - ro cos v + P4 . 
, sm 0 c 

It is easily seen that this Hamiltonian has the constant 
value -!moc. Thus the corresponding HamiIton
Jacobi equation is 

(as)2 + 1. (as)2 + 1 [as + eBo r2 cos OJ2 a, ,2 ao ,2 sin2 0 oq; c 0 

_ 1. (OS)2 = _m2c2 
c2 at 0 , 

which separates in the form 

where Pa and E are constants. Accordingly, we can 
assert that the following constants of the motion 
exist: 

P4 = imoYc = iEjc = const, (1) 

Pa = moyr2 sin2 Orp - (e/c)Bo'~ cos 0 = const, (2) 

and 

si~2 O[ Pa + ~ Bor~ cos
2 

0] 2 + (~2r = const. (3) 

These three constants correspond to conservation of 
the relative energy, conservation of the component 
of angular momentum in the direction 0 = 0, and 
conservation of the total orbital angular momentum 
about the monopole, respectively. 

These constants contain much information about 
the properties of the system. 

(a) Particle motion: The condition 0 = eo, a con
stant, satisfies all the above equations for the constants; 
the charged particle moves on the surface of a cone 
whose vertex is at the origin. 

(b) An adiabatic invariant: A moving charge distri
bution has a magnetic moment f.L = (ej2ymoc)M, 
where M is the orbital angular momentum of the 
charges. Hence (3) gives fl, normally only an adia
batic invariant, as a rigorous constant of the motion. 
This is related to Van Allen's constant,S which can be 
found explicitly by combining (1) and (3). 

(c) Reflection point: The introduction of a radial 
force, due to an electric or a gravitational (for non
relativistic motion) field, does not change the angular
momentum constants, since such a force has zero 
moment about the origin. However, the potential 
energy due to this added field should be included in 
(1). Doing this and using (3), one finds that a charged 
particle is reflected by the combined field at 

, = [(g/2Eo)2 + M~/(2ymoEo)]! - gj2Eo, 

where Eo and Mo are the particle energy and orbital 
angular momentum initially and g is the numerator of 
the particular radial-force law. 
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. ~he exact solution of the transmission and reflection problem for transverse electromagnetic waves 
Incident on a bounded plasma has been discussed to some extent by several authors. Shure considered 
the special cases of perpendicular incidence on no.nrelativistic half-space and slab plasmas and made use 
o~ van Kampe?--Ca~e modes to construct the solution. For both half-space and slab plasmas, we generalize 
hiS resul.ts to (I) arbl~rary temperature~ (r~lativistic) ~nd (ii) .arbitrary angles of incidence. For simplicity, 
we consider the s~clal case where the Incident electrIC field IS perpendicular to the plane of incidence and 
assume that particles are reflected specularly at the interface. We proceed somewhat differently from 
Shure, and use a Laplace trans~~rmation in obtaining our solution. We also show that present solutions 
can be expressed as a superposItIon of van Kampen-Case modes appropriate to a relativistic plasma. 

I. INTRODUCTION 

The exact solution of the transmission-reflection 
problem for transverse electromagnetic waves incident 
at the interface betweert a vacuum and a half-space 
plasma has been discussed to some extent by several 
authors.!-a Shure! and Felderhof2 considered the 
special case of perpendicular incidence on a non
relativistic plasma and made use of van Kampen4-
Case5 modes to construct the solution. Weston3 

recently extended their results to the case of oblique 
incidence, again for a nonrelativistic plasma which 
employs the Maxwell-Boltzmann distribution FMB 

for the unperturbed state. 
There are some undesirable features associated 

with the use of Fh-IE for the unperturbed state in this 
particular problem and they lead to nonphysical 
results. In particular, since FMB is nonvanishing for all 
particle velocities, one finds that transverse waves 
propagating in the plasma are Landau damped.! The 
use of the appropriate relativistic Vlasov equation 
together with the Maxwell-Boltzmann (Jiittner6) 
distribution for the unperturbed distribution function, 
as was pointed out previously? in the context of the 
initial-value problem, shows that transverse waves 
propagating in the plasma are not Landau damped, 
since the phase velocity of these waves is always 
greater than the velocity of light. Felderhof2 employed 
cutoff distributions to eliminate this nonphysical 
damping. It is also known that the analytical proper-

* Present address: Richmond College of The City University of 
New York, Staten Island, New York, N.Y. 

1 F. C. Shure, Ph.D. thesis, University of Michigan, 1962. 
• B. U. Felderhof, Physica 29,662 (1963). 
3 V. H. Weston, Phys. Fluids 10, 632 (1967). 
'N. G. van Kampen, Physica 21, 949 (1955). 
6 K. M. Case, Ann. Phys. (N.Y.) 7,349 (1959). 
• F. Jiittner, Ann. Physik 34, 856 (1911). 
7 K. lmre, Phys. Fluids 5, 549 (1962). This paper also contains 

references to the related earlier work. 

ties of the dispersion function are quite different when 
FMBJ is used for the unperturbed state. Therefore, 
the point of a relativistic treatment is not only to 
extend the validity of the previous results to high
temperature plasmas, but also to eliminate, at the 
outset, the nonphysical aspects in the formulation of 
the problem. 

In this paper we obtain a rigorous solution of the 
problem for a relativistic plasma when no external 
fields are present. We consider the cases of both 
half-space and slab plasmas with arbitrary angles of 
incidence, but consider, for simplicity, the special 
case where the incident electric field is perpendicular 
to the plane of incidence. We assume that particles 
are reflected speculady at the interface. In the case of 
a half-space plasma, we show that two basic require
ments (corresponding to the boundedness of solutions 
at infinity and to the causality condition) on the analyt
ical properties of the Laplace transformed fields 
suffice to determine uniquely (up to an arbitrary 
multiplicative constant which is determined by the in
tensity of the incident waves) the stationary solution 
of the coupled Maxwell-Vlasov equations. We wish to 
note that the electromagnetic properties of a rela
tivistic plasma are also discussed in a series of papers 
by Silin,8 who has given only a brief outline of his 
derivation. Our solution for a half-space plasma is in 
agreement with his result. In addition, we consider the 
case of a slab plasma. We have proceeded differently 
in obtaining our solutions using a Laplace transfor
mation which appears to have certain advantages. For 
example, after a simple 0 bservation, we can express our 
solution as a superposition of van Kampen-Case 
stationary modes appropriate to a relativistic plasma 

• v. P. Silin, Zh. Eksp. Teor. Fiz. 41, 159 (1961) [Sov. Phys.
JETP 14, 115 (1962)]. This paper also contains references to his 
earlier work. 
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(cf. Sec. V). (The use of these modes for a relativistic 
plasma does not seem to have been discussed in the 
literature.) Also, the case of a slab plasma can be 
treated by a straightforward extension of the present 
technique for a half-space plasma. 

In Sec. II, we state the basic equations adopted 
for the description of the system. Solution for the 
fields is obtained in Sec. III under the above-mentioned 
assumption of certain analyticity requirements on the 
transformed field functions. These requirements 
impose certain integral conditions on the perturbed
particle distribution function at the interface. By the 
use of these conditions the fields can be calculated 
explicitly. Given these fields, we determine in Sec. IV 
the perturbed-particle distribution function uniquely 
and show that these conditions are actually satisfied, 
which proves the consistency of the solutions for the 
fields and the perturbed-particle distribution function. 
In Sec. V, we indicate the connection between the 
present result and the expression of solutions in terms 
of van Kampen-Case stationary modes. Explicit 
expressions are given in Sec. VI for the reflection, 
transmission, and absorption coefficients. We have 
also derived in this section an expression for the time
averaged heat flow as a function of position. Section 
VII is devoted to the case of a slab plasma. Finally, 
some relevant properties of the dispersion function 
are discussed in the Appendix. 

II. BASIC EQUATIONS 

The starting point of the present analysis will be the 
relativistic (linearized) Vlasov equation coupled with 
Maxwell's equations: 

of of ne aFo 
y - + u - - + - yE - - = 0, at ax m au (1) 

1 aB 
V x E = - - -; v -B = 0, (2) 

c at 
1 aE 47T • 

V x B = - - + - J; V· E = 47TP, 
c at c 

where n is the number density in the unperturbed 
state, u == yv where v is the particle velocity, 

y == (1 + ~)! = 1/ (1 - ~:t 
and charge and current densities are given by 

j == e J d:U uf(x, u, t), 

P == e J d3
uf(x, u, t). (3) 

The equilibrium distribution function is taken as the 
relativistic Maxwell-Boltzmann (Hittner) distribution, 
namely, 

(4) 

where (J = mc2/kT and K2 ({J) is the modified Bessel 
function of the second kind. 

We shall assume that the plasma fills the half-space 
z > O. To obtain the stationary solutions of Eqs. (1) 
and (2) corresponding to a plane electromagnetic 
wave incident on the plasma, we look for solutions 

(5) 

and take the Laplace transformation with respect to z 
variable. Here, w is a real, positive quantity. The 
resulting equations for transformed functions are 

-i(yw - k· u) f(k, u, w) = uzf(O) - (ne/m) 

x yE(k, w)· (aFo/au), (6) 

ik x E = (iw/c)B - xEuCO) + YE.,(O); 

ik . B = Bz(O), 

ik x B = (47T/C)j - (iw/c)E - xBy(O) + yBx(O); 

ik . E = 47TP + E.(O). (7) 

In these equations, ikz == P is the Laplace transform 
variable. The continuity equation is obtained by 
dividing Eq. (6) by y and integrating over u as 

wp - k . j = ijz(O). (8) 

Without loss of generality, we can choose ky = O. 
For a given k, one can construct the unit vectors 

where k == (k; + k;)t. Then, any vector function 
A(k) has the unique decomposition 

3 

A(k) =! AaCk)ca(k), (10) 
a=l 

where 

AaCk) = A(k) • caCk). 
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Using the decomposition of E, B, j in Eqs. (6) and 
(7), one obtains 

"kE iw B k. E (0) 
-I 2 = -;;- 1 - k 11 , 

ikE1 = iw B2 + E.,(O), 
c 

ikB3 = B.(O), 

o = iw B3 _ k., Ey{O), 
c k 

" 41T " iw k. 
-lkB2 = - 11 - -E1 - - BiO), 

c c k 

41T" iw 
IkB1 = - 12 - - E2 - B.,(O), 

c c 

ikE3 = 41Tp + E.(O), 

o = 41T j3 _ iw E3 _ k., RiO). 
c c k 

The continuity equation may be written as 

(11) 

(12) 

wp - kja = ij.(O). (13) 

In the following we restrict ourselves to the case in 
which the incident wave has an electric field polarized 
in the y direction (i.e., the electric field is perpendicular 
to the plane of incidence). In this case the solution 
leads to purely transverse waves, as will be seen in the 
following. The other case with incident electric field 
in the plane of incidence is somewhat more compli
cated and leads to both transverse and longitudinal 
waves within the plasma due to the existence of the 
boundary. However, it is felt that a full exposition of 
the simple case would be useful since it has not been 
discussed fully in the literature for a relativistic 
plasma. The latter case will be discussed in a sub
sequent report. 

When the incident electric field is in the y direction 
we need only to consider the following equations in 
addition to the Vlasov equation: 

- ikE2 = i ~ B1 - k. Ey{O), 
c k 

ikB1 = 41T j2 - iw E2 + B.,(O), (14) 
c c 

wB. = ck.,ElI' 

ill. SOLUTION FOR THE ELECfRlC FIELD 

From Eqs. (6) and (3) we obtain 

. . . fd3
U u.ulI f(O) ine

2
E fd 3 u,loFolou ll) 12==JlI =le - -- 1/ U • 

Y yw-k.u m yw-k·u 

(15) 

Imlk z) 

kz pl.ne 

____ --+-___ Relk,) 
FIG. 1. The branch cuts of 

the dispersion functionA(k.) 
in the complex. k. plane (1Xo 
== (rofc) cos li.l. -"0 +a. 

From Eq. (15) and the first two of Eqs. (14), one 
obtains 

where 
A(k.)iEik.) = R2(k.), 

R (k ) - 4' f d
3
u ullu.f(O) 

2 • = - 1Tlwe -
y yw - k· u 

+ [c2k.Ey{0) - wcB.,(O»), 

A(k.) == c2k2 - w2 + w!A(k.), 

A(k.) == -wfd3U uy{oFolou,,) , 
yw - k· u 

2 41Tne2 
W p ==--

m 

(16) 

The electric field as a function of position can then 
be written as 

Eiz) = ~ r dk.eik··iElI(k.), (17) 
2m Jc 

where the contour C lies, in the complex k. plane, 
parallel to the real axis and below all singularities of 
Eik.), as shown in Fig. 1. 

It is shown in the Appendix that A(k.) = 0 has 
either a pair of real or a pair of imaginary roots, 
depending on the values of (J and wlwp • Call them 
±KO' Also, in the complex k. plane A(k.) is analytic 
everywhere, except along the cut which lies along the 
part of the real axis given by Ik.1 > (xo, where 

(Xo == £! (1 - sin2 Oo)l = £! cos °0 , 
c c 

and sin 00 = ck.,lw, where 00 is the angle of incidence. 
Real roots, if any, are always in the open interval 
( - (xo, (Xo)' 

We now impose upon the solution the following 
physical requirements: 

(1) EI/(z) is bounded at z = + 00; 
(2) EI/(z), B(z), andj(z, u) for z > 0 consist only of 

waves travelling in the +z direction. 
In order to satisfy these requirements, the singular

ities of Eik.) must be confined to the region Re (k.) ~ 
0, 1m (k.) ~ 0 in the k. plane. We must, therefore, 
have 

R2(-KO) = 0, 

Rt( - k.) Ri( - k.) -
A+( -k.) A-( -k.) 

(18) 

(19) 
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Imlkzl 

" 
C' Relkzl 

(a) (b) 

FIG. 2. The paths of integration C' in the complex k. plane after 
deformation of the contour C. 

where A ±( -kz) = lim A( -kz ± ie), and similarly 
<--->0 

for R2 • Note that (18) and (19) constitute certain 
integral conditions between the possible values of 
f(O, u), EII(O), B.,(O) which must be verified a posteriori. 

Finally, we assume that particles are reflected 
specularly at the interface so that 

J(O, U." uy , uz) = f(O, U." uII ' -uz). (20) 

Recalling the definition of R2(kz) and making use 
of Eqs. (18), (19), and (20), one readily obtains 

(21) 

IV. DETERMINATION OF THE PERTURBED
PARTICLE DISTRIBUTION FUNCTION; 

PROOF OF CONSISTENCY 

It is easily verified that, for Eiz) given by Eq. (24), 
the Vlasov equation 

of ne oFo 
-i(yw - k.,u.,)f(z) + u

zo
- = - -y-o EII(z) (25) 

z m ulI 
is satisfie,d by 

nei oFo 1 
fez) = - 2wcB.,(0)y - -. 

m oUII 2m 

X dk.e'·z . (26) i Ok 1 

a' A(kz)(Yw - k· u) 

We now show that this solution is the unique solution 
of the Vlasov equation. For this purpose we consider 
the general solution JH of the homogeneous Vlasov 
equation [ElI (z) = 0] which may be added to (26), i.e., 

fH = C(u) exp [iCYW ~z k",u",) z }-iwte-ik~": (27) 

Since J(z) given by (26) satisfies the condition of 
specular reflection, JH also must satisfy the same 
condition. Therefore, we have 

iEt(kz) - iE;(kz) = -2wcB.,(0) (_1 ___ 1_). C(U", , uY ' uz) = C(U", , ulI ' -u.). 
A+(k.) A-(k.) Since 

(22) yw - k",u., = yw( 1 - :'" sin eo) 

In view of conditions (18) and (19) and assuming 
that R2(k.) has no other singularities in the cut plane 
(which will be verified later) we may deform the 
contour C in Fig. 1 as shown in Fig. 2 to obtain, 
for z > 0, 

{
1o 

Eiz) = -2wcB.,(0) -- e'KO' 
N(KO) 

+ _1 f"'dk eikz.[_I_ - _1_J} (23) 
21Ti J~o' A -(k.) A +(k.) , 

where prime indicates the derivative of A(k.) with 
respect to k z • 

This completes the determination of the electric 
field as a function of z within the plasma. To be 
consistent, however, we must show that, for Eiz) 
given by (23),f(0) does in fact satisfy conditions (18), 
(19), and (20). 

Before proceeding to the determination of fez), 
let us note that Eq. (23) may be written more compactly 
as 

Eiz) = - 2wcB.,(0) - dkze' .z -, (24) 1 i Ok 1 
21Ti a' A(k.) 

where C' is the union of the contours shown in Fig. 
(2a) or (2b). 

is always positive, (27) corresponds to a wave coming 
in from z = + 00 when Uz < O. According to our 
requirement (cf. Sec. III), we must choose 

C(u", , uy , uz) = 0, Uz < O. 

The condition of specular reflection then implies that 
C = 0, i.e.,JH = 0, which was to be shown. 

Finally, we must show for consistency that J(O) 
satisfies the conditions (18) and (19). To do this, let 
us first consider the quantity 

Q(k.) = -41Tiwef d
3
u UlIU. f(O) 

y yw - k· u 

- 2 2 B (0)fd3 uyu.(oF%u lI ) 1 - wpw wc '" U • 
yw - k",u", - k.u.2m 

X f dk; 1 . (28) 
Ja· A(k;)(yw - k.,u", - k;u.) 

So long as k z is not on C', we have 

1 1 

(yw - k",u", - k.u.) (yw - k",u", - k;u.) 

1 { 1 
= u.(k; - kz) yw - k",u", - k;uz 

_ 1 } (29) 
yw - k",u", - k.u •• 
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Using (29) in (28), we obtain 

Q(kz) = -eo:2eocB.,(0) 

r dk; 1 {A(k') A(k )} 
x Jc' 27Ti A(k~)(k; _ kz) z - • 

= -2eocB",(0) 

X r dk~ A(k~) - c2(k~2 - k;) - A(kz) • 

jc' 27Ti A(k~)(k; - kz) 

We note that 
ic aElI B",(z) =-
eo az 

= :.. 2eocB.,(0) r dkz eik,z ~ 
eo Jc' 27Ti A(kz) 

= ~ 2eocB",(0){~ eiKOZ 
eo A'(KO) 

(30) 

+ roo dkz k (_1 ___ 1_)}, (31) 
Jao 27Ti • A -(kz) A +(kz) 

which, when evaluated at z = 0, yields the identity 

1 = 2c2 r dk. ~ . 
Jc' 27Ti A(kz) 

Also, from Eq. (23) we have 

( )f dkz 1 
Ey(o) = -2eocB", 0 -.--. 

c' 2m A(kz) 

Making use of (32) and (33) in (30), we obtain 

R2(k.) = Q(kz) + c2k.EuCO) - eocB.,(O) 

= -2eocB.,(0) -' ---(f 
dk' 1 

c' 27Ti (k; - kz ) 

A(k ) r dk; 1 } 
- • Jc' hi A(k;)(k~ - k.) , 

(32) 

(33) 

(34) 

from which (18) and (19) follow immediately. Q.E.D. 
Also, we note that R2(k.) has the analytical properties 
assumed in Sec. III. 

V. VAN KAMPEN-CASE STATIONARY MODES 

It may be of interest to indicate the van Kampen
Case stationary modes for the present problem. For 
this purpose, we define a column vector 

(35) 

From Eqs. (24), (26), (34), and the last one of Eqs. 
(14), we may write 

'F'kr,w(Z, u) = -2eocB.,(0) ~ r dk.eikz• 
2m Jc' 

1 x--
A(k.) 

nei aFo 1 
--y-

m aU lI yeo - k· u 

1 

_ ck. 

eo 

ckll) 

eo 

= -2eocB.,(0){_I- 'F'k w(KO' u)eiKOZ 
A'(KO) .' 

+ l:dk.eikz.(~_ - ;+tz)'F'k.' ",(k. , U)}, 

where 

and for k. > 0(0 

'F'k. ,,,,(k. , u) 

nei aFo 1 --y-
m auy yeo - kll)ull) - KOU. 

1 

_ CKo 

eo 

ckll) 

eo 

1 p------
yeo - kll)u", - k.u. 

(36) 

- i7T t5(yeo - k . u) (
A+ + A-) 
A+ - A- (k z ) 

1 

_ ck. 

eo 

ck", 
eo 

Here 'F'(KO) and 'F'(k.) are the van Kampen-Case 
stationary modes appropriate to the relativistic 
problem, and P denotes the principal value. 

Equation (36) expresses the stationary solution 
(with an incident plane wave) of the half-space 
problem within the plasma in terms of the van 
Kampen-Case stationary modes appropriate to the 
relativistic plasma. Each of these modes represents a 
stationary solution of the infinite-medium problem and 
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is a distribution in the sense of Schwartz. The partic
ular superposition of these modes given by (36) 
matches to a plane wave obliquely incident on the 
plasma to yield a stationary solution as we have shown. 

VI. REFLECTION, TRANSMISSION, AND 
ABSORPTION COEFFICIENTS FOR 

HALF-SPACE PLASMA 

Let us consider a plane electromagnetic wave in 
free space incident upon the plasma interface at an 
angle ()o' Denoting by E; and E; the amplitudes of 
electric fields in the incident and reflected waves, 
respectively, for z < 0 we have 

Ey{z) = f,;(eiz(ro/c) cos 00 + pe-iz(ro/c) cos 80), (37) 

where p == f,;/f,~. For the magnetic field we have 

B,,(z) = -cos ()of,;(eiz(ro/c) cos 80 _ pe-iZ(ro/cl cos 80). (38) 

Using the continuity of the fields across the inter
face, we obtain the reflection coefficient R (i.e., the 
fraction of the incident energy which is reflected) as 

R = Ip12, (39) 
where 

p = [1 + B,,(O) J/[1 - 8",(0) ] (40) 
- EiO) cos ()o Ey(O) cos ()o ' 

and [cf. Eq. (24)]: 

B.,(O) = -[2WC _1 r dk _1_J-1 (41) 
EiO) 2rri Jc' z A(kz) 

To obtain the transmission coefficient, we consider 
the electric field as z -- ex) which is given by [cf. 
Eq. (23)]: 

(42) 
where 

f,t == -2wcB (0) _I_ 
'll ", A'(KO) 

(43) 

We need only discuss the case when KO is real; other
wise, there is no transmitted wave. We calculate the 
time-averaged Poynting vector 

c 
(8) = - E(z) x B*(z) 

8rr 
(44) 

for both the transmitted and incident waves; we 
obtain 

(45) 

(Si) = ~ I f,;1 2 £(~ cos ()oz + kxx) , 
8rr w C 

(46) 

respectively. The transmission coefficient is then 
given by 

Z • (st) CKo 1 I f,i /2 
T == i. (8i) = ;; cos ()o ~ . (47) 

Finally, inserting (43) into (47) and using (37) with 
z = 0, we obtain 

CK 4W2
C

2 

T = _0 cos ()o --11 - p12, (48) 
W 1A'(Ko)/ 

where p is given by (40). 
The fraction of the incident energy which is ab

sorbed within the plasma is then given by 

A=I-R-T. (49) 

It is interesting to note that the energy absorbed by 
the particles is removed from the system to infinity 
in the form of a steady heat flow. This is expected, 
since, otherwise, strictly stationary solutions (w real) 
could not have existed. To make this point more 
explicit, we shall calculate the net flow of heat in the z 
direction, namely, 

q~2) = f d:U mcZyuzj(2), (50) 

where j<2) denotes the second-order perturbed distri
bution function. We note that the first-order distri
bution function given by (26) does not yield any flow 
of heat, since it is an odd function of uy • 

The second-order distribution function satisfies 
the following equation: 

oj(2) 0/2) oj(2) ne (2) oPo 
y-+u -+u -+-E -

ot ", ox z oz m 'II oU
y 

e 0 
= - - {Re Ey(x, t)}y - {Rej(x, D, t)}, (51) 

m OUy 

where Ey and f are the first-order solutions obtained 
previously. Together with (51) we have also the second
order Maxwell equations. 

To evaluate the time-averaged heat flow, we need 
only to consider the zero.frequency component f~Z) 
of j<Z), since ±2w components yield zero through 
time averaging. Now, if one inserts the first-order 
solutions into the right-hand side of (51), one finds 
that the zero-frequency part of the right-hand side is 
also independent of x. This implies that f~2) is inde
pendent of x, since we are interested in solutions which 
are harmonic in x. Also, the static part of E~2) vanishes, 
since there are no gradients in the y direction. Accord
ingly, we find that 10(2) satisfies the following equation: 

0/2
) e 0 

Uz _0 = - - y - Re {E*(z)j(z)}. (52) 
OZ 2m OU'II 

From (50) and (52) we obtain the following result for 
the time-averaged heat flow in the z direction: 

~ (q~2'(Z» = -ec2 Re {E*(Z)fd3UY ~ j(Z)}. (53) 
oz OUy 
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The right-hand side of (53) may be simplified after 
inserting for I(z) and by straightforward calculations. 
We obtain 

where 

.! {(q~2)(Z» + z. (S(z»} = 0, az 

A [ C * ] z· (S(z» = Re - 81T Ey(z)B.,(z) 

(54) 

(55) 

is the time-averaged net flow of electromagnetic 
energy in the z direction. Equation (54) expresses the 
conservation of the energy flow. 

Since the heat flow is zero at z = 0 due to the 
specular reflection, from (54) we can write 

q~2)(Z) = Z • (S(O» - z . (S(z». (56) 

According to (56), heat flow builds up as z increases 
through the absorption of the energy by the particles 
from the electromagnetic wave and, as z --+ 00, 

reaches the asymptotic value 

where the superscripts refer to incident, reflected, and 
transmitted Poynting vectors. Also, the fact that heat 
flow attains a constant asymptotic value shows that 
the conversion of energy from electromagnetic energy 
to heat energy is a surface phenomenon (anomalous 
skin effect). 

VIT. SLAB PLASMA 

We now consider a slab plasma whose faces are 
perpendicular to the Z axis and situated at z = 0 and 
z = a. To avoid repetition, we begin here by indicating 
the modification necessary for adopting some of the 
results of the previous analysis to the present case. 

We define the functions Ey(z), $(z) which are 
identical to the fields Ey(z), B(z) within the plasma and 
which vanish identically outside the plasma. It then 
follows that the Laplace transform of Ey(z) is given by 
the same expression as in Eq. (16) provided we replace 
in R2(k.) the quantities 1(0), Ey(O) , B",(O) by 1(0) -
e-ik'''f(a), EII(O) - e-ik.aEuCa), B",(O) - rik.aB",(a), 
respectively. Here again ik. == P is the Laplace trans
form variable, and 

EvCk.) == LX) dz e-ik"Eiz) = La dz e-ik··Eiz). (58) 

Thus, in the case of a slab we have 

(59) 

where 

iE (k ) = R~lab(k.) 
II' A(k.) , 

(60) 

R~lab(k.) == RO(k.) _ e-ik.aRa(k.), (61) 

R·(k.) == Q·(k.) + c2k.Eiz) - wcB",(z), (62) 

Q'(k ) - 4' f d3
u uyu. fez) • = - 1Tlwe - . 

y yw - k·u 
(63) 

It is clear from (58) that if Eiz) is a bounded 
function of z for 0 < z < a, then Eik.) is an entire 
function in the complex k. plane. Therefore, we must 
have 

R~lab+(k.) 

A+(k.) 

R~lab(±KO) = 0, 

R~lab-(k.) (Ik I > IY.. ). 

A-(k.) • ° 

(64) 

(65) 

It is seen that in the case of a slab one has twice as 
many conditions compared to the half-space case. 
In fact, this is necessary, since we have twice as many 
coefficients to determine, corresponding to the waves 
travelling in both directions within the slab. 

The contour C in Eq. (59) can be shifted in the k. 
plane, since the integrand is an entire function. We 
choose it to lie parallel to the real axis and below all 
singularities of the function l/A(k.). 

From (62) one observes that, under certain restric
tions on the velocity dependence of 1(0) and I(a), 
RO(k.) and Ra(k.) are analytic functions of k. in the 
plane cut along Ik.1 > IY..0. We assume this to be the 
case. It will be verified a posteriori. 

Within the foregoing remarks, it is seen from Eq. 
(59) that Ey(z) == 0 for z < 0 and z > a. Also it is 
seen that the second term in the expression for R~lab 
given by Eq. (61) does not contribute to the integral 
in Eq. (59) when 0 < z < a, so that 

1 J RO(k) 
Ey(z) == Eiz) = -. dk.eikz• --' (0 < z < a). 

2m c A(k.) 
(66) 

The contour C may now be deformed as in Fig. 3 to 
yield 

E ( ) 
iKO' RO(KO) + -iKo' ROC -KO) z=e -- e 

II A'(KO) A'( -KO) 

+ _1 roo dk.eikz.[RO-(k.) _ RO+(k.)] 
21Ti Jao A-(k.) A+(k.) 

+ _1 r-aodkoeikz.[RO-(k.) _ RO+(ko)] , (67) 
21Ti J-oo A-(k.) A +(k.) 

since the contribution from the semicircle vanishes 
as the radius approaches infinity. 
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Im(k z) 
- - _ .... kz plane 

"-... 
\ 

\ 

'0 ' 

(b) 

FIG. 3. The path of integration after deformation of the contour C. 

Conditions (64) and (65) may now be utilized, 
together with the condition of specular reflection (at 
both faces of the slab), to determine the quantities 

RO(±KO), (68) 

(
RO--- _ RO+) (lk.1 > 0(0)' (69) 
A- A+ (k.) 

which are involved in the expression for ElICz) in (67). 
The result is 

ROC±KO) sin Koa = Tiwc{B.,(O)e'fiKoa - B.,(a)}, (70) 

- - - sink a (
RO+ RO-) 
A+ A- (k.) • 

= -iWC(.l_l..) {B.,(O)eik•a - B.,(a)} 
A+ A- (k.) 

(lk,1 > 0(0)' (71) 

There arises an ambiguity in obtaining the quantity 
given by (69) from Eq. (71), as one divides both 
sides by sin kza, since this division is not permissible 

when I I Ikzl = :1T > 0(0 (n = integer). 

To overcome this difficulty, following Landau,9 we 
consider w as a complex number with a small, 
positive imaginary part which is allowed to go to zero 
after the solution is obtained completely. This 
amounts to the interpretation of the stationary 
solution in the limit (as t -- (0) of an initial-value 
problem. The significance of this procedure in the 
present problem is that it completely removes the 
above-mentioned ambiguity. When w has a small 
positive imaginary part, the singularities of l/A(kz) 

are shifted as in Fig. 4. Equation (71) now holds 
along the shifted branch cut where sin kza is non
vanishing. Thus, along the shifted branch cut we 
obtain 

• L. Landau, J. Phys. (USSR) 10, 2S (1946). 

2 c' 
~~ 

-Ko 

Imlkzl 
c· kz plan. 

~ C· 
tKo e 

Relk z} 

(0 ) 

Imlkzl 
kz plone 

(b) 

FIG. 4. The path of integration C' when w has a slight positive 
imaginary part. [Note that the root +KO moves into the quarter 
plane Re (k.) > 0, 1m (k.) > 0.] 

Making use of (70) and (72) in (67), for 0 < z < a 
we obtain 

i dk 'k 1 E (z) = -iwc _z e' .0 ____ _ 

11 C' 21Ti A(ko) sin k.a 

X {B.,(O)e-ik,a - B.,(a)}. (73) 

A. Determination of the Perturbed -Particle 
Distribution Function 

It is readily verified that a particular solution of the 
Vlasov equation (25) with ElI (z) given by (73) is 

newc oFo f(z) = --y-
m oUlI 

i dk. ik, B.,(o)e-ik,a - B.,(a) 
x -e' . (74) 

C' 21Ti (yw - k· u)A(kz) sin kza 

It is a straightforward matter to show that this solution 
satisfies the condition of specular reflection at z = 0 
and z = a. 

We now prove that (74) is the unique solution. To 
show this we consider the general solution 

f H(Z) = C(u)ei[(yo>-kzUzl/uzlz (0 < z < a) (75) 

of the homogeneous [Eiz) == 0] Vlasov equation 
which may be added to (74). Since (74) already 
satisfies the condition of specular reflection at both 
boundaries, C(u) in (75) must be so chosen that 
/H(z) also satisfies the same conditions. This implies 
(since w has a slight imaginary part) that C(u) == O. 

Q.E.D. 
For consistency, we must show that, with/CO) and 

lea) obtained from (74), the conditions (64) and (65) 
are satisfied. For this purpose we first calculate 
QO(k.) defined by (63): 

QO(k.) = iwcA(k,) r dk~ B.,(O)e-ikt'a - B.,(a) 
Jc' 21Ti (k~ - kz)A(k~) sin k~a . f dk' B (O)e-ik.'a - B (a) 

- IWC -,., ., 

C' 21Ti (k~ - k.) sin k~a 

+ . f dk; c2(k~ + kz) 
IWC --':"""::'--"'-

C' 21Ti A(k;) sin k~a 

X {B.,(O)e-ikz'a - B.,(a)}. (76) 
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To put this result into a more convenient form, we 
note that, using (73), we may write 

B",(z) = ~ oEII 
W oz 

= ic -' • [B (O)e-' ,a - B (a)]. 21 
dk k "k 

C' 27Ti A(k.) sin k.a '" '" 
(77) 

From (73) and (77), we have 

EiO) = -iwcl dk. [B.,(O)e-ik,a - B.,(a)] , 
C' 27Ti A(kz) sin k.a 

(78) 

E ( ) 
. i dk. [B.,(O) - eik,aB.,(a)] 

1Ia = -IWC - , 
C' 27Ti A(k.> sin k.a 

(79) 

B",(O) = iC2l dk.. k.. [B.,(O)e-ik,a - B.,(a)], 
C' 27T1 A(k.) sm k.a 

(80) 

B.,(a) = ic2 f dk.. k.. [B",(O) _ eik.aB",(a)]. 
Jc' 27T1 A(k.) sm k.a 

(81) 

Using (78) and (80) in (76) and recalling (62), we 
obtain 

RO(k) = iwcA(k) f dk~ [B",(O)e-ik;a - B.,(a)] 
z z Jc' 27Ti (k~ - kz)A(k~) sin k;a 

. f dk' [B (O)e-ik;a - B (a)] 
_ IWC _z '" "'. (82) 

C' 27Ti (k~ - k.) sin k~a 

Similarly, for Ra(k.) we obtain 

W(k.) = iwcA(k
z
) f dk~ [B",(O) - eik;aB.,(a)] 
J C' 27Ti (k~ - kz)A(k~) sin k~a 

_ iwcf dk; [BiO) - eik;aB,,(a)]. (83) 
C' 27Ti (k; - kz) sin k;a 

One can show that RO(k.) , Ra(k.) are analytic functions 
of k. in the cut plane and that conditions (64) and (65) 
are satisfied. We omit the details of this calculation 
here. 

B. Reflection, Transmission, and Absorption 
Coefficients for the Slab Plasma 

Rewrite Eqs. (78) and (79) as 

where 

EiO) = {lB",(O) + 'IJB.,(a), 

Eia) = -'JIB",(O) - {lB.,(a), 

. i dk. cos k.a {l == -IWC -
C' 27Ti A(kz) sin kza . i dk. e±ik,a 

= -IWC -
C' 27Ti A(k.) sin k.a ' 

'II == iwc f dk. 1 . 
Jc' hi A(k.) sin k.a 

(84) 

(85) 

(86) 

(87) 

From the continuity of the fields at z = a, we have 

B,,(a) = -cos 0oEj/(a), (88) 

so that we obtain 

EiO) {l + ('112 
- {l2) cos 00 

--= 
BiO) 1 - It cos 00 

(89) 

(90) 

The reflection coefficient in the case of a slab is 
again given by Eq. (39), provided that in Eq. (40) 
one inserts for E,/O)/B",(O) from Eq. (89). 

The transmission coefficient is 

T = 1 E~ 12= 1 EvCa) 12'11 + 12 (91) E~ EiO) p , 

where E,la)/Ey(O) is given by (90). 

C. Correspondence with the Fourier
Series Solution 

To express our solution in the form of a Fourier 
series, we use the identity 

i dk eik,. " 
-iwc ~ . [B.,(O)e'k,a - B.,(a)] = 0 

Cd-C. 27T1 A(k.) sm k.a 

(0 < z < a), (92) 

which is quite evident since, for 0 < z < a, the 
contour C1 (see Fig. 5) can be closed from above and 
C2 from below. 

By deforming contour C1 continuously onto C2 , 

in view of (73) we obtain 

E (z) = iwc ! (_lteing(z/al {B.,(O)e-
ing 

- B.,(a)} 
II a 12=-00 A[(n7T/a) - ibnE] , 

(93) 

where 
bn = 1, n7T/a> lXo, 

= -1, n7T/a < -lXo, 

= 0, 

c, 

FIG. 5. The paths of integration C1 and C. in the complex k, plane. 
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Alternatively, we have 
ime 1 

Eiz) = - [B",(O) - B.,(a)] -
a fl(O) 

2ime "' [B",(O) - (-I)nB.,(a)] z + -- k cosn7T-
a O<n<aoaj1T fl(n7Tja) a 

2ime "' B.,(O) - (-1)nB.,(a) z + -- "'- cosn7T-. 
a n>aoaj1T fl-(n7T/a) a 

(94) 
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APPENDIX: THE DISPERSION FUNCTION 

In this appendix we wish to discuss briefly some 
properties of the dispersion function in the complex k. 
plane. We recall that 

fl(k.) == e2k 2 
- m

2 + m;A(k.), (AI) 

A(k.) == -mfd3U uy(oF% ulI ) • 

ym - k· u 

where 

(A2) 

The denominator in (A2) is nonvanishing through
out the complex k. plane, except along the parts of 
the real axis where Ik.1 > (w/c)(1 - sin2 eo)! := Clo, 

and where A (kz) possesses, as will be seen below, two 
branch cuts. 

We now proceed with the. evaluation of (A2). 
First note that (for k. real) 

I 

yw - k",u", - (k. ± iE)u. 
1 =-----=--

yw - k . u =r iE' 

1 
=------

yw - k . u ± iE ' 

For k. > 0 let us consider 

Aij(k. + iE) 

= -wfd3U utCoF'o/au j ) 

yw - k· u - iE 

if k. > 0, 

if k. < O. 

= - IW e uu· - e . foodt -Etfd3 aFo -it(yro--k'U) 
o t aUj 

_ +. wf3loodt -Etf d
3
u F -itCyw-k·u) 

- I 2 e UiU j oe 
coy 

. wf3lOOdt -Et I a2 f d3
u F -it(yw-k·u) =-1- e --- - oe 

c2 
0 t2 akiak j Y . 

(A3) 

(A4) 

Carrying out the u integration using the polar 
coordinates with k as the polar axis by the use of the 
relation1o 

roo du !!. e-ay sin yu = c3y 1 K 1 [(c2l + a2)1), 
Jo y (c 2l + a2

) 

Re a > 0, Re c > 0, (A5) 
we obtain 

f d3U Foe-it(YW-k'U) = _f3_! KtCz), (A6) 
y K 2(f3) z 

where z == [c2k 2t2 + (f3 + itW)2]!. Inserting (A6) into 
(A4) and letting E --+ 0, we obtain 

(kz > 0). 

(A8) 
When c2k 2 

- w2 > 0, from (A8) we obtain 

Re A+(k ) = _f3_ (J ru 
dx K2[f3(1 + (J2 - x

2
)1) 

z K 2(f3) Jo I + (J2 _ x2 ' 
(A9) 

1m A+(k
z
) = _f3_ (J roo dy K 2[f3(l + I + (J2)1) , 

K 2(f3) Jo l + I + (J2 

where (J == w/(c2k 2 - ( 2)1. 
(AIO) 

The latter integral can be carried out explicitly to 
yieldll 

1m A+(kz) = _f3_ a \ 1 ret) i K~[f3(1 + (2)1). 
K 2(f3) 2 f3 (1 + (J2) 

Using the relation 

we find that 
A(k:) = A*(k.), 

A-(k.) = [A+(k.»)*. 

(All) 

(AI2) 

(A 13) 

Since 1m A+ ¥: 0 for k z > ClO' we see that A (kz) has 
a branch cut along this part of the real axis. Finally, 
the relation 

A(k.) = A( -kJ (Al4) 
indicates that 

(AlS) 

Hence there is also a branch cut along k. < - ClO • 

10 A. Erdelyi, Ed., Tables of Integral Transforms, Bateman Manu
script Project (McGraw-Hili Book Company, Inc. 1954), Vol. I, 
p.75. 

11 G. N. Watson, Theory of Bessel Functions (Cambridge Univer
sity Press, London, 1962). Also note that we adopt the convention 
used in this book for the definition of K,,(z). 
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When c2k 2 - w2 < 0, we find 

A+(kz) = A-(kz) 

fJ -foo K 2[fJ(y2 + 1 - O'2)!] 
- -- (J d y --==-...;"-------'-~ 
- K 2(fJ) u l + 1 - 0'2 ' 

where 
_ w 
a == (w 2 _ c2k2)f' 

(Al6) 

It is noted that in this case A(k.) is real, as was 
expected. 

The values of A(kz) elsewhere in the k z plane may 
then be obtained by continuing A+(k.) analytically 
in the cut plane. 

Roots of the Dispersion Function A(kz ) 

The number of zeros of the dispersion function 
throughout the cut plane can be determined by the 
argument principle. As k z completes one tour along 
C1 , A(kz) traverses twice the contour C2 sketched in 
Fig. 6. Since 

ImAlk,) 
k, pion, 

c, 

-·0 .0 R,I,,) 

FIG. 7. The contours C3 and C •. 

To obtain the condition which determines when the 
roots are purely imaginary, we let k z run along the 
contour C3 in Fig. 7. In this case, A(kz) traverses 
the full contour C4 once. Since 

A(ex: ) = w 2 KI(fJ) 
° " K 2(fJ) 

(Al7) it follows that the roots are purely imaginary if 

is always positive, we find that there are always two 
roots of A(k.) = ° in the cut plane. According to the 
relations (AI2) and (AI4), if KO is a root, then -KO' 

Kri ' and - Kri are also roots of the dispersion function. 
Therefore, roots must be either both real or both 
purely imaginary. 

ImAlk,) 

Alk,)pl ... 

R,AI',} 

FIG. 6. The contours C1 and C •• 

Otherwise, roots are real. 
It is interesting to note that condition (AI9), with 

an equal sign instead of inequality, determines the 
angle of "total" reflection from a half-space plasma as 
a function of w/w" and fJ. [Of course, the reflection 
is never total (except in the zero-temperature limit) 
due to surface absorption (anomalous skin effect). 
Therefore, it is more appropriate to refer to this 
angle as the angle of "no transmission."] 
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Proof of the Fermion Superselection Rule without the 
Assumption of Time-Reversal Invariance 
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(Received 29 May 1968) 

The superselection rule which separates states with integer angular momentum from those with half
integer angular momentum is proved using only rotational invariance. 

The fermion or univalence superselection rule, 
which separates states with integer and half-integer 
angular momentum, was originally proved under the 
assumption of time-inversion invariance.1 Recent 
experiments on CP violation, combined with the CPT 
theorem, now seem to question T as a rigorous 
symmetry. Another proof of the fermion superselection 
rule without the assumption of T invariance is thus 
desirable. 

In Ref. 1, T invariance is not considered as a 
necessary assumption, but is merely used for tech
nical reasons. Nevertheless, nobody as yet seems to 
have published a rigorous proof using only rotational 
invariance. Usually one gives the following plausibility 
argument: With two states "P+- and "P- of integer and 
half-integer angular momenta, respectively, a rotation 
by 217' around any axis transforms the state (I."P+ + fJ1f
into (I."P+ - fJ1f-; since these states have to be physically 
indistinguishable, the superposition oc"P+ + fJ"P- can 
not be a coherent one. 

This argument, however, is valid only for a partic
ular normalization of the rotation operators which 
ascribes to rotations by 217' the operators + 1 and -1, 
respectively, in the subspaces of Hilbert space belong
ing to physical states with integer and half-integer 
angular momenta, respectively. Since this normaliza
tion, although very convenient, is only a mathematical 
convention and since the normalization might not be 
carried out in the subspaces independently, a rigorous 
proof must show in addition that the argument does 
not depend on the normalization of the rotation 
operators. 

Such a proof, starting from ray representations of 
the rotation group, will be presented here. It turns 
out to be not much more complicated than the 

• Present address: The International Centre for Theoretical Phys
ics, Trieste. Italy. 

t Supported in part by the Bundesministerium fur Wissen
schaftliche Forschung. Bonn. 

1 G. C. Wick, A. S. Wightman. and E. P. Wigner, Phys. Rev. 88, 
101 (1952). 

original proof of the fermion superselection rule in 
Ref. 1. 

Pure states of a quantum system are described by 
unit rays'Y = {w1f}, 111f1! = 1, W = eilt , of a Hilbert 
space Je. The observables of the system are represented 
by Hermitian operators A on Je with expectation 
values (1f, A"P) in state 'Y. The value of this is, evi
dently, independent of the choice of W in the corre
spondence'Y -)0- W1f. It is further assumed in quantum 
mechanics that the transition probability between any 
two states is an observable quantity. If the two states 
are characterized by the unit rays 'Y and <1>, the 
transition probability is given by 1(1f, ip)12, where 1f is 
any unit vector along the ray of 'Y and ip any unit 
vector along the ray of <1>. Again, one easily convinces 
oneself that the choice of these unit vectors from the 
rays'Y and <1>, respectively, does not affect the value 
of the transition probability 1(1f, ip)12. 

Before the establishment of the superselection rules, 
it was generally assumed that the vectors 1f, ip, ••• , 
which correspond to physical states, form a Hilbert 
space; that is, that the linear combinations ! ak1fk' 

suitably normalized, also describe physical states for 
which the preceding postulates are valid. Naturally, 
! ak1fk' and w! ak1fk describe the same state. The 
superselection rules limit the validity of this assump
tion and divide the set of all states into subsets which 
are called "coherent." The preceding statements apply 
within each coherent subset. In particular, if 1f and ip 
represent different states within the same coherent 
subset, there are states represented by the vectors 
cos OC1f + eiP sin (l.1f for any oc and fJ (0 ~ oc, fJ < 17'), 
and they are aU different. The transition probabilities 
between any pair of states within a coherent subset are 
physically meaningful. 

It is well known,2 furthermore, that if there are 
two different descriptions of the states within a 

• This theorem is usually attributed to one of the present authors 
(E. P. W.). but it was probably known to others before. Fora more 
recent proof. see V. Bargmann. J. Math. Phys. S, 862 (1964). 

2029 
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coherent subset of states, the second description 
attributing the rays 'V', <1>', X','" to the states 
characterized by 'V, <1>, X, ... in the first description, 
then one can choose unit vectors "P', q;', X', ... from 
the rays of 'V', <1>', X',, .. to correspond to each 
unit vector "P, q;, X, ..• of the rays 'V, <1>, X, ... in 
such a way that the correspondence 

"P +-t "P' , q; (~ q;', X +-t X', etc. , (1 ) 

either is unitary or it is antiunitary. It is true, also, that, 
if the choice of the "P', q;', ... is possible in such a way 
that the transformation from the "P, q;, ... is unitary, 
there is no choice w"P' ,w' q;', ... of these vectors which 
would render the transformation antiunitary3 (and 
conversely). Finally, the choice of the "P', q;', ... 
from the rays 'V', <1>', .•• is arbitrary only to within 
a common factor w of modulus 1. Thus, once a vector 
"P' is chosen from the ray 'V' , the vectors q/, X', ... are 
uniquely determined by the requirement that the cor
respondence (1) be unitary (if this can be accomplished 
at all) and also by the requirement that it be antiunitary 
(if this alternative applies). 

If the underlying theory is rotationally invariant, 
there are many different descriptions of the total set of 
states. In particular, if there are two coordinate 
systems obtained from each other by a rotation Rand 
if'V, <1>, •.• are rays corresponding to certain states, 
one can introduce another description by attributing 
the rays 'V, <1>,' •• to states which have the same 
relation to the second coordinate system as the states 
originally described by 'V, <1>,' .• have with respect 
to the first coordinate system. Such states exist by 
rotational invariance. On the other hand, this second 
description will attribute rays 'V', <1>', ••• to the states 
to which the first description attributed the rays 
'V, <1>,.... It then follows that there is either a 
unitary or an anti unitary operator OR' which, if 
applied to any vector X of a ray X characterizing a 
physical state in the first description, gives a vector 
X' = 0RX, which is in the ray X' which characterizes 
the same state in the second description. In particular, 
if "P, q;, ... are in the rays of 'V, <1>, ••• , then 0R"P, 
ORq;, ... will be in the rays of 'V', <1>', ... ; and if 
there are two operators OR and O~ with the described 
property, they can differ only in a constant factor of 
modulus 1. Finally (and this is an important point), 
if we consider only descriptions which attribute the 
rays 'V, <1>,'" to the states which have the same 
relation to some coordinate system, which 'V, <1>, ••• 
have to the coordinate system used initially, i.e., if all 

a See E. P. Wigner, J. Math. Phys. 1, 409, 414 (1960). 

coordinate systems use, from their own point of view, 
the same language to characterize states, then the 
operator OR' which translates the description used 
originally to the description of the coordinate system 
rotated by R, will also translate the description of 
states used by any coordinate system into the descrip
tion of the coordinate system obtained therefrom by 
the rotation R. This follows from the equivalence of 
all coordinate systems obtained from each other by 
rotations and from the postulate that each attributes 
the same ray 'V to the state which, with respect to the 
coordinate system in question, has the same properties 
.as the state described by the ray 'V had in the original 
coordinate system. 

It follows now that the product OSOR gives the same 
translation as OSR' so that OSOR and OSR can differ 
only in a constant factor. Since, for every rotation R, 
one can find another one (r) so that R = r2, one has 
OR = wO;, and this is unitary no matter whether Or 
is unitary or antiunitary. This applies to all rotations: 
all OR are unitary. The translation operators which 
correspond to the unit element E of the rotation group 
are multiplications by the numbers of modulus 1. 
Furthermore, if OR is a translation operator, so is 
0;/; it corresponds to the rotation R-I. 

Let us now consider an operator OROsO;l0'il
According to the preceding paragraph, this is a 
translation operator corresponding to the rotation 
C = RSR-lS-l. It is independent of the normalization 
of ORand Os, and this shows that one can define 
uniquely an operator for every commutator C in terms 
of the elements (in the preceding case Rand S) of 
which it is a commutator. 

In particular, if C = E is the unit element, the 
corresponding operator is a number (of modulus 1), 
and this number, which may be a function feR, S) 
of Rand S, is an invariant characteristic of the 
coherent subspace. The numerical function feR, S) 
has the following properties. Its value is 1 if ORand Os 
commute, and this will be always the case if they are 
members of a one-parametric subgroup. In this case, 
they can be represented as exp (iItl ) and exp (ilt2), 

respectively, where I is the infinitesimal operator of 
the subgroup. Furthermore,f(R, S) is invariant under 
the substitution R -+ R' = TRT-l, S -+ S' = TST-l, 
where T is an arbitrary group element. This follows 
from the fact that one of the operators 0 R' is 0 TO ROTt 
and, similarly, one of the operators Os' is OTOsOTl. 
Naturally, feR, S) is defined only if RSR-IS-l = E, 
i.e., for commuting Rand S. 

In the case of the rotation group, Rand S commute 
only if (a) they are rotations about the same axis, or 
(b) if both Rand S are rotations by 7T, about axes 
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perpendicular to each other.' In the former case, R 
and S are members of the same one-parametric sub
group so that feR, S) = 1 in this case. The condition 
that feR, S) is a single number is automatically 
satisfied in this case. The possible R, S of the second 
case can be obtained from each other by transforma
tions R --->-- TR T-l , S --->-- TST-l, so that the corre
sponding feR, S) are equal for all R, S of the Case (b). 
The value of this quantity is, however, a characteristic 
of the coherent subspace in which the operators OR 
are defined. Since it can assume only the values + 1 
and -1 if the OR are normalized in the usual way,5 it 
can assume only these values in any normalization. 
However, it must assume one of these values in any 
coherent subspace, and since it has the value 1 for 
states with integer spin, the value -1 for states with 
half-integer spin,6 these cannot belong to the same 
coherent subspace. 

The preceding argument made a minimum use of 
representation theory and made use of the properties 
of the rotation group only in the preceding paragraph. 
The rest of the considerations could be applied to 
any invariance group. The somewhat primitive argu
ment involving a rotation by 27T was replaced by the 
consideration of the commutator of two rotations by 
7T about axes perpendicular to each other, which, as 

• If Rand S commute, SRS-l = R. However, if R is a rotation 
about v, so that Rv = v, then SRS-l is a rotation about Sv. If the 
two are to be equal, Sv must be parallel to v. This is the case if 
Sv = v, i.e., if S is also a rotation about v, or if Sv = -v. The 
former case falls under (a); in the latter case, S must be a rotation by 
TT about an axis perpendicular to v. Furthermore, if R is a rotation by 
q; about v, then SRS-l is a rotation by Ip about -v, i.e., a rotation 
by -q; about v. If Rand SRS-l are to be identical, the rotations 
by f(J and -q; about v must be identical. This fixes f(J = TT (unless 
q; = 0), i.e., R also is a rotation by TT. 

• The demonstration given by Wigner [Ann. Math. 40, 149 (1939), 
p. 177] still appears to be the most simple. 

S Denoting the rotations by TT about the z and y axes by Z and Y, 
we note that the matrices which correspond to these rotations in 
D(t), assuming the usual normalization, are is, and is., respectively. 
Hence, in this case Oz Or OZlOy' = is zis.(is,)-l(iS.)-l = SZSyS;lS;' = 

-I. The same is then true of the Kronecker product Dlxd!x' .. xD~ 
containing an odd number of factors. Since these Kronecker 
products contain all half-integer representations, OzOrOZ10yl = -1 
for all of these. On the other hand, in the Kronecker products 
containing an even number of D~, one has OZOyOZ10yl = I,and this 
is true, therefore, for all integer j representations. 

are all operators, defined as commutators of other 
operators, is independent of the normalization of these. 

The formal structure of quantum theories with 
superselection rules has been analyzed in detail by 
Jauch and Misra. 7 Under the assumption that there 
exists a complete set of commuting observables and 
that the "superobservables" have a discrete spec
trum, it is shown that the state space Je is the 
direct sum of subspaces Jei which are coherent in the 
sense defined above. For all observables A, ("Pi' 
A"Pk) = 0 if "Pi E Jei , "Pk E Jek , i ¥- k. In such theories, 
pure states are in one-to-one correspondence with the 
unit rays of the coherent subspaces Jei . For assume 
0/ = {w"P} with "P = 2i rJ.i"Pi, "Pi E Je;. II"Pill = 1 to 
describe a pure state. Then, 

("P, A"P) = 2 lrJ.il 2 ("Pi' A"Pi) = Tr (A W) 
i 

withW = 2i lrJ.i l2 P~'i; i.e., the same state can as well 
be described by the density matrix Wand is there
fore pure if and only if all rJ. i except one are zero.s In 
other words, a "superposition" cos rJ."Pi + eiP sin rJ."Pk 
with i ¥- k does not produce a pure state, but a mix
tureS with a density matrix W = cos2 rJ.P fIJi + sin2 rJ.P flJk' 

so that the relative phase {J is unobservable. In this 
sense, different subspaces Jei and Jek are mutually in
coherent. 

Since, under rotations, pure states have to be trans
formed into pure states and transition probabilities 
must change continuously if one of the two states 
is rotated, a rotation R transforms all states of one 
coherent subspace into states belonging to this same 
subspace. This justifies our above assumption that the 
redescription of states induced by R occurs within 
a given coherent subset of states. The translation 
operator OR of a theory with supers election rules is 
then the direct sum of operators OW for the coherent 
subspaces Jei . This carries the theorem mentioned in 
Ref. 2 over to state spaces with supers election rules. 

7 J. M. Jauch, Helv. Phys. Acta 33,711 (1960); J. M. Jauch and 
B. Misra, ibid. 34, 699 (1961). 

B J. von Neumann, Mathematische Grundlagen der Quanten
mechanik (Julius Springer-Verlag, Berlin, 1932) (English transl.: 
Princeton University Press, Princeton, 1955). 
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Some nonlinear boundary-value problems in one- and two-dimensional composite domains have been 
solve~ by a general eigenfu?ctio~-expansion method. The advanta~e of the method is that separable prob
lems In more than one dimensIOn can be solved almost as easily as one-dimensional problems. An 
optimum eigenfunction-expansion basis has been found that leads to accurate solutions with only a few 
terms in the expansion. 

I. INTRODUCTION 

This work is an extension of that reported in a 
previous paper,! referred to subsequently as I, on an 
expansion method for the solution of nonlinear 
boundary-value problems. InI, the method was applied 
only to one-dimensional problems in homogeneous 
domains; here we show that the method is much more 
general, and that it can be used for the solution of 
nonlinear boundary-value problems in composite 
multidimensional domains. Explicit solutions are given 
for one asymmetric problem in composite-slab 
geometry, and for a symmetric problem in two
dimensional r-z composite-cylindrical geometry. The 
importance of the method lies in the fact that its 
application to separable problems in more than one 
dimension does not involve a much greater effort than 
that required for one-dimensional problems. 

ll. STATEMENT OF THE PROBLEM AND 
FORMALISM 

We consider homogeneous2 boundary-value prob
lems of the form 

V2y(x) + p2(X)y = yn, y(r) = 0, (1) 

where r is the domain boundary, and p2(X) is a 
positive function which is piecewise continuous in 
the composite domain D. In the calculations presented, 
p2(X) assumes only constant values in the different 
subdomains of D. The exponent n is a positive number, 
and n ;;::: 2. 

In one-dimensional problems it has been proved 
that the solution of (1) which is positive in all the 
domain is unique.s The uniqueness of the positive 
solution in multidimensional problems is now as
sumed without proof. It has some interest to mention 
that oscillating solutions of (1) have been found 
numerically. Our interest is in the positive distribution. 

1 J. Canosa, J. Math. Phys. 8, 2180 (1967). 
• The extension of the method to inhomogeneous problems is 

immediate, as was shown in I. 
S J. Canosa and J. Cole, J. Math. Phys. 9, 1915 (1968). 

For clarity and completeness, we review briefly the 
method of solution which is given in detail in I. We 
assume that the solution of (1) is given in the form 

00 

y(X) = L A.IP.(x), (2) 
.=1 

where q;. are the eigenfunctions of a certain eigen
value problem associated with (1). The expansion (2) 
is now substituted into (1), truncated after j terms, 
and the orthogonality properties of the eigenfunctions 
q;. are used to eliminate the spatial dependence in the 
resulting expressions. In this way we obtain a coupled 
nonlinear algebraic system of j equations and j 
unknowns in the expansion coefficients A. of (2). In 
the problems in homogeneous domains considered in 
I, where p2(X) in (1) was constant, the choice of the 
expansion basis (2) was obvious: the eigenfunctions 
of the Helmholtz equation, i.e., 

V2q; + AlP = 0, q;(r) = 0. (3) 

For the present problems in composite domains, this 
choice is not obvious. Although any complete set of 
eigenfunctions in D can be used in principle, one is 
interested in some optimum set that leads to the most 
accurate solution of (1) with the minimum of terms in 
(2). An expansion basis which seems to be optimum is 
defined by the eigenvalue problem associated with (1): 

V2q;(X) + p2(X)q; - Aq; = 0, q;(r) = 0. (4) 

The reasons are as follows: In one-dimensional 
problems, the maximum value of the positive solution 
of (1) is bounded3 : 

Ai/<n-ll ~ M < lmaximum of p2(x)jl/<n-ll, (5) 

where Al is the fundamental eigenvalue of (4). The 
result (5) can be shown to be valid for two- and 
three-dimensional problems, in exactly the same way 
as was done in Ref. 3.4 In all cases we have from (5): 

M n-l = 0(A1)' (6) 

• This follows from the necessary conditions that a function of 
two and three variables must satisfy to have a strict maximum. 

2032 
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In some asymptotic cases, i.e., when 

p2(X) = flP(X), fl ---+ 00, p(x) = 0(1), (7) 

we have the stronger result3 

(8) 

In some vicinity of the maximum of the distribution, 
Eq. (1) can be approximated by 

V2y(X) + p2(X)y - Mn-ly = O. 

Because of (6) and (8), this equation is approximated 
by the equation satisfied by the fundamental eigen
function of (4). Hence, in some vicinity of the maxi
mum, the fundamental eigenfunction approaches the 
positive distribution given by (1) except for a constant 
factor. This fact is central in the choice of the eigen
functions of (4) as our expansion basis. The results to 
be presented below justify this assumption, i.e., the 
fundamental-mode approximation obtained by keep
ing only the first term in (2) is a good approximation 
to the distribution given by (1) near its peak, even in 
strongly nonlinear and asymmetric cases. 5 In the two
dimensional problems considered, the one-mode 
approximation is not nearly so good as in one
dimensional problems, although its shape is quite 
close to that of the distribution near its peak. 

The nonlinear algebraic system for the coefficients 
Av in (2) is 

b!lA~ + b~2A~ + ... + WA~ 
+ 2bi1A1A2 + ... + 2b}lAIAj 

+ 2b1,2,3A2A3 + ... + 2b1,2,jA2A j 

+ ... + 2b1,i-1,j Aj_1A j = A1bllA1, 

b11A~ + b~2Ai + ... + b~jA~ + 2b~2AIA2 
+ ... + 2b1,2,jA1A j + 2b~2A2A3 
+ ... + 2b~2A2Aj + 2b2,j-l,jA j_1A j = A2b22A2' 

(9) 

bYA~ + b~2A~ + ... + b~iA~ 
+ 2b1 ,2';A1A2 + ... + 2bi i A1A j 

+ 2b2,3';A2A3 + ... + 2b~jA2Aj 
+ ... + 2b j,j-l,j Ai_lA j = A;b ii A j . 

6 It should be clearly understood that the choice of an expansion 
basis (2) for problem (1) is by no means unique, e.g., if we use that 
defined by 

V'tp(x) + }.p·(x)ql = 0, 

the approximations so obtained to the distribution given by (1) are 
found to be much poorer for the same number of terms in (2) than 
those obtained using (4). 

It is worthwhile to note that this system has identical 
form as that obtained before for homogeneous 
domains [see Eq. (12) in I], and that it applies in 
principle to one-, two-, and three-dimensional 
problems (1). The notation in (9), which is valid for 
any geometry and number of dimensions, is as follows: 

b~ = Iv tp7tpm dV, bz,m,n = Iv tpZtpmtpn dV, 

bii = Ltp~ dV. (10) 

The eigenfunctions of (4) are normalized so that the 
maximum value of the fundamental mode is unity. 
In one-dimensional problems, the eigenfunctions of 
(4) can be shown to be orthogonal in the same way as 
in a standard Sturm-Liouville problem.6 Although in 
separable two- and three-dimensional problems the 
eigenvalues and eigenfunctions require two and three 
indices, for convenience of notation they have been 
ordered in (9) and (10) with only one index according 
to the magnitude of the eigenvalues. 

A. One-Dimensional Problem 

The following asymmetric problem was chosen as 
an example because of its interest in nuclear-reactor 
theory, and also because it constitutes a severe test of 
the method: 

(d2yjdx2) + p2(X)Y = y2, 

yeO) = y(77) = 0, 

p2(X) = {p2 > 1, 
1, 

o ~ x ~ 77jb, 

77tb ~ x ~ 77. 

b> 1, 
(11) 

The necessary conditions for the existence of a positive 
solution of (11) have been given before.s It suffices to 
recall here that, when the average value of p2(X) over 
the domain 

(12a) 

the solution of (11) approaches sin x except for a 
constant factor. But when 

p2(X)>> 1, (12b) 

the solution departs strongly from sin x. With p2(X) 
given by (11), Eq. (4) is a Helmholtz-type equation in 
each subdomain, and its solution is elementary. We 

8 The Sturm-Liouville theory is discussed in standard mathe
matical physics textbooks with the requirement that p'(x) in (4) be 
continuous, and not piecewise continuous as in this paper. Eigen
value problems such as (4) with piecewise continuous coefficients 
have been discussed frequently in technical articles [see, for example, 
S. S. Penner and S. Sherman, J. Chem. Phys. 15, 569 (1947)]. Also, 
these eigenvalue problems are common in quantum mechanics 
when the potential is a piecewise constant function of space. 
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get 
r = sin (P2 - A)!X, 0 S x S Tl'lb, 

r = Csin (1 - A)!(X - TI'), Tl'lb s x S TI'. (13) 

Note that p2 > A1 [Eq. (5)], and as the fundamental 
is the highest positive eigenvalue, the radicand 
p2 - A in (13) is positive for all A. However, the 
radicand 1 - A might be positive or negative. The 
coefficients C assure the continuity of the eigenfunc
tions and their derivatives at the interface x = Tl'lb. 
The matching conditions at x = TI'/b give directly the 
transcendental equation for the eigenvalues 

(P2 _ A)! cos [(P2 - A)!TI'/b] sin {[(I - A)!(b - l)/b]TI'} 

+ (1 - A)! sin [(p2 - A)!TI'/b] 

x cos H(1 - A)!(b - 1)lb]TI'} = O. (14) 

Although 1 - A might be positive or negative, Eq. 
(14) has only real roots. 7 A FORTRAN IV program was 
written to solve (14), which gives in one pass any 
desired number of eigenvalues,8 and the corresponding 
eigenfunctions (13) and their zeros. The zeros are 
needed for an accurate numerical computation of the 
integrals (10), whose integrands are multiple products 
of the eigenfunctions. The integrands are continuous, 
but their derivatives have very strong discontinuities 
at the zeros of the eigenfunctions. The accurate 
computation of these integrals requires that the inte
gration interval be divided at the zeros. The integrands 
are thus smooth and of the same sign in the resulting 
subintervals, where the integration can be performed 
numerically by any standard method (Simpson's or 
the trapezoidal rule). 

It should be stressed that from a numerical point 
of view the only delicate part of the computation ofthe 
integrals is the above-mentioned one, and it is easily 
taken care of as stated. With the use of a digital 
computer, it is not significant whether the integrands 
are triple products of the eigenfunctions as in (10), 
higher-degree products, or nonsingular quotients 
involving the eigenfunctions. The method, the feasi
bility of which depends essentially on the easy and 
efficient computation of integrals of the type (10), can 
thus be equally applied to other types of algebraic 
nonlinearities, and not only to those given in (1). 

7 If the coefficient p2(X) in (4) is continuous, it is a general result of 
the Sturm-Liouville theory that all its eigenvalues are real [E. L. Ince, 
Ordinary Differential Equations (Dover Publications, Inc., New 
York, 1956), p. 238]. For p'(x) piecewise constant, we are unaware 
of an equally general proof of the result. However, the result can 
be shown to be true in each case [see H. S. Carslaw and J. G. Jaeger, 
Conduction of Heat in Solids (Oxford University Press, London, 
1959), 2nd ed. p. 324]. 

6 The fundamental eigenvalue given by (14) is always positive, 
but for sufficiently large p2 in (II), a finite number of positive eigen
values also exist. The rest of the spectrum is given by an infinite 
number of negative eigenvalues. In most of the problems considered, 
only the fundamental eigenvalue is positive. 

B. Numerical Results and Discussion 

As an illustration of the power of the method, we 
have solved (11) for the followingp2(x): 

b S x S TI'/5, 
{
25, 

p2(X) = 
1, TI'/5 S x S TI'. 

(15) 

This is an example which is strongly nonlinear and 
asymmetric. Our main interest was to observe the 
convergence of the modal approximations on the 
"exact" numerical solution of the problem obtained 
by an independent numerical method. The results of 
the one-, two-, and three-mode approximations are 
shown in Fig. 1, together with the exact solution. One 
should note the striking accuracy of the one-mode 
approximation in the vicinity of the maximum of the 
distribution, as was suggested by the discussion follow
ing Eq. (8) above. It should also be noticed that the 
one-mode approximation requires hardly any com
putation, because after neglecting all terms but those 
with index 1, the modal coefficient Al in (2) is obtained 
explicitly from system (9), 

y(x) = AIrl(X) = (Albl1lb~l)rl(X), (16) 

It should be mentioned that the exact numerical 
solution was quite hard to obtain, because an oscil
lating solution with one zero inside the domain was 
unexpectedly found; this solution coincided practically 
with the positive solution in the range 0 S x S 0.2T1', 
e.g., its slope at x = 0 was 55.63, vs 55.91 for the 
positive solution. In short, the numerical separation of 

14 ---l-MODE 

- - 2-MODE 

- - - - - 3 - MODE 

12 -- EXACT 

10 

6 
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2 

0.2 0.4 0.6 0.8 1.0 

(UNITS OFTT) 

FIG. I. First few mode approximations vs exact distribution. 
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3.2.----------------, 

FIG. 2. First few mode approximations to the radial distribution 
in z = o. [Case (2Ia).] The differences between the successive modal 
approximations within a cluster cannot be detected in the plots. 

the two solutions required tedious numerical experi
mentation. To the contrary, system (9) for j = 2 and 
j = 3 was solved without any difficulty by the Newton
Raphson method9 after only three iterations. Appro
priate initial guesses for AI, A2 , and A3 , giving the 
positive distribution were found to be, respectively, 
just as in I, Al [as given by (16)], -AI/lO, and AI/100. 

III. TWO-DIMENSIONAL PROBLEMS 

Whenever the two- and three-dimensional eigen
value problem (4) can be solved by separation of 
variables, the solution of the corresponding nonlinear 
problem (1) does not require a much greater effort 
than in one-dimensional problems. As an example, we 
have applied the method to the two-dimensional 
problem in the r-z composite cylindrical geometry 
given below. This problem is important in nucIear
reactor theory, because the discontinuous material 
properties of a reactor give rise naturally to composite 
problems of this type. 

We have 

\72y(r, z) + 2p2(r)y = y2, y(r) = 0, 

{

P2>1, O:::::;;r:::::;;kOl/b, b>l, 

p2(r) = 1, kol/b :::::;; r :::::;; ko!, 

ko! = first zero of Jo(r). 

(17) 

Jo(r) is the Bessel function of the first kind, of order 
zero. The cylinder dimensions are normalized such 
that its height is 7T and its radius is ko! . The coefficient 
2 appearing in (17) is used for convenience of notation. 
The linear boundary-value problem 

\72y + 2p2y = 0, y(r) = 0, (1S) 

has a positive solution only for p2 = 1 [y = Jo(r) cos z]. 
It can be shown as in Ref. 3 that a necessary condition 
for the existence of a positive solution of (17) is that 

• F. B. Hildebrand, Introduction to Numerical Analysis (McGraw
Hill Book Co., Inc., New York, 1956), p. 451. 

3.2.----------------, 
2ND - CLUSTER APPROX. 

3RD - CLUSTER APPROX. 

1ST - CLUSTER APPROX. 
1.6 

0.8 

o~-~--~--~-~b_-~ 

FIG. 3. First few mode approximations to the axial distribution in 
r = O. Case (2Ia). 

the average value 

p2(r) > 1. (19) 

The greater p2(r) is, the more the solution of (17) 
departs from that of (IS). Analytically, the solution 
of the eigenvalue problem (4) corresponding to (17) 
is obtained by separation of variables, and is not 
more difficult in this two-dimensional case than in the 
one-dimensional problem treated before. Numerically, 
the eigenvalues are given by a somewhat complicated 
transcendental equation involving Bessel functions, 
and the eigenfunctions are given as products of a 
radial part involving Bessel functions and an axial 
part involving circular functions. The numerical 
calculations are quite straightforward with the use of a 
computer and are entirely analogous to those for one
dimensional problems; they will not be described 
here.lO It is, however, of some interest to point out 
that the ordering by magnitude of the first few eigen
values is as followsll : 

All, A12' A2!, A13 , A22 , A23 , • • • (20) 

(the first index is axial and the second is radial). This 
order is the same as for the homogeneous eigenvalue 
problem (4) where p2(r) = const > 2 (i.e., the Helm
holtz equation). 

The algebraic system (9) was solved by the Newton
Raphson method in the one-, two-, three-, four-, and 
five-mode approximations, for the two cases: 

p2(r) = {
S, ° :::::;; r :::::;; k o1/l0, 

1, ko1/10:::::;; r:::::;; kOl' 

{
12, ° :::::;; r :::::;; kol/lO, 

p2(r) = 
1, kol/l0:::::;; r :::::;; ko!. 

(2Ia) 

(2Ib) 

The results for case (2Ia) are given in Figs. 2 and 3, 
where we have plotted respectively the radial distri
butions on the radial plane z = 0, and the axial 

10 J. Canosa, IBM Scientific Center (Palo Alto) Rep. No. 320-
3240, 1968. 

11 The qualitative properties of the eigenvalue spectrum are the 
same as for one-dimensional problems, described in Ref. 8. 
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16.0 r---------------, 

8.0 

4.0 

o 
FIG. 4. First few mode approximations to the radial distribution in 

z = O. Case (21b). 

distributions on the axial plane r = O. In Fig. 4, the 
radial distributions on the radial plane z = 0 are 
given for the case (2Ib). In both cases, the nonlinear 
effects are quite strong on the radial distributions and 
weak on the axial distributions. The nonlinear effects 
might be defined as the departure of the positive 
distribution from the fundamental eigenfunction of 
(4). The reason for the predominance of nonlinear 
effects in the radial direction is clear, because the 
problem is homogeneous axially, and composite 
radially. In one-dimensional problems if a j-mode 
approximation gives a distribution that is close to that 
given by the (j - I)-mode approximation, one is in 
general confident that the j-mode approximation is 
adequate. At least in the two-dimensional problems 
considered here, the different modal approximations 
cluster themselves according to the radial part of the 

eigenfunctions, that is, the accuracy of the successive 
approximations depends on how many of the follow
ing clusters of eigenfunctions are used: 

fl(r) cos z,} first cluster, 

f2(r) cos z,} 
I' ( ) 3 second cluster, 

J1 r cos z, 

f3(r) cos z,} 
f2(r) cos 3z, third cluster, 

f3(r) cos 3z, 

(22) 

When the order of a modal approximation is increased 
So as to include more than the first eigenfunction in the 
cluster, Figs. 2 and 4 show clearly that the accuracy 
of the solution does not increase appreciably. It is felt 
that the convergence of a certain modal approximation 
to the exact solution is assured if the distribution 
obtained does not vary significantly from a cluster to 
the following. 

Figure 4 shows clearly that for case (21 b) there is 
an appreciable difference from the second to the third 
cluster approximations. If a more accurate distribution 
were desired, it would be necessary to go to the next 
cluster of approximations involving the fourth radial 
eigenfunction f4(r). This behavior might be different 
in problems with strong nonlinear effects both in the 
radial and axial directions. 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 9, NUMBER 12 DECEMBER 1968 

Variational Solutions of Nonlinear Poisson-Boltzmann 
Boundary-Value Problems 

N. ANDERSON AND A. M. ARTHURS 
Department oj Mathematics, University oj York, Heslington, York, England 

(Received 10 Apri11968) 

Variational solutions of one-dimensional nonlinear Poisson-Boltzmann boundary-value problems 
in the theory of colloids and plasmas are obtained. The accuracy of the solutions is measured in terms of 
upper and lower bounds for the field energy which result from complementary variational principles. 

1. INTRODUCTION 

The problem of solving the nonlinear Poisson
Boltzmann equation 

d2cpJdx2 = J(cp) , 0 S x S L, (1) 
where 

J(cp) = etp - e-tp, 

with boundary conditions 

cp(O) = CPl 
and 

(2) 

(3) 

(4) 

arises in the theory of colloids1.2 (L = 00, CPl > 0, 
CP2 = 0) and in the theory of plasmas3 (L finite, 
CPl = 0, CP2 > 0). Here cP is the dimensionless quantity 
eV/kT, where V is the electric potential, e the proton 
charge, k Boltzmann's constant, T the particle 
temperature, and x is measured in units of the 
Debye length An = (kT/4rrNe2)!, N being the particle 
density. When the function cP is much smaller than 
unity throughout the interval (0, L), as is the case for 
sufficiently small V or high T, the problem is approxi
mately linear with an elementary solution. However, 
in practice cP can be of the order of unity and the linear 
approach breaks down. 

In this paper we present a variational approach to 
the problem. It is based on complementary variational 
principles4•5 and leads to very accurate solutions for the 
potential. 

2. COMPLEMENTARY VARIATIONAL 
PRINCIPLES 

Using recent results5 for boundary-value problems 
of the kind in Eqs. (1)-(4), we obtain the comple-

1 A. E. Alexander and P. Johnson, Colloid Science (Oxford 
University Press, London, 1949). 

• R. P. Feynman, The Feynman Lectures on Physics, Vol. II 
(Addison-Wesley Publishing Co., Reading, Mass., 1964). 

3 F. Llewellyn-Jones, The Glow-Discharge (Methuen & Co., 
London, 1966). 

• B. Noble, Univ. Wisconsin Math. Res. Center Report 473, 
1964. 

5 A. M. Arthurs and P. D. Robinson, Proc. Cambridge Phil. Soc. 
(to be published 1969). 

mentary variational principles 

G(<I» s I( cP, u) S J( U), (5) 

where <I> and U are trial functions close to the exact 
solutions cP and u of (1) written as 

dcp/dx = u, -du/dx = -J(cp). (6) 
In (5), 

G(<I» = lL {- H~~r -F(<I»} dx, 

<1>(0) = CPl' <I>(L) = CP2' (7) 

J(cp, u) = lL{ -H::r -F(CP)} dx, (8) 

J(U) = 1L {~U2 - F[J-!e~) ] 
+ e~)J-le~)} dx - [cpu]~:f, (9) 

with 

The principles (5) hold subject to the restriction 

dJJdcp ~ 0, 

(10) 

(11) 

which is certainly satisfied by the functionJ(cp) in (2). 

3. COLLOID PROBLEM 

Consider the boundary-value problem 

(12) 
where 

cp(O) = A, lim cp(L) = 0, (13) 
L-+oo 

which arises in the Debye-Hiickel theory of colloids.! 
When cp is much smaller than unity the solution is2 

cp '" A exp (-xJ2), A« 1. (14) 

This suggests that for A '" I we choose the trial 
functions 

(15) 

2037 
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and 
U = d(Ae-JlrIJ)/dx, (16) 

where the parameters). and p, are found from the 
stationary conditions 

oG/o). = 0, oJ/op, = 0. (17) 

Taking L = 10, which is sufficiently large, and A = 1, 
we obtain 

L IX 

1 1.05 
2 1.43 
3 1.51 
4 1.53 
5 1.54 

TABLE II. Parameters for B = 2. 

G(IX) P J(f3) J-G 

-5.4003 1.23 -5.2148 0.1855 
-7.0993 1.61 -7.0467 0.0526 
-9.0792 1.65 -9.0470 0.0322 

-11.0771 1.66 -11.0476 0.0295 
-13.0767 1.67 -13.0479 0.0288 

). = 1.45 and p, = 1.48, 

and the corresponding functionals 

(I 8) function 

G = -20.7222 and J = -20.7213. (19) 

The results in (19) provide upper and lower bounds 
for I( qy, u) in (8), which for these one-dimensional 
problems is a measure of the field energy. Thus in 
terms of the field energy, the trial function 

(20) 

is very good and may be taken to represent the po
tential in this problem. 

As A decreases from unity it is clear that the param-

eter ). in (15) decreases from 1.45 and tends to J2. 

4. PLASMA PROBLEM 

Next we consider the problem of solving 

d2qy/dx2 = f(qy) = e'" - e-"', O.:s; x .:s; L, (21) 

subject to 
qy(O) = 0, qy(L) = B, (22) 

which arises in plasma theory.3 The form of the exact 
solution near x = L suggests that we take the trial 

TABLE I. Parameters for B = 1. 

L IX G(IX) fJ J(fJ) J-G 

1 0.93 -2.8097 1.06 -2.7785 0.0312 
2 1.31 -4.7278 1.42 -4.7226 0.0052 
3 1.39 -6.7227 1.46 -6.7212 0.0015 
4 1.43 -8.7222 1.48 -8.7211 0.0011 
5 1.44 -10.7222 1.48 -10.7213 0.0009 

Be-atL- rIJ )(1 _ e-arIJ) 
~=------~----~ 

(1 - e-aL) 

in (7), and the trial function 

U = ~{Be-PtL-rIJ)(1 - e-P1\ 
dx (1 - e-PL) J 

(23) 

(24) 

in (9), where the parameters IX and fJ are found from 
the stationary conditions 

OG/OIX = 0, oJ/ofJ = 0. (25) 

Calculations have been performed for B = 1 and 
B = 2 and L = 1 (1.0) 5, and the results are given in 
Tables I and II. Since the accuracy of the trial func
tions is judged by the closeness of the bounds G and J, 
we see that the function (23) improves as L increases 
and B decreases, and provides an accurate repre
sentation of the potential in this problem. 

5. CONCLUDING REMARKS 

Solutions of two kinds of one-dimensional non
linear Poisson-Boltzmann problems have been found 
using complementary variational principles. These 
principles provided upper and lower bounds for a 
certain functional, and the accuracy of the variational 
solutions was measured by the closeness of the bounds. 

For similar problems in higher dimensions the 
methodS adopted here still applies. The main difficulty 
of the method in the nonlinear case is to find trial 
functions which are not too far removed from the 
exact ones. 
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Reduction of Reducible Representations of the Poincare 
Group to Standard Helicity Representations 

HARRY E. MOSES 
Lincoln Laboratory, * Massachusetts Institute of Technology, Lexington, Mass. 

(Received 28 October 1967; Revised Manuscript Received 26 January 1968) 

In this p.aper we intr?duce realizations of the generato~s o~ the Poincare group for real and imaginary 
masses which are close m form to the Lomont-Moses realizations for zero mass. These realizations (which 
we call "standard he~icity.realizations or re~r~sentations") are characterized by the way that the infinitesi
mal g~nerat~rs are ~Iven m te~ms. of the heliclty operator. We also give the global form of the realizations 
and discuss m detail the realizatIOns for the case that they are unitary and irreducible. We then show 
how any reducible representation of the Poincare group for which the infinitesimal generators of the 
translatlO~ and rotation subgroups a:e Hermi~i~n and integrable and for which the space-time gener
ators are mtegrable (but ~ot necessanly ':len~lltla~) can b~ reduced to the standard helicity realizations. 
In the case.that t~e redu~lble representatIOn IS unItary. thiS process enables one to reduce the reducible 
re~resentatlO~ to.meduclble unItary standard helicity representations. Finally. we show how the Foldy
Shlrokov realizatIOns for real mass are related to the standard helicity representation. 

1. INTRODUCTION 

Lomont and this authorl showed how reducible 
unitary representations of the Poincare group could 
be reduced to irreducible unitary representations 
when it was assumed that only real nonzero-mass 
and zero-mass representations were contained in the 
reducible representations. The irreducible representa
tions were in the form of the Foldy-Shirokov realiza
tion for nonzero mass2,3 and in the Lomont-Moses 
realization for zero mass.4 In extending the reduction 
procedure to cases in which the reducible representa
tions contained imaginary-mass components, the 
present writer found it convenient to introduce realiza
tions for imaginary mass which are analogous to 
those of Ref. 4 for zero mass. In addition, for certain 
applications which we shall give in later papers, it was 
found useful to round out these realizations by giving 
the analogous realization for real nonzero mass. 

These realizations for the real and imaginary masses 
formally are very similar. In fact the infinitesimal 
generators corresponding to translation and rotation 
are identical, while the space-time infinitesimal 
generators are very close in form. These realizations 
are characterized by the prominence enjoyed by the 
helicity operator, especially in the infinitesimal 
generators for rotation. The infinitesimal generators 
will be given explicitly. We shall call these realizations 
"standard helicity realizations or representations." 
We shall also give the global form for the irreducible 

* Operated with support from the V.S. Advanced Research 
Projects Agency. 

1 J. S. Lomont and H. E. Moses. J. Math. Phys. 8, 837 (1967). 
• L. L. Foldy, Phys. Rev. 102, 568 (1956). 
3 Yu. M. Shirkov, Zh. Eksp. Teor. Fiz. 33, 1196 (1957) [Sov. 

Phys.-JETP 13, 240 (1961)]. 
• J. S. Lomont and H. E. Moses, J. Math. Phys. 3 405 

(1962). ' 

unitary representations of the Poincare group in the 
helicity realization. 

We then go back to our original objective and show 
how reducible representations of the Poincare group 
can be reduced to the standard helicity realizations. 
Any mass, including the imaginary mass, can be 
assumed to be contained in the reducible representa
tion. The only representations which are assumed 
absent from the reducible representation are those of 
the homogeneous Lorentz group, for which the 
infinitesimal generators corresponding to energy and 
linear-momentum components are identically zero. 
Our assumptions about the reducible representation are 
that the infinitesimal generators corresponding to the 
energy and components of the linear momentum and 
those corresponding to the components of the angular 
momentum are Hermitian and integrable, while the 
infinitesimal generators corresponding to space-time 
transformations are integrable but not necessarily 
Hermitian. Of course, reducible unitary representa
tions are included among these. 

In later papers we shall use the technique given here
in to obtain the Clebsch-Gordan coefficients of the 
direct products of the representations. We shall also 
use this technique to expand relativistic wavefunctions 
into modes which transform like the standard helicity 
representations for all masses, including imaginary 
masses. Indeed, the author has already given such an 
expansion when mass-zero modes only are assumed to 
be contained in the expansion of the wavefunction.6 

In the present paper we show how the Foldy
Shirokov realizations for real nonzero mass are 
related to the standard helicity realization of the 
present paper. 

6 H. E. Moses, J. Math. Phys. 9, 16 (1968). 

2039 
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For the sake of brevity we do not prove the re
duction algorithm in the present paper. However, the 
proof is close to that used in Ref. 1 and we believe that 
the reader can reconstruct the proof needed in the 
present paper from that reference. 

2. STANDARD HELICITY REALIZATIONS 
FOR ANY MASS 

A. Commutation Rules for the Infinitesimal 
Generators: The Casimir Operator 

Associated with Mass 

The infinitesimal generators of the Poincare group 
are the energy operator H = po = - Po, the operators 
corresponding to the components of the linear 
momentum Pi = pi (i = 1, 2, 3), the operators corre
sponding to the components of the angular momentum 
J i , and the space-time infinitesimal generators '(f;. 
These operators satisfy the commutation rules: 

[H, Pi] = 0, 

[H, Ji ] = 0, 

[Pi' Pj] = 0, 

[J;. J j ] = i 2. EijkJk , 
k 

[Ji , (f j] = i I Eijk(fk' 
k 

[(fi' H] = iPi , 

[(fi' Pj] = i~ijH. 

(2.1) 

In (2.1), Eijk is the usual anti symmetric three-index 
symbol. As is well known, the Casimir operator C 
defined by 

(2.2) 

commutes with all of the infinitesimal generators. 
Our realizations are confined to operators C which are 
real scalars e. Later, when we consider reducible 
representations in general, C will be a Hermitian 
operator with eigenvalues e. The realizations which 
we give in the present section will then be in a sub
space corresponding to the eigenvalue e. 

We write 
for e ~ 0, 

= -K2, for e < 0. (2.3) 

We take both m and K to be nonnegative in (2.3). 
When e ~ 0, the realizations correspond to the 
realizations for which the mass is m. When e < 0, the 
realizations correspond to the imaginary mass iK. 

B. Commutation Rules for the Infinitesimal 
Generators of the Little Groups 

It is now necessary to introduce the infinitesimal 
generators of three groups which are associated with 
the three cases that the mass be nonzero and real, 
that the mass be imaginary, and that the mass be 
zero, i.e., that e > 0, e < 0, and e = 0, respectively. 
These three groups correspond to the little groups 
used by Wigner6 in his original work in obtaining and 
classifying the irreducible unitary ray representations 
of the Poincare group. For each of these three groups, 
there are three infinitesimal generators which we 
denote by T l , Ts , and M, respectively. They satisfy 
the commutation rules 

[Tl' M] = -iT2' 

[T2' M] = iTl' 

[Tl' T2] = iA(e)M, 

where A(e) is the following function of e: 

A(O) = 0, 

A(e) = ejlc/ for e y6 0. 

(2.4) 

(2.4') 

It is seen that, for nonzero real-mass realizations, 
the generators of the little group satisfy the commuta
tion rules of the generators of the rotation group. 
That is, letting S1 = T l , S2 = Ts , S3 = M, the 
operators Si satisfy [S1' S2] = iS3 (cyc). For zero
mass representations, the generators satisfy the com
mutation rules for the Euclidean group in the plane, 
while for imaginary-mass representations the gener
ators satisfy the commutation rules for the rotation 
group in pseudo-Euclidean space. The first two groups 
are, of course, well known. The third group has been 
extensively studied by Bargmann.7 In Sec. 20 we 
give the irreducible Hermitian representations of the 
generators of the three groups and also give the 
corresponding irreducible unitary ray representations 
of the groups, obtained from the integration of the 
infinitesimal generators in a suitable parameter space. 

Realizations of the operators T; and M will be de
scribed in terms of a real variable A. The variable A 
may be discrete or continuous or both, depending on 
the particular realization which is used. The range of 
A also depends on the realization. In fact, A may 
consist of a set of real variables. For a given realiza
tion, we introduce for the operators T; and M, re
spectively, the kernels of which we denote by T;(A I A') 
and M(A I A'). For values of A which are discrete, 
these kernels are matrices. For continuous ranges of 
the variable they may be symbolic functions, i.e., 

• E. P. Wigner, Ann. Math. 40, 149 (1939). 
7 V. Bargmann, Ann. Math. 48, 568 (1947). 
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distributions. These kernels or matrices are required 
to satisfy the commutation rules 

! [TI(AI A")M(A" I A') - M(AI A")TI(A" I A')] 
l" = _ iT

2
(AI At), 

! [TlAI A")M(A" I A') - M(AI A")T2(A" I A')] (2.4") 
)." = i TIC A I A'), 

! [TI(AI A")T2(A" I A') - T2(AI A")TICA" I A')] 
;'N = iA(e)M(AI A'). 

In (2.4") we have assumed that A is a discrete variable. 
In the regions for which J." is continuous, the sum
mation is to be replaced by integration. 

C. Standard Helicity Representations 

Each representation is characterized by a value of e 
and a realization of the infinitesimal generators of the 
little group Ti(AI X), M(AI X) which satisfy (2.4/1). 
We introduce a space of suitably differentiable complex 
functions {fee, E, p, A)}, where E is the sign of the 
energy and can take on either of the values + 1 or 
-1, p denotes collectively three real variables PI, 

P2, Fa, each of which can take on all real values, the 
variable A has the same range and character as the 
variable A associated with the realization of the little 
group. We also require that, for the case e < 0, 
fee, E, p, J.) vanishes when p = Ipl < K. 

In writing down the standard helicity realizations, 
it is convenient for brevity to suppress the appearance 
of the variable J.. Hence we write fee, E, p) for 
fCc, E, p, A). Furthermore, TJ(e, E, p) and Mf(e, E, p) 
are used to denote 

! ~(AI J.')f(e, E, p, A') and ! M(AI J.')f(e, E, p, A'), 
;" ,,' 
respectively. 

Let us also use the following definitions: 

P= Ipl, 
wee, p) = [p2 + e]!, 

Vi = a/api' 
p. T = PITl + P2T2 , 

B(e) = [Iell! for e:;l= 0, 
B(O) = 1. 

(2.5) 

We can now write the standard helicity realizations in 
terms of the infinitesimal generators acting on the 
functionsf(e, E, p): 

PJ(e, E, p) = pJ(e, E, p), 

Hf(e, E, p) = Ew(e, p)f(e, E, p), 

Jd(e, E, p) = -i(p x V)d(e, E, p) 

+ ~ Mf(e, E, p), 
P + Pa 

Jd(e, E, p) = -i(p x V)d(e, E, p) 

+ ---"l!.L Mf(e, E, p), 
P + Pa 

Jaf(e, E, p) = -i(p x V)sI(e, E, p) + Mf(e, E, p), 

'Jd(e, E, p) = E{iW(e, P)VI + pa) wee, p)M 
pep + Pa 

+ B(~)[Pl(P' T) - PTI]}f(e, E, p), 
P P + Pa 

'Jaf(e, E, p) = E{iw(e, P)V2 - PI wee, p)M 
pCP + Pa) 

+ B(~)[P2(P' T) - PT2]}f(C, E, p), 
P p + Pa 

'JsI(e, E, p) = E{ iw(e, P)Va + B;~) (p. T)}f(e, E, p). 

(2.6) 

That the generators given by (2.6) satisfy the com
mutation rules (2.1) can be verified by direct com
putation using the commutation rules (2.4") for the 
generators of the little group. 

The mass-zero case has already been given in Ref. 
4. It should be mentioned that in Ref. 8 realizations 
are given such that Pi' H, and J i have the same form 
as (2.6). However, the expressions for 'Ji of Ref. 8 
differ from ours, which we believe to be simpler. 
Our realizations for the nonzero-mass cases differ 
considerably in appearance from the helicity realiza
tions of Refs. 9 and 10. 

The operator M is essentially the helicity operator. 
Let us define WO by 

WO = P • J = ! PJi' (2.7) 
i 

Then from (2.6) it is clear that 

wo/(e, E, p) = pMf(e, E, p). (2.8) 

Equation (2.8) is the principal reason for calling the 
representations (2.6) helicity representations. 

Our space of functions {f(e, E, p)} is not yet a 
Hilbert space, for we have not introduced an inner 
product. We pick out one of several possible inner 
products as being particularly useful in describing 
irreducible Hermitian representations of the infinitesi
mal generators. Then the "standard" inner product of 
two functions f(l)(e, E, p) andf(e, E, p) is defined to be 

(f(l),!) = ! J-.!!L ll)*(e, E, p, A)f(e, E, p, A). 
;. wee, p) 

(2.9) 
8 D. Korff, J. Math. Phys. S, 869 (1964). 
9 A. Chakrabarti, J. Math. Phys. 7, 949 (1966). 

10 V. I. Ritus, Zh. Eksp. Teor. Fiz. 40, 352 (1961) [SOy. Phys.
JETP 13, 240 (1961)]. 
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The inner product (2.9) assures us that the part of the 
infinitesimal generators which are independent of Ti 
and M are Hermitian. We shall later see that, from a 
global point of view, we require a summation over 
€ also for the case c < O. 

We call the matrices of the realizations of the 
infinitesimal generators of the little groups Hermitian 
if 

M(AI A') = M*(A' I A), 

T;(AI A') = T:(A' I A). 

The following theorem is then easy to prove: 

(2.10) 

Theorem: A necessary and sufficient condition that 
the realizations (2.6) with the inner product (2.9) 
be irreducible and Hermitian is that the kernels 
M(AI A'), Ti(AI A') constitute an irreducible Hermitian 
representation of operators which satisfy (2.4). 

The irreducible representations of the Poincare 
group obtained from the above theorem are labeled 
by the Casimir operator c, the sign of energy €, and 
the labels necessary to distinguish the irreducible 
representations of Ti and M, the infinitesimal gener
ators of the little group. 

When we integrate the irreducible infinitesimal 
generators, as we shall do shortly, we shall obtain the 
irreducible unitary ray representations of the Poincare 
group in the "standard helicity realization." While 
the labels that are used to distinguish the irreducible 
representations of the infinitesimal generators can 
also be used for the integrated representations in the 
case of zero mass and real nonzero mass, the quantum 
number € cannot be used as a label in the imaginary
mass case. That is, for the imaginary-mass case, € is an 
invariant under infinitesimal transformations, but not 
under finite transformations. 

D. Irreducible Representations of the Infinitesimal 
Generators of the Little Group: Integration of the 

Infinitesimal Generators of the Little Group 

For use in describing the irreducible Hermitian 
representations (2.6) we give the irreducible Hermitian 
representations of the generators of the little groups 
for all c. We also give certain integrated forms of the 
generators which are used in the integrated (i.e., 
global) form of the helicity representation of the 
Poincare group. In the realizations which we give, 
the kernel M(AI A') is diagonal: 

M(A I A') = At5,u'. (2.11) 

The requirement that the irreducible Hermitian 
infinitesimal generators (2.6) be integrable leads to 
the requirement that A have either only integer values 

or only half-odd integer values (see the discussion in 
Sec. 4 of Ref. 1). 

The integrated form of the generators which we 
require are eirJ.M and e i9

'
T

, where a . T = ()l Tl + ()2T2' 
The quantities IX, ()l' ()2 are any real numbers. It is 
convenient to define p and () by 

() = [()~ + ()~]t, 
()l = () cos p, 

()2 = () sin p. 

(2.12) 

The matrix elements of exp iIXM are denoted by 
exp (iIXM)(A I A') and the matrix elements of 

exp (i9. T) 

by exp (ia. T)(A I A'). From (2.11) we have for all 
representations 

eidI(A I A') = eiaAt5,u'. (2.13) 
We now give the irreducible representations of the 
infinitesimal generators explicitly. 

1. Case c > 0 

The irreducible representations correspond to 
particles of real nonzero mass m = ct. The generators 
T1 , T2 , M are just the infinitesimal generators of the 
rotation group whose representations are discussed in 
many places (see, e.g., Ref. 11). Each irreducible 
representation is characterized by a nonnegative 
integer or half-odd integer which corresponds to the 
spin of the particle. The Casimir operator of the little 
group is T; + T; + M2 = s(s + 1)/, where / is the 
identity operator. The variable A takes on the values 
-s, -s + 1, ... ,s - 1, s. Let us define T+ and T
in the usual way: 

T+ = Tl + iT2' 

T- = Tl - iT2 • 

Denoting the corresponding matrices 
and l(A I A') we have 

(2.14) 

by T+(A I A') 

T+(A I A') = [(s - A')(s + A' + l)]t t5A,;"+l' 

T-(A I A') = [(s + A')(S - A' + l)]t t5;'X_l' 

Now let p~a.fi)(x) be the Jacobi polynomial 
notation of Ref. 12. Let us define 

S(s, A, A', x) = p~~;:A',;'H')(x), 

(2.14') 
in the 

y:,A'«(), p) t 

= (_ 1)"-A'(1-),,+1[(2s + 1)/7T]t[ (s - A)! (s + A)! ] 
2 (s _ A')! (s + A')! 

X ei(A-;")'P[sin ()]A-A'[1 + cos ()]).'S(s, A, A', cos (). 

(2.15) 
11 M. E. Rose, Elementary Theory of Angular Momentum (John 

Wiley & Sons, Inc., New York, 1957). 
12 G. Szego, "Orthogonal Polynomials" in American Mathematical 

Society Colloquium Publication, Vol. 23 (American Mathematical 
Society, Providence, Rhode Island, 1959), revised ed. 
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The functions y;.;" (0, cp) have been called by the 
author "generalized surface harmonics" and their 
properties are discussed in Ref. 13. Then 

ei6 ' T (A I A') = [47T/(2s + l)]!(i);"-;'Y:';"*(O, cp). (2.16) 

2. Case c = 0 

For c = 0 the infinitesimal generators T 1 , T2 , M 
satisfy the commutation rules for the infinitesimal 
generators for the Euclidean group in the plane. This 
group is discussed in detail in Ref. 14. The Casimir 
operator which characterizes the irreducible repre
sentations is T; + Ti = rl, where r is any nonnegative 
real number. The irreducible representations of the 
little group fall into two types. 

(a) r = 0: In this case M is a scalar, which, in 
accordance with our earlier discussion, must be either 
an integer or half-odd integer. The matrices corre
sponding to T 1 , T2 are identically zero. This rep
resentation of the little group yields zero-mass 
representations of the Poincare group which are 
identified with particles of finite spin which is equal 
to the absolute value of M. 

(b) r > 0: For such representations, the variable A 
takes on either all integer values or all half-odd 
integer values. Defining T± as in (2.14) we have 

T+(A I A') = r6;.,;"+1' 

T-(A I A') = r6;.,;"_1' (2.17) 

ei6-T(A I A') = (i);'-;" e-iU.-;")q> J ),_.Aer). 

In (2.17),Jn(x) is the notation for the Bessel function 
of nth order as customarily used. 

3. Case c < 0 

The little group is that for rotations in pseudo
Euclidean space. Its representations have been com
pletely investigated in Ref. 7. The notation of Ref. 7 
is modified somewhat to conform to the notation of 
the present paper. The Casimir operator is T~ + 
Ti - M2 = q1. The trivial representation Ti = M = 0 
is one of the acceptable representations. The nontrivial 
irreducible representations fall into two classes: (a) 
the continuous class, and (b) the discrete class. Each 
class is further subdivided in two cases. 

(a) The Continuous Class: (1) Integral case. In this 
case q > 0, A takes on all positive and negative integer 
values including zero. This case is labeled cg by 

13 H. E. Moses, Ann. Phys. (N.Y.) 41,166 (1967). 
14 E. P. Wigner, The Application of Group Theory to the Special 

Functions of Mathematical PhysiCS, Lecture Notes by J. D. Talman, 
Spnng Term of 1955, Princeton University. 

Bargmann: 

T+(A I A') = [q + A'(A' + l)]t6;',;"+l' 

T-(A I A') = [q + A' (A' - 1)]t6;.,;'·_1' 

ei6'T(A I A') 
1 ;'-;" 

= II [q + (A' + p)(A' + P - l)]t(t);' 
(A - A')! p=l 

X [ie-;q> sinh e]"-"'[l + cosh el"' 

X F(t + A + G, t + A - G, 1 + A - A', -sinh2 te), 

for A ~ A', 
1 ;"-). 

(A' _ A)! D [q + (). + p)(A + p - l)]!m).' 

X [ieiq> sinh ej"'-).[l + cosh 01" 
X F(t + A' + G, t + A' - G, 1 + A' - A, -sinh2 te), 

for A ~ A'. (2.18) 

In Eq. (2.18), G = [q - t]!. Furthermore, F(a, b, 
c, x) is the hypergeometric function. Because of the 
symmetry of the hypergeometric function in a and 
b, one can take either sign of the square root in the 
definition of G. 

(2) Half-odd integral case. In this case q > Land 
A takes on all positive and negative half-odd integer 
values. Equations (2.18) continue to hold. This case 
is labeled CJ by Bargmann. 

(b) Discrete Class: (I) Maximal-A case. Let k be 
any nonnegative integer or half-odd integer. Then 
A = -k, -(k + I), -(k + 2), .. '. For this case 
q = k(1 - k). This case is labeled DIi: 

T+(A I A') = [(A' + k)(A' - k + 1)]!6l ').'+l' 

T-(A I A') = [(A' - k)(A' + k - l)]!b).,.l.'_l' 

ei6•
T (A I A') 

[
(k - A' - I)! (-k - A)!J![' -' . eJ.l.-;" = Ie 'q> smh -
(k - A-I)! ( - k - A')! 2 

X [COSh ~J A+;" S( - k, A, A', cosh e), for A ~ 1,', 

= I~M~-[
(k - A - I)! (-k - A')!J1[.. . eJ;"-;' 
(k-A'-l)!(-k-A)! 2 

X [COSh ~r+;.'S( -k, A', A, cosh e), for A ~ A'. 

(2.19) 

In (2.19) the function S is given in terms of the Jacobi 
polynomial by the first of Eqs. (2.15). 

(2) Minimal-A case: Let k be any nonnegative 
integer or half-odd integer. Then A = k, k + I, 
k + 2, .... Also q = k(1 - k). This case is labeled 
Dr. The matrices T±(A I A') have the same form as in 
(2.19), though it should be remembered that the 
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range of A differs from that of (2.19). Also, 

ei6
'
T (A I A') 

= (_I»).'-k[(k + A -1)1 (A' - k)!]![ie-i<PsinhQ]A-,t, 
(k + A' - 1)1 (A - k)! 2 

[ 
O]-().+).'l 

X cosh "2 S( -k, -A', A, -cosh 0), 

for A ~ A', 

( l )A-k[(k + A' - 1)! (A - k)!]![. i<p • h O].l.'-;' = - /€ sm -
(k + A - I)! (A' - k)! 2 

X [COSh ~rIH;"l S( - k, - A, A', -cosh 0), 

for A ~ A'. (2.20) 

E. Global Representations of the Poincare Group 
in the Standard Helicity Realization 

We are now in a position to integrate the infinitesi
mal generators (2.6) when they correspond to an 
irreducible representation of the Poincare group. 
First, however, it will be useful to parametrize the 
Poincare group. The transformations of the Poincare 
group are obtained by considering the transformations 
of a four-vector Xil with XO = -Xo, Xi = Xi (i = 
1, 2, 3). It is convenient to consider the general 
transformation as being the product of three partic
ular transformations which we now give. 

The transformation 

(2.21) 

where all are real numbers, is designated by T(all). 

This transformation is called a translation given by 
all, 

The second transformation corresponds to a pure 
rotation which is described by a vector 6 where the 
axis of rotation is given by the direction of 6 and the 
angle of rotation is given by 0 = 161. Under this 
transformation, 

1 - cos () sin 0 
x' = x cos () + ()2 (6 • x)6 - -()- (6 x x), 

(2.22) 

where x is the vector constructed from Xi (i = 1, 2, 3). 
This transformation is denoted by R(6) and will be 
called a rotation given by the vector 6. (The vector 
6 as used here is not to be confused with 6 in 6· T.) 

The third transformation is a pure Lorentz trans
formation and is characterized by the vector ~. The 
direction of ~ is opposite to the direction of the 
moving frame as observed in the original frame and 
(3 = I~I is related to the relative velocity of the moving 

and fixed frames of reference by 

cosh (3 = [1 - v2]-!. (2.23) 

Under this transformation 

x(' = XO cosh (3 + ~ . x(sinh (3")/(3, 

I f.l(f.l) cosh (3 - 1 f.l sinh (3 
x = x + "'" "'" . x fj2 + "",xo -p- . (2.24) 

This transformation is denoted by L(~) and will be 
called the pure Lorentz transformation associated 
with ~. The transformations T(all) , R(6), and L(~) 
are discussed in somewhat more detail in Ref. 15. 

In the global representation of the Poincare group, 
the operators which correspond to the group elements 
T(all) , R(6), and L(~) are exp [iaIlPIl ], exp [i6 • J], 
exp [i~ • it], respectively. In terms of the space of 
functions {f(c, e, p)}, the first two of these operators 
are given as follows: 

exp [ia ll P /ll!( c, e, p) 

= exp {ira • p - ew(c, p)a°J}!(c, e, p), 

exp [i6 • J]!(c, E, p) = exp [2i<l>(6, p)M]!(c, E, p'), 

(2.25) 
where 

p' = p cos 0 + [(1 - cos 0)/02](6 • p)6 

+ [(sin O)/()](6 x p), (2.25') 
and <1>(6, p) is given by 

tan <1>(6, p) = [6. p + 03P] tan (0/2) . (2.25") 
()(p + Pa) + (6 X P)3 tan «()/2) 

The form for exp [i6 • J] is essentially the same as for 
the massless case of finite spin given earlier in Ref. 
15. 

To find exp [i~ • it] is rather more difficult. We 
first give exp [ina]' 

We need the following well-known algorithm: Let 
A and B be two operators. We have 

-AB A ~ {B, A}(n) 
e e =£., , 

1'1=0 n! 
(2.26) 

where {B, A}(n) is defined by induction by means of 
commutators 

{B, A}ln) = [{B, A}(n-ll, A], {B, A}(O) = B. (2.26') 

Then let us define the vector ; by 

~ = 1;1, 
Pa/(3 = cos ~, 

(31/(3 = [(sin ~)/~]~2' 

(32/(3 = -[(sin ~)/~J~l' 

~3 = O. 

16 H. E. Moses, Ann. Phys. (N.Y.) 41, 158 (1967). 

(2.27) 
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We have from (2.26) and the commutation rules 
(2.1) that 

-i~·J"l- il;·J _ t:I. "l-/{3 e oae - t". 0 , (2.28) 

so that 
(2.29) 

Unlike the results (2.25), it is convenient to treat 
nonzero real mass, zero mass, and imaginary mass 
separately: 

exp [i{36a]f(O, e, p) 

= exp [iea(p,Pa, (3, e)p. T]f(O, e, p'), (2.30) 

where 
p~ = Pi , p~ = P2, 

p~ = Pa cosh {3 - ep sinh {3, (2.30') 
and 

a(p, Pa, (3, e) = tanh (3/(P2 - epPa tanh (3). (2.30") 

In Eq. (2.30) and later, p. T = PITI + P2T2' For 
e > 0, 

exp [i{36a]f(e, e, p) 

= exp [ie(p2 - pi)-!a(p, Pa, (3, e)p • T]f(e, e, p'), 

(2.31) 
where 

p~ = PI' P; = P2, 
p~ = Pa cosh (3 - Hv(e, p) sinh (3, (2.31') 

and 

( (3) [e(p2 - pi)]! tanh (3 (2.31") 
tan a p, Pa , ,e = 

p2 - ePaw(e, p) tanh (3 
For e < 0, 

exp [i{36a]f(e, e, p) 

= exp [ti(p2 - p;)-!a(p, Pa, (3, e)p • T]f(e, e', p'), 

(2.32) 

where p' is given by (2.31') and e' is given as a function 
of p and (3 through 

e'w(e,p') = ew(e,p) cosh (3 - Pa sinh {3, (2.32') 

where P' = Ip'l. It is easily seen from (2.31') that e' 
takes on the value + 1 or -1. Finally, 

a(p, Pa, (3, e) = cp(p, Pa) - cp(p', p~), (2.32") 

where 

cp(p, Pa) = log l(p2 - pi)!w(e, p) + (-c)! Pal 
l(p2 - p~)!w(e, p) - (-c)! Pal 

(2.32"') 

and where p~ is given by (2.31') and P' = [pi + p~ + 
(p~)2]!. 

We can now find exp [i~ • 6]f(e, e, p) through the 
use of (2.29) and the second of Eqs. (2.25). Though 

the process of obtaining the result is straightforward 
and leads to explicit expressions, they are so cumber
some in form that we do not give the results in this 
paper. 

3. ALGORITHM FOR REDUCING REDUCmLE 
REPRESENTATIONS OF THE POINCARE 

GROUP 

We now give the algorithm for reducing reducible 
representations of the Poincare group to standard 
helicity representations. A reducible representation is 
given in terms of a Hilbert space of functions of a set 
of variables which we denote collectively by ~. The 
variables included in ~ may be discrete and/or con
tinuous. An element of the Hilbert space is denoted 
by ga). Any operator acting on a function in this 
space has a superscript ~ to indicate that it is acting on 
the ~ variable in this representation. Thus, for ex
ample, JigW gives the function obtained by applying 
the operator J a on the function g( 0 in the reducible 
representation. We call this representation the ~ 
representation. 

Elements of the Hilbert space upon which the 
operators act in the standard helicity representations 
are denoted, as in Sec. 2, by fee, e, p, A). Operators 
acting in the standard helicity representation have the 
superscript p to indicate this fact. Thus J:f(e, e, p, A) 
is the element of the Hilbert space obtained by oper
ating with Ja upon the function fee, e, p, A) in the 
standard helicity representation. The way that the 
infinitesimal generators of the Poincare group act in 
the standard helicity representation is given by Eqs. 
(2.6) where we would now adjoin the superscript p 
and indicate the variable A explicitly. It is our objective 
to express every function g(~) as a linear combination 
of functionsf(e, e, p, A) such that A'g(O is the same 
linear combination of functions AP fee, e, p, A), where 
A is any of the infinitesimal generators of the Poincare 
group. 

We now state our assumptions. 

A. Assumptions 

(1) The infinitesimal generators are given explicitly 
in the ~ representation. 

(2) In this representation, the generators H, Pi 
(i = 1, 2, 3) are Hermitian and integrable. 

(3) The generators J i are Hermitian and integrable, 
i.e., [exp i(8 • J)]' exists and is unitary for every real 
vector 8. 

(4) The generator 6a is integrable, i.e., the operator 
[exp (i(36a)1' exists for all (3. 

It is to be noted that we do not require 63 to be 
Hermitian. Indeed for some applications, such as the 
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reduction of relativistic wavefunctions for zero mass, 
the requirement that (fa be Hermitian cannot be 
satisfied, though the integrability condition is fulfilled 
(see Ref. 5). 

Step 1: Determine the spectrum of the Casimir 
operator C given by 

(3.1) 

We see that the spectrum of C can be found, since the 
Hermitian operator is given in the , representation. 
We are thus led to a conventional eigenvalue problem. 
As before, the eigenvalues of C are denoted by c. 
The spectrum of C may be discrete and/or continuous. 

Step 2a: For each value of c > ° and for E = 1 and 
-1, find all linearly independent functions g( ~; e, E , A) 
which satisfy 

P;g(L c, E, A) = 0, i = 1,2,3, 

H'g('; e, E, A) = Emga; e, E, A), (3.2a) 
where 

m = (e)!. 

The variable A is used to label the linearly independent 
solutions of (3.2a) and similar equations to follow. 
The variable A may actually represent a set of variables. 

Step 2b: For e = ° and both values of E, find the 
linearly independent solutions of 

Pig(L 0, E, A) = ° (i = 1,2), 

piga; 0, E, A) = ga; 0, E, A), 

H'g(~; 0, E, A) = Eg(~; 0, E, A). 

(3.2b) 

Step 2c: For each value of e < 0, find the linearly 
independent solutions of 

piga; e, A) = ° (i = 1,2), 

P~g(L e, A) = Kg(L e, A) (K = leI!), (3.2c) 

H'ga; e, A) = 0. 

It can be shown that Eqs. (3.2) have nontrivial 
solutions for some values of e and E. It is also clear 
that the solutions are not unique, since new solutions 
can be made by taking linear combinations in the 
variable A. We discuss later the effect of this lack of 
uniqueness, which is equivalent to the lack of unique
ness in the choice of the variable A. 

Step 3a: For each value of e > ° and both values of 
E, find the kernels M(A I A'), RI(A I X), and R 2(A I A') 
from 

J~gG; e, €, A) = I M(A' I A)g(L e, €, A'), 
).' 

Jig( ~; e, €, A) = I R;(A' I A)gG; e, E, A') (i = 1,2). 
).' 

(3.3a) 

Step 3b: For e = ° and for both values of E, these 
kernels are to be obtained from 

J~g('; 0, E, A) = I M(A' I A)g('; 0, E, A'), 
).' 

[-E(f2 + JI]'gG; 0, E, A) = I R 2(A' I A)g('; 0, E, A'). 
).' 

(3.3b) 

Step 3e: For each value of e < 0, these kernels are 
to be obtained from 

J~g(L e, A) = I M(A' I A)g('; e, A'), 
).' 

(figG; e, A) = I Rp' I A)g(L e, A'), 
).' 

(i = 1,2). 

(3.3c) 

For continuous values of A the sums are to be re
placed by integrals. Furthermore, for such continuous 
values the kernels may be symbolic functions. The 
kernels in general depend on e and E. The existence 
of these kernels and their properties as a representa
tion of the infinitesimal generators of the little groups 
is given by the following theorem: 

Theorem 1: The kernels of Eqs. (3.3) always exist. 
The kernel M(A I A') is a representation of an operator 
which is equivalent to a Hermitian operator whose 
eigenvalues are integers and/or half-odd integers. 
Furthermore, the kernels M(}. I A'), Ri(A I A') satisfy 
the commutation rules (2.4") in which the kernels 
TJA I A') are replaced by Ri(A I A'). 

We now continue the procedure for the reduction. 
Step 4: Let us define <~ I e, €, p, A) as the following 

function of its arguments: 

<~ I e, E, p, A) = ([exp i(w· J)][exp iV(fa]}'gG; e, E, A), 

for e ~ 0, 

= ([exp i(w· J)][exp iV(fa]}'ga; e, A), 

for e < 0, (3.4) 

where the real vector wand the real number v are 
related in a one-to-one way to the vector p whose 
components take on all real values as follows. 

Fore> 0, 

p = Ipl = m sinh 1'1'1 = Em sinh v, 

E = sgn v. 
For e = 0, 

For e < 0, 
p = eEV

• 

p = K cosh v, 

E = sgn Y. 

(3.4') 

(3.4") 

(3.4"') 
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For all values of c, 

Wa = 0, 
Pt = -p(w2/w) sin w, 

b = P(Wl/W) sin w, 

Pa = P cos w, 

w=lwl· 

(3,4'111) 

We now present the principal result of the present 
paper as a theorem. 

Theorem 2: Every function g(') upon which the 
infinitesimal generators act in the , representation 
can be expanded in the following form: 

gm =JdC ~ ~J~ <, I c, E, p, A)f(c, E, p, A), 
< A w(c,p) 

(3.5) 
such that 

A{gm =JdC I ~J~ <, I c, E, p, A)APf(c, E, p, A), 
< A w(c, p) 

(3.5') 

for all A{ and AP, where, in (3.5'), A{ and AP are the 
infinitesimal generators in the' and standard helicity 
representations, respectively. The kernel M(A I 1.') 
which appears in the standard helicity representations 
(2.6) is the kernel M(A I 1.') which appears in Eqs. 
(3.3). The kernels Ti(A I A') of (2.6) are obtained from 
the kernels Ri(A I A') of Eqs. (3.3) in the following 
way. 

For c > 0, 

For C = 0, 

For C < 0, 

Tl(A I A') = -R2(A I 1.'), 

Tz(A I 1.') = R I (A I 1.'). (3.5") 

Ti(A I 1.') = Ri(A I 1.'). 

Ti(A I A') = - ERi(A I A'). 

(3.5"/) 

(3.5"") 

In the expressions (3.5) and (3.5'), the integral over 
C is to be replaced by summation over the discrete 
values of this variable. Also, the summation over A is 
to be replaced by integrations for continuous values 
of A. 

As we have said, the way of choosing A is not unique. 
Let us assume that we had picked another variable, 
which we shall call fJ, to label the linearly independent 
solutions of (3.2). Let us define <, I c, E, p, fJ) and 
f(c, E, p, fJ) in a manner similar to that used for the 
definition of these quantities in terms of A. The 
variable fJ may have quite a different character from 
the label A. For example, if A with an infinite number of 

values is a discrete variable, fJ could be a continuous 
variable. 

The following theorem is easily proved using the 
notion oflinear independence of the solutions of (3.2). 

Theorem 3: There exist two kernels C(A I fJ) 
D(fJ I A) such that 

~ C(A I fJ)D(fJ I A') = OA,A" 
P 

I D(fJ I A)C(A I fJ') = Op,p', 
A 

<, I c, E, p, fJ) = ~ D(A I fJ)<' I c, E, p, 1./, 
A 

<, I c, E, p, A) = ~ C(fJ I 1.)<, I c, E, p, fJ), 
p 

f(c, E, p, fJ) = I C(fJ I A)f(c, E, p, A), 
A 

f(c, E, p, A) = I D(A I fJ)f(c, E, p, fJ)· 
p 

and 

(3.6) 

In (3.6), summations and Kronecker-delta func
tions are to be replaced by integrations and Dirac
delta functions for continuous ranges of the variables 
A and fJ. 

It is now convenient to indicate the inner product 
in the , representation explicitly. The inner product 
of two functions g(I) (D and g( D will be written 

J g(l)*mgm dmm, 

where the asterisk means, as usual, the complex 
conjugate and me') is the measure function associated 
with the representation. It is useful to regard any 
function g( ') as the inner product of an abstract 
ket 1<1» and a bra <". Thus, 

gm = <, I <1», 

g(I)m = <, 1<1>(1», 

and the resolution of the identity is 

J") dmm <" = I, 

(3.7) 

(3.8) 

where I is the identity operator. Thus the inner 
product of two functions of the Hilbert space in the 
, representation can be written 

J g(l)*WgW dmW = J (<I> (I) I ') dmW<?; I <1» 

= (<1>(1) I <1». (3.9) 

We regard the transformation functions <, I c, E, p, A) 
as being the product of the bra Wand an improper 
ket Ie, E, p, A). We can show that the set of kets 
Ie, E, p, A) spans the Hilbert space, each ket being a 
simultaneous eigenket of C, sgn H, and Pi' 
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Let us now add another assumption to our previous 
one, namely that the operators 6i are Hermitian so 
that the entire set of infinitesimal generators is now 
Hermitian and integrable. Then we have the following 
theorem. 

Theorem 4: Under the above assumptions, the 
variable J, can always be so chosen that the kets 
Ie, E, p, A) satisfy the completeness and orthogonality 
relations 

(e, E, p, A le', E', p', A') 
= wee, p)t5(e - e')t5(p - p')t5 •.• ,t5)..)." 

~ I Ie, E, p, A)-- (e, E, p, AI = I. f dedp 

f J. wee, p) 
(3.10) 

Furthermore, expanding ga) as in (3.5) and likewise 
g(l)a) in terms off(l)(e, E, p, A), we have 

"J (1)* 1 de dp "" "" f (e, E, p, A)f(e, E, p, A)--
E J. ~~~ 

= f g(l)*G)gW dm(n = (<1>(1) 1<1»· (3.11) 

Finally, with this choice of A, the kernels M(A I A') and 
Ti(A I A') are Hermitian, i.e., 

M(A I J,') = M*(A' I ii), ~(A I A') = T:(ii' I A). 

(3.12) 

Because of (3.10) and (3.11) we have 

fee, E, p, A) = (e, E,p, A I <1». (3.13) 

The way that the variable A is to be chosen to make 
(3.10)-(3.13) valid is given in Ref. 1. The choice is 
not unique. In practice, we have found it possible to 
guess a suitable variable by using the requirement 
(3.12). However, such guessing requires some detailed 
knowledge of the properties of reducible representa
tions of the little group. We shall go into this matter 
further when we discuss applications in later papers. 

We can now use Theorem 4 for the last step in 
reducing completely reducible sets of infinitesimal 
generators of the Poincare group which are Hermitian 
and integrable. 

Step 5: Having introduced the variables A for which 
Eqs. (3.10)-(3.13) hold, reduce the Hermitian kernels 
of (3.12). In this reduction, a new basis is introduced 
in the A space such that, in this basis, the infinitesimal 
generators of the little groups M, Ti are completely 
reduced. One then uses this basis instead of the 
original A basis. This new basis corresponds to the 
choice of a new set of linearly independent kets in 

accordance with Theorem 3. We refrain from details, 
since they are now obvious. 

APPENDIX: RELATION BETWEEN THE 
FOLDY-SHIROKOV REALIZATIONS AND 

THE STANDARD HELICITY REALIZATIONS 
FOR PARTICLES OF REAL MASS 

The Hermitian Foldy-Shirokov realizations of the 
infinitesimal generators of the Poincare group for a 
single real mass m and sign of energy E are characterized 
by a set of Hermitian spin matrices or kernels 
{SiCA I A')}, where A is a real variable which can take 
on any values compatible with the set of matrices 
being an integrable representation of the infinitesimal 
generators of the rotation group. For the moment, 
we do not require that the representation be irreduc
ible. Thus, assuming that A is a discrete variable, the 
matrices must satisfy the commutation relations 

I {SICA I A")S2(A" I A') - S2(A I AfI )Sl(A" I A')} 
).' 

cyclically. 
= iSa(ii I A') (A1) 

The functions upon which the infinitesimal gener
ators act are denoted by g(p, A), where p extends over 
the entire three-dimensional space and ii has the same 
range and character as in the kernels S;. 

The inner product of two functions gW and g are 
given by 

!fg(ll*(p, ii)g(p, A) ---.!!L, c = m2
• (A2) 

,t wee, p) 

In order to write the expressions for the Foldy
Shirokov realizations compactly, it is convenient to 
suppress the variable A and use Sig(P) to mean 

~ S;(A I A')g(p, A'). 
).' 

Then the Foldy-Shirokov realization is given by 

P;g(p) = p;g(p), 

Hg(p) = Ew(e, p)g(p), 

J;g(p) = -i(p x V)ig(P) + Sig(P), 
(A3) 

'J;g(p) = E[iw(e, P)Vig(P) + ! EijkPI Skg(P)]' 
l.k wee, p) + m 

In (A3), €iik is the usual antisymmetric three-index 
symbol. 

Let us denote the functions upon which the infini
tesimal generators act in the standard helicity repre
sentation by f(p, A). These are the same as the functions 
previously denoted by f(c, E, p, A) in Sec. 2. On 
suppressing the A variable, the standard helicity 
realization is given by (2.6). The inner product is 
(A2) as in the Foldy-Shirokov realization. The 
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standard helicity realization is unitarily equivalent to 
the Foldy-Shirokov realization, provided the masses 
m are the same, the signs of energy E are the same, 
and provided a unitary transformation in the A 
variables exists that transforms the kernels T1 , T2 , 

M (which we take to be Hermitian) of the helicity 
representation into the kernels Si of the Foldy
Shirokov realization. 

We now give the relationship between the functions 
g(p, A) and f(p, A) and thus h~lVe the unitary trans
formation which relates the two realizations under 
the condition that 

T i (}, I},') = Si(}, I},'), i = 1,2, 

M(A I A') = Ss(A I A'). (A4) 

Of course, if the kernels M, Ti are unitarily equiv
alent to the kernels Si' one can always make a 
transformation in the A variable of the Foldy
Shirokov realization or of the standard helicity realiza
tion so that (A4) is valid. 

Theorem: 

f(p) = [exp -ii7TSa][exp -i(oo • S)]g(p), (A5) 

where 00 is given in terms of p by (3.4""). 
Also, 

g(p) = [exp i(oo • S)][exp ii7TSs]f(p). (A5') 

In (A5) and (A5') we have used the convention that 
if A is a matrix with the element A(A I A'), then Af(p) 
means 2).' A(AI A')f(p, A'). A similar statement holds 
for Ag(P). 

Now let us consider the case in which the kernels 
Si constitute an irreducible representation of the 
rotation group such that S2 = s(s + 1 )/, where / is the 
identity operator in the A space and s is a nonnegative 
integer or half-odd integer. Then the representations 
of the Poincare group that we are dealing with are 

irreducible and correspond to representations for a 
particle of mass m, sign of energy E, and spin s. The 
variable A takes on the 2s + 1 values s, s - 1, ... , 
-s + 1, -so Let us assume that the kernels SiCA I A') 
have the standard form given by M(A I A') and 
Ti(A I A') of (2.11) and (2.14). Let us further define 
the polar angle of p by 

PI = P sin e cos T, 

P2 = P sin e sin T, 
Pa = P cos e. 

(A6) 

It is now no longer convenient to suppress the 
variable A. On using (2.16), and the following two 
relationships discussed in Ref. 13: 

(-l»).'-).y:,).'*(e, rp) = y:',\e, rp), (A7) 

~ YA,A"(e )yA"A"*(e ) _ 2s + 1 15 kg, rp g ,rp - 4 A,).' , 
)."=-8 7T 

(AB) 

(A5) and (A5') become, respectively, 

f(p, A) = [~J![exp - i !!. AJ 
2s + 1 2 

X I y:'·A(e, rp)g(p, A'), (A9) 
A' 

[ 
47T J! g(p, A) = -- 2 y;""*(e, T) 

2s + 1 A' 

X [exp i ~ A'Jf(P, A'). (A9') 

Equations (A9) and (A9') are similar to results in 
Refs. 16 and 9 where transformations are introduced 
from spin variables to helicity variables. However, 
our transformations have the additional restriction 
on them that they induce a transformation between 
two specified realizations of the Poincare group. This 
restriction is reflected in the choice of phases. 

16 M. Jacob and G. C. Wick. Ann. Phys. (N.Y.) 7, 404 (1959). 
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Determination of the Amplitude from the Differential Cross 
Section by Unitarity* 

ROGER G. NEWTON 
Indiana University, Bloomington, Indiana 

(Received 7 July 1968) 

Banach-space fixed-point theorems are used to prove two results: (a) If the differential scattering cross 
section is smooth and small enough, relative to the w<tvelength of the relative motion of the colliding 
particles, there always exists an amplitude function which satisfies elastic unitarity and whose squared 
modulus equals a given differential cross section. (b) Under somewhat stronger conditions this amplitude 
is uniquely determined (except for the sign of its real part) by the generalized optical theorem (unitarity) 
and it can be constructed by iterating the latter. The condition for (a) ensures a priori that the real part of 
the amplitude cannot vanish at any angle, and that for (b) implies that its real part cannot be smaller than 
twice its imaginary part. These results are then generalized to inelastic and production processes. 

1. INTRODUCTION 

The question we wish to examine here is whether 
the requirement of unitarity of the S matrix, i.e., the 
generalized optical theorem, or conservation of 
flux without any additional restrictions, determines 
the phase of the quantum-mechanical scattering 
amplitude once the differential cross section d(}jdQ 
is experimentally given for all angles (at one energy). 
Surprisingly enough, very little seems to be known 
about this question, even though it has important 
practical applications as well as theoretical implica
tions. In the context of the so-called inverse scattering 
problem one always starts with the assumed knowl
edge of the complex amplitude, even though experi
mentally it is always only its absolute magnitude that 
is given. From a practical point of view, the phase 
shifts have usually been determined in the low
energy region by starting at energies where only s 
waves exist, and then continuing upwards in energy 
where the higher partial waves enter one after another.l 

2. ELASTIC UNITARITY AND 
SPHERICAL SYMMETRY 

Let us restrict ourselves first to energy at which 
only elastic scattering is possible. Then the conserva
tion of flux (based on Hermiticity of the Hamiltonian) 
leads to unitarity of the scattering matrix. The 
scattering amplitude A(n', n), the square of whose 
absolute magnitude is the differential cross section for 
scattering from the direction n of the relative momen
tum to direction n', then satisfies the generalized 

* This work was supported in part by the National Science 
Foundation and the U.S. Army Research Office, Durham. 

1 The ambiguities that occur in the case of nucleon-nucleon 
scattering, because of the spin if not all polarizations are measured, 
are of no concern to us here. 

optical theorem2 

41Tk-1 1m A(n', n) =f dn"A*(n", n')A(n", n), (1) 

where k is the wavenumber of the relative motion of 
the particles, and the integral on the right-hand side 
extends over all directions of the unit vector n". For 
n' = n we obtain the optical theorem for forward 
scattering 

41Tk-1 1m A(n, n) = J dn' IA(n', n)1 2
, (2) 

the right-hand side being the observable total scatter
ing cross section for incidence from the direction n. 

If the interparticle force is spherically symmetric, 
the amplitude A(n', n) can depend only on the angle 
e between nand n'; we set cos e = n • n'. Let us 
write 

A(n', n) = k-lF(cos e) (3) 

so that F is dimensionless. Then (2) reads 

1m F(l) = t L: dx IF(xW, (4) 

where x = cos e. A change of variables of integration 
allows (1) to be written in the form 

1m F(x) = .l ffdY dz F(y)F *(z) . 
21T (1 - x2 

_ y2 - Z2 + 2xyz)t 

(5) 

The region of integration is the interior of the ellipse, 
inscribed in the square -1 :::;: x, y :::;: 1, in which the 
radicand in the integral is positive. 

2 See, for example, R. G. Newton, Scattering Theory of Waves 
and Particles (McGraw-Hill Pub!. Co., New York, 1966). The 
history of the optical theorem is briefly traced there on p. 28. 
If the interparticle force is not spherically symmetric, we need time
reversal invariance as well. 

2050 
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Let us write 
F(x) = G(x)iq>(x), 

with G(x) = IF(x) I = k[da(x)jdO]t. Then (5) becomes 

sin tp(x) =JJ dy dzH(x, y, z) cos [tp(y) - tp(z)], (6) 

where we have defined the integral kernel 

H( ) = G(y)G(z) (7) 
x,y,z 2 t' 

27TG(x)(1 - x2 - y2 - Z + 2xyz) 

when 1 - x2 - y2 - Z2 + 2xyz ~ 0, and zero other
wise. 

For x = 1 this reduces to (4) or 

. (1) - 1f1 dxG
2
(x) sm tp - "2 • 

-1 G(l) 
(6') 

We now consider the function G(x) ~ 0, -1 =::;; 

x=::;; 1, given. Its square is the experimentally observed 
differential scattering cross section da(x)jdO in units 
of the reduced wavelength ie. Then (6) constitutes a 
nonlinear integral equation for the phase function 
tp(x). The question we want to study is: Under what 
conditions does (6) have a unique solution? It should 
be stressed that this question has two distinct parts, 
about neither of which much is known: the existence 
of a solution, and its uniqueness. The first part can be 
rephrased in this form: Does unitarity impose restric
tions on the possible functional dependence of the 
differential cross section on the scattering angle? 
The second part is the question: Does unitarity alone 
allow us to determine the amplitude if the differential 
cross section is given? 

Partial answers to both questions can be given 
immediately on quite trivial grounds. Equation (1) 
shows directly that if A satisfies it, then so does -A *; 
the over-all sign of the real part of A cannot be 
determined. In other words, if tp(x) , -1 =::;; x =::;; 1, 
is a solution of (6), then, clearly, so is 7T - tp(x). So 
if there is one solution of (6), then there are two. 3 In 
order to be able to talk freely about further possible 
ambiguities in the solution, we shall call it essentially 
unique if it is unique except for this, or the solution 
is essentially unique if sin tp(x) is uniquely determined.4 

As for the existence of a solution, the optical 
theorem (4), or (6'), to which (6) reduces for x = 1, 

3 There is of course always the even more trivial ambiguity that 
cp is determined at every point only modulo 27T. But this introduces 
no ambiguity in the amplitude. 

• The problem of removing the two-fold ambiguity inherent in the 
unitarity equations by the use of other requirements has been studied 
by D. Bessis and A. Martin, Nuovo Cimento 52, 719 (1967). Explicit 
examples of essential nonuniqueness were given by J. H. Crichton, 
Nuovo Cimento 45, 256 (1966). 

shows an immediate restriction. We must have 

G(l) ~ t f1dX G\x). (8) 

Otherwise there can be no (real) solution tp(x) of (6). 
In other words, the optical theorem trivially implies 
that the square root of the forward scattering cross 
section, multiplied by twice the wavelength, must be 
larger than the total cross section. 

Are there any other restrictions on the differential 
cross section implied by unitarity? That there must be 
such restrictions can be made plausible as follows. 

Suppose that for a given G(x) the function tp(x) 
solves (6). Let us now decrease G(x) only in a small 
neighborhood 11 of width € around x = Xo. Clearly 
we can make € so small that, no matter how small G is 
made in 11, for all values of x not in 11, the right-hand 
side of (6) changes by as little as we like. Hence the 
original solution tp(x) need be changed only "infinitesi
mally" in order to solve the altered equation (6) 
everywhere except inside 11. But inside 11 we need only 
make G(x) small enough in order to prevent any 
Isin tp(x) I =::;; 1 from being able to solve (6). 

The foregoing argument shows that at every point 
x, -1 =::;; x=::;; 1, (6) implies a lower bound on G 
relative to its values everywhere else in the interval. 
In the case of x = 1 this restriction is given by (8), 
but for other values of x it cannot be explicitly stated. 
The class of functions G(x) for which (6) possesses a 
solution is considerably smaller than the set that 
satisfies (8). 

It must not be supposed, on the other hand, that 
(6) implies that the function 

Q(x) = JJ dy dzH(x, y, z), (9) 

which is an obvious a priori upper bound for sin tp(x), 
must not be too large. Consider the special case in 
which F consists of a single partial wave, 

F(x) = F!(x) =-(21 + l)eiO
! sin (l!p!(x), 1m (l! = 0. 

We know that this is a solution of (5) if p!(x) is the 
Legendre polynomial of order I. In other words, if 

G(x) = (21 + 1) Isin (l!P!(x)l, 

then a solution of (6) is 

eiq>(,,,) = eio ! sgn [sin (l!p!(x)]. 

But since, for I > 0, the function p!(x) has zeros in 
-1 =::;; x =::;; 1, Q(x) must have infinities there. A 
situation in which G, and hence the cross section, has 
zeros is admittedly very special. But we can approxi
mate this state of affairs by adding to FI(x) small 
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admixtures of other partial waves. The function G will 
then generally not vanish anywhere in -1 S x S 1, 
and tp(x) will be continuous. 

We now come to our first result, which is a sufficient 
criterion for the existence of a solution to (6): 

Theorem 1: If the differential cross section is a 
continuous function of x and if the function Q(x) of 
(9) is such that, for all x in -1 S x S 1, 

Q(x) S M < 1, (10) 

then a solution to (6) exists. Furthermore, if tp(x) is a 
solution of (6) and (10) holds, then 

(1 - M 2)!Q(x) S sin tp(x) S Q(x). (11) 

Proof: The proof goes as follows. The equation 

"P(x) = sin-1 II dy dzH(x, y, z) cos [tp(y) - tp(z)] 

(12) 

defines a nonlinear mapping tp --)0. "P which we may 
symbolize by 

(12') 

Let us restrict the domain of the map to the region 

o S tp(x) S i7T (12N) 

and make "P(x) unique by the requirement 

o S "P(x) < i7T, (13) 

which is possible because of (10). Now let us introduce 
the norm 

II"PII == sup I "P(x) I (14) 
-1:0;",:0;1 

which makes the set of bounded functions on the 
interval -1 S x S 1 into a Banach space. With the 
restriction (10), .A(, maps the sphere II tpll S i7T into 
II"PII S sin-1 M < i7T and hence into itself. Now if the 
differential cross section is a continuous function of x 
in 0 S x S 1 and (10) holds, then it is easy to see that 
the range of the map (12) is an equicontinuous set. By 
Ascoli's theorem the image of the sphere II tpll S i7T is 
therefore compact. Schauder's fixed-point theorem5 

then implies that .A(, has at least one fixed point, and 
hence (6) has at least one solution. 

Now it is obvious that Q(x) is an upper bound on 
sin tp(x) if tp(x) solves (6). But it then follows that 

cos [tp(y) - tp(z)] 2: cos tpmax 2: (1 - M2)!. 

The left-hand inequality in (11) then follows from (6). 
This completes the proof. 

It should be noticed that if the differential cross 
section is small compared to the wavelength and not 

• See, for example, Nonlinear Integral Equations, P. M. Anselone, 
Ed. (The University of Wisconsin Press, Madison, 1964), p. 10. 

strongly angle-dependent, then the two inequalities 
(11) strongly restrict the phase of the amplitude. 

Our result should be compared with what a naive 
partial wave analysis would lead one to believe. 
Suppose that a given differential cross section is 
expressible as a linear combination of Legendre 
polynomials of order up to 2L. It is then natural to 
assume that the amplitude contains no partial waves 
of order higher than L. But the cross section has 
(2L + 1) real coefficients, and such an amplitude, 
because ofunitarity, has only (L + 1) real parameters. 
Therefore the expressibility in terms of unitary ampli
tudes appears to imply severe restrictions on the class 
of cross sections made up of (2L + 1) Legendre 
polynomials. In view of Theorem 1 it is clear that these 
restrictions originate not in the unitarity condition, 
but in the assumption that the amplitude contains no 
partial waves higher than L. In order to form the most 
general cross section made up of 2L + 1 Legendre 
polynomials, amplitudes containing infinitely many 
partial waves are required. (It is of course impossible 
that the amplitude contains a finite number of Legendre 
polynomials larger than L + 1.) 

Theorem 1 gives a partial answer to the question of 
restrictions on the differential cross section implied by 
unitarity. If the differential cross section is small and 
smooth enough so that (10) holds, then no restrictions 
are implied. But it tells us nothing about the essential 
uniqueness of the solution for the amplitude, nor does 
it tell us how to construct the latter. These questions 
are answered in our main result, whose hypotheses 
are, however, more restrictive than (10). 

Theorem 2: If M < S-!, then (6) has a unique 
solution that satisfies (12), and this solution can be 
obtained by iterating (6). 

Proof: The proof is based directly on the principle of 
contraction mapping6 in a Banach space as follows: 

Let 0 S oc < {3 < 1. Then sin-1 oc < sin-1 {3 and 

sin-1 {3 - sin-1 oc d. -1 {3 1 
{3 - oc < dfJ sm = (1 - (32)! 

because sin-1 oc is concave upwards. Therefore, for all 
Os oc S A, 0 S {3 s A, where A < 1, 

I 
sin-1 {3 - sin-

1
oc I S (1 - A2)-!. (15) 

{3-oc 

Using the fact that the identity 

cos oc - cos (3 = 2 sin Hoc - (3) sin Hoc + (3) 

implies 
Icos oc - cos {31 S loc - {31, 

6 See, for example, Ref. 5, p. 13. 
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let us compare the equations 

tpl = .At ( Tl) and tp2 = .At ( T2) 

by means of (10) and (1S): 

Itpl(X) - 'P2(X) I 

=:;; (1 - M 2)-t II dy dzH(x, y, z) 

X Icos [Tl(Y) - TtCz)] - cos [T2(Y) - Tb)]1 

:$; (1 - M 2)-t II dy dzH(x, y, z) 

X I [Tl(Y) - T2(Y)] - [Tl(Z) - T2(Z)] I 

:$; 2(1 - M2rt II dy dzH(x, y, z) ITl(Y) - T2(y)l· 

The last step uses the symmetry of H(x, y, z) under 
interchange of y and z. This inequality can be written 
in terms of the norm defined in (14), 

Iltpl - tp211 :$; y II Tl - T211, (16) 

where, because of (10), 

y = 2M(1 - M2)-t. 

Therefore, if y < 1, i.e., if M < s-t, then (12') is a 
contraction mapping in a Banach space. The theorem 
then follows. However, since the principle of contrac
tion mapping is not very generally familiar, and the 
proof is simple, we prove the theorem directly. 

Consider the sequence of iterations of (6), defined by 

sin Tn+l(X) = II dy dzH(x, y, z) cos [Tn(Y) - Tn(Z)] 

(17) 
or, in terms of (12'), 

Tn+! =J(,(Tn)' 
Then, by (16), 

IITn+! - Tnll :$; Y IITn - Tn-lll 

with y < 1. Repetition leads to 

II Tn+! - Tnll :$; Myn 

which implies that {Tn} is a Cauchy sequence. Hence 
it converges pointwise [because of the choice of norm 
(14)] to a limit function T(X): For a given 1£ there 
exists an N so that, for all n > N, 

II T - Tnll < E. 

Let tp be the image of T: 

tp = J(,(T)· 

Then, according to (16), 

IItp - Tn+111 :$; yilT - Tnll < yE 

and, consequently, IITn - tpll--+O as n--+ 00. There
fore, T = tp for each x, and the limit function rp 
satisfies (6). 

Finally, let rpl and T2 be two solutions of (6). Then 
(16) tells us that 

II rpl - T211 :$; y II Tl - T211, 

which implies that II Tl - T211 = 0 because y < 1. 
Hence the solution obtained by iteration is the only 
solution of (6). Q.E.D. 

To state the result of our theorem in more directly 
physical terms is to say that if, for all x = cos 0, 

[
da(X)]t ~ stfJd

Y 
dz {[da(y)/dn][da(z)/dnnt , 

dn A. (1 - x 2 
- y2 - Z2 + 2xyz)t 

(18) 

then the amplitude is essentially uniquely determined 
by unitarity, and it can be obtained by iteration of (6). 
If (18) holds then it follows from (11) that tan rp(x) < 
t for all -1 :$; x :$; 1. Hence the real part of the 
amplitude must certainly be larger than twice its 
imaginary part. If the number st in (18) is replaced 
by 1, we are sure that an amplitude that obeys 
unitarity exists, but we are not sure of its uniqueness. 
That condition entails that the real part of the ampli
tude can certainly not vanish at any angle. 

One may wonder at this point if the difference 
between the hypotheses of the two theorems is merely 
a technical difficulty or if the essential uniqueness of 
the solution may get lost when st < M :$; 1. That 
it may indeed get lost may be argued as follows. 

Let us write 

G(x) == ~g(x) 

and normalize g(x) so that 

sup ~ fJdY dz g(y)g(z)/g(x) = 1, 
-l:Sx927T (1 - x 2 -l- Z2 + 2xyz)t 

(19) 

assuming that Q(x) is bounded. Then Theorem 2 tells 
us that (6) has a well-defined solution for ~ < s-t. 
We may consider this solution T(x) as a function of ~, 
even for complex values of ~. Clearly then (6) will 
define T also in a neighborhood of the real positive 
; axis so long as 1;1 < s-t. Let us differentiate (6) 
with respect to ;, and indicate the derivative by a 
subscript: 

'Pg(x) cos T(x) = ~-lrp(X) - 2~ II dy dz hex, y, z) 

X 'PsCY) sin [T(y) - T(z)], (20) 
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where h is defined in terms of g just as H is in (7) 
defined in terms of G, and we have used the symmetry 
of hex, y, z) under interchange of y and z. Now (20) 
constitutes a linear integral equation for qJ< (x) , 
assuming that qJ(x) is given. It will have a unique 
solution unless the homogeneous equation has a 
solution, i.e., unless unity is an eigenvalue of the 
linear operator whose integral kernel is 

U(x, y) == -U sec qJ(X) I dz hex, y, z) 

x sin [qJ(y) - qJ(z)], (21) 

the limits of the integral being 

xy ± (1 - X2)!(1 - y2)!. 

So long as ;/ does not have unity as. an eigenvalue, the 
derivative qJ< is well defined and thus qJ(x) is a regular 
analytic function of ;. Now if for all '1p and, for all 
-1 ::::; x::::; 1, 

I ; I~ldY !(x, y)'1p(y) 1< 11'1p11, (22) 

the eigenvalues of ;! are all strictly less than unity 
and hence the solution qJ(x) of (6) is a regular analytic 
function of ;. But because of the second inequality in 
(11) we have 

I; f/ y !(x, y)'1p(y) I ::::; 2Q(x)[1 - Q2(X)]-! II '1p1!, 

which is less than 11'1p11 on the condition that Q(x) < 
5-! for all x. So we meet again the hypothesis of 
Theorem 2. 

We interpret this result as follows. Where the 
derivative of qJ(x) with respect to ; is ill defined we 
have a branch point above which qJ(x) is no longer 
single-valued. There is then more than one solution 
of (6). When 0 ::::; ; < 5-i , this cannot happen. In the 
region 5-! ::::; ; ::::; 1 there still always exists at least 
one solution of (6), but it may branch into several 
solutions at points, where ;/ has the eigenvalue 1. 
When; > 1 there may not exist any solutions of (6), 
depending on the shape of G(x). That is also the 
region where the phase qJ(x) may pass through t7T, 
or the real part of the amplitude may vanish. For 
certain shapes of G(x) an increase of ; beyond a value 
at which qJ(x) = t7T for some x, makes a (real) 
solution of (6) impossible. 7 

, That the dividing points for the three regions are exactly'; = 5-t 
and'; = I may have something to do with our choice of metric (14). 
For other choices the division may look somewhat different. It 
should also be noted that the possible existence of more than one 
solution when'; > 5-t is conjectural. We have not produced any 
actual examples. 

3. GENERALIZATION 

It is easily seen that both theorems can be imme
diately generalized to cases in which there is no spher
ical symmetry. We then write 

F(n', n) = G(n', n) exp iqJ(n', n) 

and the generalized optical theorem reads 

47TG(n', n) sin qJ(n', n) 

= I dn"G(n", n')G(n", n) cos [qJ(n", n') - qJ(n", n)]. 

(23) 
We set 

Q(n', n) = J.:.. Idn" G(n", n')G(n", n) 
47T G(n', n) 

and find that if Q < 1 for all nand n' then (23) has a 
solution, and if Q < 5-! then it has a unique solution 
in 0::::; qJ < t7T obtainable by iteration. In other 
words, for Q < I, elastic unitarity imposes no re
striction on the angle dependence of the differential 
cross section. If Q < 5-!, then the generalized optical 
theorem determines the phase of the amplitude 
essentially uniquely. 

What can we say if the particles have spin or in
elastic processes are possible? Under the assumption 
of time-reversal invariance the generalized optical 
theorem can in both cases be written in the form 

47Tk;1 1m ApaCn', n) = ~ I dn"A;in", n')Ay.(n", n), 

(24) 

where the indices oc, {3, and y refer either to the chan
nels or to the helicities, or both, and the differential 
cross section for a reaction from oc to {3 is given by 

(dajdQ.) (n'p, noc) = IAp.(n', n}12. 
Defining 

k.Ap.(n', n) == Fp.(n', n) = Gp.(n', n) exp iqJp.(n', n), 

with Gp.(n', n) ~ 0, we get 

47TGp.(n', n) sin qJp.(n', n) 

= ~ I dn"Gyin", n')Gy.(n", n) 

X cos [qJyp(n", n') - qJyaCn", n)]. (25) 

The previous arguments can now be carried through 
in the same form provided that we use the norm (14) 
with the sup taken over all directions of nand n' and 
over all values of the subscripts. If the set of functions 
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is bounded by 1, 

QPa(O',O) < 1, 

for all 0 and 0' and alII)( and p, then unitarity imposes 
no restrictions on the cross sections. If for all 0, 0', 

IX, and p: 

then all phases gJPa(o', 0) are essentially uniquely 
determined by (25). It is important to note, however, 
that the cross sections of all coupled energetically 
possible processes must be known for this procedure 
to be feasible. This means if production is possible, 
that is, if more than two particles may appear in final 
states, then even the cross sections for more than two 
particles in both initial and final states must be known. 
Since these are never experimentally accessible, 
unitarity is useless as a tool to obtain the phase of 
amplitudes above production thresholds. 

In the case of elastic scattering of particles with 
spin the determination of all elements of the scattering 
amplitude may proceed somewhat differently. In 
principle (if not usually in practice) we may assume 
that the spin-density matrix Pine of the incoming beam 
can be controlled, and the spin-density matrix of the 
scattered wave can be measured.s Since 

(Pseatt)aP = L AayA;aCPine)yO' 
yo 

8 For the measurability of the spin density matrix, see R. G. 
Newton and B. Young, Ann. Phys. (N.Y.) 49, (1968) (to be pub
lished). 

all products Aa;.A;o are (in principle) subject to 
measurement by scattering experiments. There is then 
only a single phase (as a function of the scattering 
angles) that need be determined by unitarity. The 
fixed-point theorems will then serve again. Similarly, 
if less than complete information is available for the 
incident or scattered beams. These cases are too 
complicated for profitable general discussion and 
should be considered in detail for each individual case 
of practical interest. 

Note added in proof After this paper was finished I 
received a pre print by Martin9 with similar and, in 
part, somewhat stronger results. The steps contained 
in his Eqs. (17) to (20) are easily transferred to our 
context and, together with (11), lead to 

II sin 1J!1 - sin 1J!211 :::;; ty II sin gJl - sin gJ211 

in place of (16). Therefore Theorem 2 holds whenever 
M < 2-t . Martin also proved uniqueness for M < 
0.79, but whether the solution can be obtained by 
iteration when M > 2-t is not known. I am indebted 
to Dr. Martin for sending me a preprint of his work. 
The work by Crichton4 was not known to me until I 
read his paper. 
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We describe a c1ass~cal field theory based on Huygens' principle which is characterized by an additional 
degree of freedom WhICh, to our knowledge, has not been discussed previously. This additional degree of 
fr~om as~rts that the fo~ard p~opagati~n con~ is d!ffer~nt from the backward cone. The purpose of 
thIS paper IS to find a functIOn whIch descnbes thIS degree of freedom, and next, to understand this 
effect in reference to other theories. We find that this additional degree of freedom can be described by 
means of r[i~l. The object r[i~) is then related to the torsion of a preferred-frame geometric theory. 
The additional degree of freedom is of interest since it enables one to introduce r[;~) in a framework 
involving characteristic equations, described by gil , and bicharacteristics described by r:;~), such that 
the role of r[;k) can be understood. Also, the theory furnishes a generalized framework for gravitational 
theory. Paths with noncontinuous slopes appear also in Feynman's path-integral approach. Thus, this 
type of discontinuity has physical interest here also, although we do not pursue this point in this paper. 

I. INTRODUCTION 

There are several types of discontinuities that one 
can study in field theory. In this paper, we investigate 
a particular kind of discontinuity. We shall consider a 
theory with noncontinuous propagation vectors. 

We propose a model where such discontinuities 
appear. The model is that of a classical field theory 
based on Huygens' principle. By Huygens' principle, 
we mean that a point is a source of disturbance. 
Although we do not assume the most general Huygens 
model, our model is general enough to describe 
noncontinuous propagation vectors. We assume that 
at a point we have a forward propagation cone and a 
backward cone which is different from the forward 
cone. Then we cannot, in general, define trajectories 
with continuous propagation vectors along them. 

We find a function such that when this function is 
nonzero, the backward cone is different from the 
forward cone. Thus, if this function is nonzero, 
propagation vectors are, in general, noncontinuous. 
The function that does this, q;TC]' is antisymmetric 
in two indices. Although the Huygens propagation is 
described with respect to a Minkowski coordinate 
system, we show that q;k] is related to the torsion of 
a preferred-frame geometric theory. 

In this paper, we do not propose any field equations 
for q;k]. What we do propose is a framework In 

which to work. The gravitational equations 

G«p({;..}) == kT«p 
are consistent with this framework. The torsion was 
introduced by Einstein and Schrodingerl to generalize 

• Supported in part by the Nebraska Research Council and in 
part by the National Science Foundation Grant GP-5373. 

1 E. Schrodinger, Space Time Structure (Cambridge University 
Press, New York, 1950); A. Einstein, Meaning of Relativity (Prince
ton University Press, Princeton, N.J., 1955), 5th ed. 

the gravitational theory. Thus, it is of interest to 
understand what features this new object can give 
rise to within a framework consistent with the gravita
tional equations. The framework is based on general 
principles like Huygens' principle. Huygens' principle 
is already common to Minkowski field theories. 

In the Huygens propagation model, gij represents 
the forward cone. q;k) describes the propagation 
between points. q;k] gives the change of backward 
cone into forward cone. We make the assumption 
that, if a set of variables completely describes the way 
propagation vectors behave, then they may be taken 
as field variables. 

It is instructive to consider mathematical models 
consistent with the framework of Sec. II. We find a 
smaller set of variables that satisfy the propagation 
formulas. These are the sixteen variables e;. These 
variables can be thought of as defining a coordinate 
transformation that takes us to a system where the 
propagation is of a trivial form. All the dynamical 
effects are, then, in the coordinate system (geometric 
theory). The geometric counterpart of the propagation 
variable gi; is 1J«p = e~eJg!~), which is the transform 
of the Minkowski metric. The connection is rpy = 
e':,.(oefj/oxY). Thus, the sixteen-variable Huygens 
theory corresponds to a nonsymmetric preferred
frame geometric theory. 

ll. GENERALIZED PROPAGATION 

In this section we seek a description for the back
ward cone such that it is different from the forward 
cone. 

Let k i be a propagation vector in Minkowski 
space. The forward propagation cone at a point is 
composed of an infinite number of propagation 

2056 
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vectors, one for each spatial direction. \1.le label the 
propagation vectors k~, k~" .... The simplest for
ward cone 'is given by 

(1) 

where gi~l = diag (-1, -1, -1, +1). We shall con
sider the more general propagation cone given by 

generator of this fictitious cone is a generator of the 
backward cone at Q. Using k~(P) = k~(Q-~) - I'Jk 
with I'Jk~ given by (4), we get 

(I'Jgij - niklgt; dxk - rliklgit dx")k~k.!t = 0, (8) 

A propagation vector at the point P will change, 
in general, during the propagation. We define I'Jki by 
I'Jki = ki(Q-) - ki(P). ki(Q-) designates the value of 
the propagation vector just before the neighboring 
point Q is reached. We assume 

where I'Jgil == g;;(Q; P) - gij(P), Equation (8) is valid 
to lowest order in dr. To lowest order, we evaluate 
gil' r;k at point Q. There is at this point some arbi

(2) trariness in the solution of (8). We shall discuss the 
situation where we have 

(3) 

A is a parameter along the propagation path and 
rtjk) = ·Hr;k + q;). dxk refers to the displacement 
between P and Q. We have in lowest order 

(4) 

Thus it is assumed that q;kl completely determines 
the change of a propagation vector between points. 

The Ath propagation vector of the forward cone, 
k~, at the point P obeys 

(5) 

We follow this propagation vector as it changes on 
propagation to the neighboring point Q according to 
(4). At Q, this propagation vector furnishes us with 
one of the generators of the backward cone at Q. 
The backward cone at Q is written as 

We have allowed g;; to depend in such a way on 
direction since the g;i are not independent variables 
and thus, we must be prepared for the more general 
situation. The Ath generator of the backward cone 
at Q is given by 

g;;(Q; P)k~(Q-)k~(Q-) = O. (6) 

From (5) and (6), we get for the Ath propagation 
vector 

g;;(Q; p)k~{(r)k~(Q-) - gH(P)k~(P)k!J.<P) = o. 
(7) 

g;;(Q ; P) constitutes ten variables and can be thought 
of as defining a fictitious cone at Q, by means of 
g;;(Q; P)kik; = 0 for aU k i at this point. The Ath 

(9) 

Remember that we are not considering the most 
general Huygens model, but a model that is general 
enough to describe the forward propagation cone 
different from the backward propagation cone. 

The difference between the forward cone at Q and 
the forward cone at P is written as dgij = gij(Q) -
gii(P), We make the continuity assumption that 
dgij = (ogiiloXk) dxk for any neighboring propagation 
points. The necessary condition that the Ath propaga
tion vector be discontinuous at Q is 

(10) 

where 

That is, only if the cones g;;(Q) and g;;(Q; P) are 
different can the propagation vector in the Ath spatial 
direction be discontinuous. We define DgiJ as 

(12) 

Thus, to have a theory with discontinuous propaga
tion vectors, we must have from (10) that gij;k dr =;6 0, 
where 

_ og;; rt rt 
g;;;k = OXk - Hk)gH - (iklgit· (13) 

Since gi;;k is nonzero, we write 

gij;k = r;Cik] + ri[lk] == r;ik]gti + rtik1git (14) 

where qik1 == - Qki1' We do not consider terms of 
the type Afiklgtj + A1ik)g;t on the right-hand side. 
They are of the same form as the terms appearing in 
(9), and we consider all of the backward-cone type 
contributions as arising from lJki. If A~il") were not 
zero, then at a point we would have both rtik) and 
A~ik) appearing. Now, under a coordinate transfor
mation, the two fields get mixed up. Itis natural to 
require that the operations I'J and D have an invariant 
character under coordinate transformations. Thus, 
we take A:ik) = O. Using (9), (12), (13), and (14), 
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we get 

Dgij = r[ikjgtj dxk + rfjkjgit dXk. (15) 

qik] like the other basic fields qik) and gii' is inde
pendent of direction. In any particular spatial direc
tion, we get that the propagation vector is continuous 
if qjkJ = 0, since we have dgij = ogij for all source 
points P, and thus the backward cone at Q is the same 
as the forward cone there. Suppose we went through 
the analysis assuming that the backward cone is not 
direction-dependent; since the right-hand side of the 
resulting Eq. (15) is direction-dependent when 
qikJ ¥: 0, the left-hand side must be also (barring 
accidents). Thus, we have a contradiction. Therefore 
we conclude that the backward cone is direction-de
pendent and the forward cone is not. Hence, the two 
cones are different. Thus, the function qik] is what is 
responsible for the backward cone being different from 
the forward cone. 

The propagation is our probe of the field theory. 
Hence, we shall make the hypothesis that if a set of 
variables describes completely the way the propaga
tion vectors behave, then these variables constitute a 
representation of the fields. Our field variables are 
then gij' qjk) , and qikJ' 

We have made the assumption that we have con
tinuous propagation between points (3) and dis
continuities arising at a point (14). We may get an 
intuitive feeling for discontinuities at a point by 
thinking of a point as a depot where contributions 
come in from all spatial directions. At the point, they 
interact with each other. Thus, in general, we can't 
expect continuous propagation vectors at a point. 

From generality we cannot expect all Minkowski 
points to be propagation points. A propagation point 
is a point where gii and rJk are nonzero. The set of 
propagation points determines a space. In the sixteen
variable formulation of Sec. III, the propagation
space displacements dxi(x) satisfy dxi(x) = e!(x) dx~. 
[See discussion under Eq. (31).] 

A general coordinate transformation would intro
duce, in addition to the propagation variables, 
coordinate fields. Minkowski coordinate systems are, 
thus, preferred on grounds of simplicity. The notion 
of a preferred set of frames will carryover in the 
geometric formulation in Sec. IV.2 

III. SIXTEEN-VARIABLE FORMULATION 

We reconsider Einstein's3 sixteen-variable basic
vector approach as we can reproduce the formulas, 
so far, in terms of this lesser number of variables. 

• V. Fock, Theory of Space Time and Gravitation (Pergamon 
Press, Inc., New York, 1959). 

3 A. Einstein, Ann. Inst. Henri Poincare 1, 1 (1931). 

One of the basis vectors is of a timelike character. 
We construct the basis-vector system such that the 
propagation vectors as looked at from these basis 
vectors describe the simplest-type propagation. That 
is, since the number of variables is sixteen, we can 
think of these variables as defining a coordinate 
transformation that takes us from the system of 
general propagation to a system where the propaga
tion is of the simplest type, while the dynamical 
effects are in the coordinate system (geometric 
theory). Then we have 

gij = g~pe~eq 

and g~fl has a diagonal form (-1, -1, :-1, 1). 
We define the dual basis vectors by 

We also have 
~ i _.I:" eiep - Up. 

(16) 

(17) 

e~e~ = op. (18) 

The ef vary from point to point and thus can be 
considered dynamical variables. 

We define rtk by 

oe~ _ r j IX 

oxk - ikei' (19) 

where de: = (oe:;oxk) dxk and where dxk is a dis
placement in propagation space. Thus, we have 

(20) 

From (19) we have 

(21) 

(22) 

and 

rt _.1 t(oe~ _ oe~) 
[ikJ - 2

e" oxk oxi ' (23) 

We decompose def into two parts in the case where 
dxk is the displacement between a point and one of 
its source points, 

de~ = oe~ + De~. (24) 

Since the propagation is to be of the simplest kind 
in the IX, (J system, we have 

ok~ = o(kie~) = ° (25) 

for all propagation vectors. We then satisfy (25), 
using (4) with 

oe~ = rtik)ej dXk. (26) 

We use gik = e~e~g"p and since og"P = 0, we get 

Ogii = rfik)gti dxk + rfjk)git dxk (27) 
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which is Eq. (9). We write From (34) we get 

d gij = d( e~e~ gaP) = c5 gi; + D gij . (28) oe~ ra a -= - e· oxp ap , (36) 

From (20), (24), and (26), we get and 
d a - r a PdP (37) (29) ei - - ppei x. 

From (16) and (21), we get that 

(30) 

is identically satisfied. Also, from (27), (28), and (30), 
we get (15). 

We have, here, expressed the variables gij' rLk) , 
qikl in terms of a lesser number, the sixteen basis
vector variables such that our previous formulas hold. 

We can make arbitrary constant basis-vector 
Lorentz transformations in the 0:, (3 system since the 
0:, (3 system is defined by gap = diag ( -1, -1, -1, + 1) 
and c5k a = O. 

IV. GEOMETRIC VARIABLES 

We expect from generality that not all Minkowski 
points will be propagation points. Thus, the distance 
ds2 between propagation points will depend upon 
position. When we transform to a system where the 
propagation is trivial, the effect is reflected in the 
geometry. Thus, we see why a nontrivial line element 
comes out in the study of Huygens model. The 
argument is made explicit as follows. In Minkowski 
space the distance between two neighboring points in 
the space of propagation points is 

ds2(x) = g:~) dxi(x) dxi(x), (31) 

where g)~) is the Minkowski metric and dXi is the 
displacement between the two propagation points. 
We may transform to the system of trivial propaga
tion using dxi(x) = e~(x) dxa. The displacements 
between neighboring propagation points, dx', are 
x independent since they are associated with a trivial 
propagation. Thus, we have 

ds2(x) = 1),p(x) dx' dxP, 

with the metric of the geometric theory given by 

1),p(x) = e!(x)e~(x)gl~)· 

We define r~a by 

r p - poe;' 
pa = em -, 

oxa 

(32) 

(33) 

(34) 

where %xa = e,;(o/dxm
). r~a is then related to r:k by 

(35) 

We note, as a result of (33) and (34), that 1)aP and qa 
satisfy the equation 

(1)aP r a r a 0 - - ay1)ap - py1)aa = . 
oxy 

(38) 

This equation is of the type satisfied by gil and r;k 
[Eq. (14)]. When r[PYl = 0, the geometric connection 
is determined by the Christoffel relations. Thus, as a 
result of (38) and from (37), we identify rpy with the 
connection of the geometric theory. The change of 
e; [Eq. (37)] is then interpreted as equal to the change 
of e: under parallel transport. 

Assuming 
o2ei o2ei 

--Y- - __ Y_ 

ox'oxP - uxPoxa ' 
(39) 

we get from (36) that 

(40) 
where 

a or~a or~p a lJ a lJ 
R xPa = --P - -- + rlJprxa - rlJ,rxp ' (41) 

ox oxa 

From (39) and (40), we get 

R"x{Ja(r( )) + Wxpa(r[ 1) + rtxalf).p) - rtxP)rr-).al 
- rtxPlrr).a) + ri'xa)r['APl = O. (42) 

Thus, R~pir( )) is not zero if r['pYl ¥- O. 
We have discussed the geometric theory that corre

sponds to the generalized propagation theory in the 
sixteen-variable formulation. The torsion is related to 
qikl via (35). We thus see that the torsion is nonzero 
when the forward propagation cone is different from 
the backward propagation cone. 

A generalized gravitation theory of the type dis
cussed above was considered by Einstein. 3 (We have 
introduced in addition the operations c5 and D.) A 
theory based not only on ef but also on r /k and ef 
is briefly discussed in the Appendix. These general
ized preferred-frame gravitational frameworks are 
related to propagation theories having in common 
that the backward propagation cone is different from 
the forward cone. 

V. DISCUSSION 

We have described a classical field-theory model 
characterized by an additional degree of freedom 
which, to our knowledge, has not been discussed 
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previously. This additional degree of freedom is that 
the forward-propagation cone is different from the 
backward cone. We are able to describe this effect 
by means of q;k]' which we show is related to the 
torsion of a preferred-frame geometric theory. 

In the Huygens model, we can think of the field as 
being made up of "particles" (in the sense of a well
defined trajectory between points) coming in to a 
point from the different spatial directions. There are 
an infinite number of propagation vectors coming out 
from a point. Since a propagation vector is not con
tinuous, we cannot say to which of these outgoing 
vectors a particular ingoing vector should be joined 
in making a Huygens path. That is, we can follow a 
particle from a point to a neighboring point but not, 
in general, beyond. The interpretation we give from 
this picture is that an infinite number of particles 
come into a point and are destroyed, and a new set 
of infinite particles are subsequently created and leave 
the point. 

As a result of (2) we have a different velocity of 
propagation in each spatial direction. In a theory with 
an index of refraction, the velocity of propagation is 
not that of light in empty space. Thus, we can say that 
(2) describes propagation in a medium. The idea in 
this paper is that the medium is not external to the field 
theory but is given by the fields gi;' r:k themselves. 

Let us examine the situation where we do not make 
any reduction of field variables. (We further discuss 
this case in the Appendix.) If we take as a special case 
q;k] = 0 and Rik({/k}) = 0 , then we have equations 
having the form of the free-field gravitational equa
tions. R~kl(Cm is not necessarily zero, since this does 
not follow from Rik({M) = O. In this situation (14) 
is the usual Christoffel relations. Equation (3) gives 
the bicharacteristics of these field equations. Equation 
(2) is also satisfied as a consequence of the charac
teristic equations. Thus, the equations of the paper 
are satisfied in the special case. 

Although we do not propose field equations, the 
interpretation of q;k] is not dependent on field 
equations. 

The additional degree of freedom of different 
backward and forward cones is of interest since it 
enables one to introduce q;k] in a framework in
volving characteristic equations, described by gi;' 
and bicharacteristics described by q;k) , such that 
the role of q;k] can be understood. Also, the theory 
furnishes a generalized framework for gravitational 
theory. Paths with noncontinuous slopes appear also 
in Feynman's path-integral approach.' Thus, this 

4 R. lieynman and A. Hibbs, Quantum Mechanics and Path 
Integrals (McGraw-Hill Book Co., New York, 1965). Paths with 
noncontinuous slopes appear also in E. Nelson, Phys. Rev. 150, 
1079 (1966). 

type of discontinuity has physical interest here also, 
although we do not pursue this point in this paper. 
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APPENDIX: VIERBEIN FORMALISM 

The Vierbein formalism5 has, instead of (19), the 
equation 

(Ai) 

The spin connection is then given up to a constant 
vector by6 

r k = tr~Pk-HYpy~ - y~yp). (A2) 

In the text 1'/k = 0, so that the spin connection is 
zero. 

The Vierbein formalism gives an alternative formu
lation of the system gi;, r:k with no reduction of 
variables. We again express gi; in terms of e: by 

gii = e~t!;g~p. (A3) 

We do not wish to bring in six additional field vari
ables. Thus, we allow for arbitrary x dependent ex, f3 
Lorentz transformations at each point. 

From (I7) we get 

(A4) 

We can express r:k in terms of e~ and ['/k by 
multiplying (A4) by e~. This gives 

r i ~ oe! r- P i (J. (A ) tnk = -em oxk - (J. kepem. 5 

Using (A3) and (A5), we see that (14) is identically 
satisfied provided 

(A6) 

where I\Pk = gp,,[' a\' 
Equation (14) is forty equations that express qik) 

in terms of the independent variables gH and q;k] 
(see Ref. 1, p. 66) via 

r i,; = {~} + gmlgitrtk!] + gtnlgktrti!J + r UkJ ' (A 7) 

where {~} are the Christoffels. The formulation above 
replaces gii and rtik] bye! and r / k as independent 
variables by means of (A3) and (A5). The six extra 
variables in the latter set means that we also have 
six arbitrary functions appearing as mentioned before. 

6 H. Weyl, Phys. Rev. 77, 699 (1950); Z. Physik 56, 330 (1929); 
see also D. Sciama, J. Math. Phys. 2, 472 (1961); T. Kibble, J. Math. 
Phys. 2, 212 (1961). 

6 V. Bargmann, Sitzber. Preuss. Akad. Wiss. Physik Math. K1. 
25, 356 (1932). 
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00 the Clebsch-Gordao Series of a Semisimple Lie Algebra 
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The problem of determining the multiplicity of an irreducible representation of a semisimple Lie 
algebra, in the decomposition of the product of two such representations, is reduced to one of solving a 
system of linear equations. This is achieved by using some properties of partition functions which occur 
in the formulas for the multiplicity of a weight in a representation. It is shown that one need not know the 
partition function explicitly. 

I. INTRODUCTION 

Since the advent of unitary symmetries in elementary 
particle physics, it has become necessary to know the 
("external") multiplicity of an irreducible representa
tion (IR) in the decomposition of the product of two 
IR's of a semisimple Lie algebra. For low-rank alge
bras and small dimensions of the IR's, the Young 
tableaux method has been useful. Nevertheless, many 
authors1.2 have been interested in arriving at algebraic 
expressions for the multiplicity. 

This problem has been shown2 to be connected to 
finding the ("internal") multiplicity of a weight in a 
given IR. Kostant3 has given a formula for this in 
terms of partition functions. An expression is derived 
by Steinberg, 1 which gives the external multiplicity 
in terms of the same functions, and which involves a 
double sum over the Weyl group. However, these 
functions are very complicated4 except for specific 
low-rank algebras. 

It is the aim of this paper to calculate the external 
multiplicity without an explicit knowledge of the 
internal multiplicity and, in turn, of the partition 
function. In Sec. II, a lemma of Tarskis.6 is used in the 
formulation of the problem. In Sec. III, we show how 
the problem reduces to one of solving a system of 
linear equations, the unknowns being the external 
multiplicities. The coefficient matrix is shown to be 
triangular and nonsingular, thus ensuring uniqueness 
of the solutions. 

Some examples are presented in the Appendix, 
which illustrate the usefulness of this method. Applica
tions to large-rank algebras and higher-dimensional 
IR's are possible, in principle, but tedious to perform 
manually. 

1 N. Jacobson, Lie Algebras (lnterscience Pub!. Inc., New York, 
1962), p. 262. 

'B. Gruber, Ann. Inst. Henri Poincare 8, 43 (1968). 
• B. Kostant, Trans. Am. Math. Soc. 93, 53 (1959). 
, D. Radhakrishnan and T. S. Santhanam, J. Math. Phys. 8, 2206 

(1967); D. Radhakrishnan, Delhi University preprint, 1968 (unpub
lished). 

• J. Tarski, J. Math. Phys. 4, 569 (1963). 
• V. B. Mandel'tsveig, Sov. Math. Dokl. 6, 851 (1965). 

II. FORMULATION OF THE PROBLEM 

Let G be a complex semisimple Lie algebra, and let 
its system of positive roots (relative to a given Cartan 
subalgebra and lexicographic ordering) be 

Ll == {O:b ... ,o:s}. 

Let D(A) be a finite-dimensional IR of G with highest 
weight A. The Clebsch-Gordan series is 

D(A) @ D(A') = EBLy;:.D(A"), (1) 
A" 

where YA g is the multiplicity of D(A") in the decom
position of the product on the left. 

In terms of characters we can write (I) as 
n 

XA(IP)xAIP) = ! YA.XA,(IP), (2) 
i=l 

where the terms on the right are ordered for con
venience such that i < j implies Ai > Aj • In general, 
Al ~ A + A', while An corresponds to the one
dimensional IR. We will show later that Al = A + A'. 

Weyl's character formula is 

! bs exp i[S(P + A), IP] 
() SEW (3a) 

XA IP = L bs exp i[S({J), IP] 
SEW 

Also, 

xilP) = L m..(v) exp i[v, IPJ, (3b) 
VED().) 

where IP == (1P1," .. 1P1) are I real parameters, I being 
the rank of the algebra. W is the Weyl group and 
bs = ± 1 according to whether S is an even or odd 
reflection, respectively. P is half the sum of positive 
roots, and m,,(v) is the multiplicity of the weight v 
in D(A). The bracket is the Cartan-Killing form on G, 
by which one can identify the Cartan subalgebra with 
its dual space.3 

Substituting for XA in (2) from (3a), and for XA' 

and X"i from (3b), we obtain 

L bs L mA.(v') exp i[S(P + A) + v', IP] 
SEW v'ED(A') 

n 

= I YAt L bs L rnA/Vi) exp i[S(P) + Vi' IP)· 
i=1 SEW ViED(A,) 

2061 
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Multiplying by exp -;[P + V, IP], where V is some 
dominant weight, and using orthogonality proper
ties2•7 on integration over all parameters, we get 

2 fls 2 mJ.,(v')flS(PHI+v'.P+v 
SeW v'eD(J.') 

n 

= 2 YAj 2 fls 2 m;,,(vi)fls(P)+v,.P+v, 
;~1 SeW v,eD(A,) 

where ~lll.U is the Kronecker symbol. 
Thus, 

2 flsmd(p + v) - S(P + A)} 
SeW 

n 

= 2 YAj 2 (jsmA,{CP + v) - Scm}. (4) 
i~1 SeW 

Kostant3 has given an expression for internal 
multiplicity, as follows: 

m.b) = 2 ~sP[S(P + It) - (P + v)], (5) 
SeW 

where P(ft) is the partition function, i.e., the number 
of ways of writing ft as a linear combination of all 
the positive roots with nonnegative integral coeffi
cients. 

According to a lemma of Tarski,5.6 

p(ak){ft) == P(ft) - P{ft - ock ) 

is a partition function over A with some OCk remqved. 
Thus, 

p("l'" ·." .. l(ft) == ± ... ± (_1):E;" i,p (ft - Ij;oci) 
jl~O im~O 1=1 

(6) 

is the partition function6 over the system A
{OCI' ••• ,ocm}. Obviously, when m = s, 

p(Al(p.) = (j/l.o, (7) 

since, by the lemma, p(ti}(ft) is a partition function 
over zero roots.6 

Consider the quantity 

mi"'l.· ... "ml(v) == f···.f (-l):E;"iimJ.(v + i)iOCi)' 
it~O Jm~O .=1 

It is understood that m;.(v + 2 jiOCi) = 0 when v + 
2 jiOCi ¢ D(A). 

Using (5) and (6), we obtain 
1 1 :Em. 

mi"l'" ""'1Ol(v) = 2 (js 2 ... 2 (-1) 1 'I 
SeW :11=0 i .. =O 

x p[s(P + A) - (P + 11) - i~jiOCiJ 
= 2 flSp("'l'" . ,,,, .. l [S(P + A) - (P + 11)], 

SeW 
using the lemma, 

7 H. Weyl. Classical Groups (princeton University Press. Prince
ton, N.J., 1946), p. 200. 

Clearly, 
(8) 

from (7). 
Going back to (4), we see that 

n 

2 Y;'j 2 flsml~l{(p + v) - S(P)} 
i~1 SeW 

X mA,{(p + 11) - S(P) + kt jkOCk} 

1 1 

= 2 ... 2 (_1):E~ik 2 fls 
it~O j.~O SeW 

X m,l.'{(P + v) - S(P + I,) +ktJkOCk} 

= 2 flsm~~){(p + v) - S(P + A)}. 
SeW 

Hence, using (8), we obtain 

n 

2 YAj 2 flss,fls'(PH,l+S(Pl.2P+v 
i~1 S.S'eW 

= 2 ~SS'~S'(PH'l+S(P+J.I.2P+v' (9) 
S.S'eW 

III. LINEAR EQUATIONS 

Since v can be anyone of the Ai in (9), there are as 
many equations as there are unknowns, which are 
the multiplicities Y Ai . 

When v = Al > A + A', the right side of (9) is 
always zero, since 2P + v will be greater than the 
highest value of S' (P + A') + S(P + A), which is 
obtained when S = S' = I. On the left of (9), only 
i = 1 contributes, the Kronecker symbol being unity 
here. All the other terms are zero, due to the same 
reason cited above. Thus, YAl = O. We thus see that 
Al = A + A', and YHJ.' = I always. These facts are 
already known.8 

We can rewrite (9) as 
n 
2 AkiyJ.; = Bk , (k = 1, ... , n), (10) 
i=1 

where 

and 

Now, Akk = unity, since only S = S' = I contri
butes here, while Aki = 0 when k < i, i.e., when 
Ak > Ai' We thus find that the coefficient matrix is 

8 N. Straumann, Helv. Phys. Acta. 38,56 (1965). 



                                                                                                                                    

CLEBSCH-GORDAN SERIES OF A SEMI SIMPLE LIE ALGEBRA 2063 

triangular and nonsingular, ensuring the uniqueness 
of the solutions. 

From (10) and (11), we can write, for k :r!: 1, 

k-l 

- ~ Y"i ~ oSS,OS'(PHi)+S(P).2PHk· (12) 
i=l S.S'EW 

We thus obtain a kind of "recurrence" relation, 
with which, starting with the IR with highest weight 
A + A', we can determine the multiplicities of the 
various IR's in steps. Some examples will be given in 
the Appendix to illustrate the usefulness of (12). 

Note added in proof; It has been recently realized by 
the author that the intermediate expression (9) can 
also be got by substituting Eq. (3a) in (2), multiplying 
by exp - [2P + v, cp], and integrating. The interest, 
if any, in this procedure is in the contents of Sec. III. 
Note that the reduction of the problem to one of 
solving a system of linear equations depends crucially 
on the properties of strictly dominant weights. 
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APPENDIX 

We consider the algebra A2 whose root system 
consists of all vectors of the form ei - ei (i :r!: j = 
1,2,3) which lie in a plane Xl + Xa + Xa = ° in a 
three-dimensional space. The ei are unit vectors. 
Here, p = (1,0, -1). 

Consider for example, A = J..' = (1,0, -1). Then, 
J.. + A' = (2,0, -2). Thus only the following IR's 
can occur in the Clebsch-Gordan series: 

D27(2, 0, -2); 

D24(i, t, -t); 
Dl5(t, t, -~); 
DIO(2, -1, -1); DiO(1, 1, -2); 

DS(I, 0, -1); D6(t, -i, -i); 
D6(!, !, -t); 
D3(i, i, -i); DI(O, 0, 0). 

The superscripts refer to the dimensionalities of the 
IR's. 

Applying the procedure given in Sec. III, one finds 
that the multiplicities of those IR's with nonintegral 
components for the highest weight are zero. The 

nontrivial set of linear equations is 

1 0 0 0 ° Y27 1 

-1 1 0 0 0 YIO 0 

-1 0 1 0 0 YiO = ° 0 -1 -1 1 0 Ys ° -1 1 1 0 Yl 2 

where we have labeled the y's by the corresponding 
dimensionalities. Thus 

Yl = YiO = YIO = Y27 = 1, Ys = 2, 
which is a well-known result. 

Consider next the algebra G2 , which has a root 
system similar to A2 , with the additional six roots 
ei - 2ei + ek (i :r!: j :r!: k = 1, 2, 3). The components 
of a weight m = (ml' m2' m3) are integers, with 
ml ~ 0, ma ~ 0, ma ~ O. The Weyl group, of order 
twelve, consists of all permutations, along with 
permutations with total change of sign of the com
ponents. Here, p = (3, -1, -2). 

Let A = (1,0, -1) and J..' = (2, -I, -1). The 
only IR's which can occur in the decomposition are 

D64(3, -1, -2); D27(2, 0, -2); 

DU(2, -1, -1); D7(1,0, -1); 

Dl(O, 0, 0). 

The linear equations are 

1 0 0 0 0 Y64 
0 1 0 ° 0 Y27 1 
1 -1 1 0 0 Y14 = ° 

-1 0 1 1 ° Y7 0 
0 -2 ° 1 1 Yl -1 

Hence, 
Y7 = Y64 = Y27 = 1, Yl = Y14 = 0. 

Symbolically, 
7 ® 14 = 64 (f; 27 (f; 7. 

Let J.. = (2, -1, -1) and A' = (2,0, -2). The IR's 
which can occur are 

D189(4, -1, -3); D77'(4, -2, -2); 

D77(3,0, -3); D64(3, -1, -2); 

D27(2, 0, -2); D14(2, -1, -1); 

D7(1, 0, -1); DI(O, 0, 0). 

Here, we find that 

YI8S = Y77 = Y64 = Y27 = Y14 = Y7 = 1, 

Yn' = Yl = 0. 
Symbolically, 

14 ® 27 = 189 EB 77 EB 64 (f; 27 (f; 14 EB 7. 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 9, NUMBER 12 DECEMBER 1968 

Theorems on the Ising Model with General Spin 
and Phase Transition 

MAsua SUZUKI 

The Institute for Solid State Physics, University of Tokyo, Roppongi, Tokyo 

(Received 5 July 1968) 

The theorem of Lee and Yang has been extended to the ferromagnetic Ising model with arbitrarily 
mixed spin values of Sj ,= !, 1, and t, including the case of equal spin values as a special one. Namely, it 
has been proved that the zeros of the partition function for the above Ising model with higher spin 
values lie on the unit circle in the fugacity plane (or complex magnetic-field plane). Expressions for 
general correlation functions in Ising ferromagnets with higher spin values have been derived in terms of 
the above generalized theorem. By the use of these expressions, the relations among the critical indices 
are discussed and the same results are obtained as those predicted by the scaling-law approach. 

1. INTRODUCTION 

Recently, the critical behavior of the second-order 
phase transition was investigated by the use of the 
distribution of the zeros of the partition function in 
the fugacity planel - 4 and also in the complex tempera
ture plane.5- 11 The known distributions of zeros in 
the Ising model are one-dimensional in both complex 
planes. But it is noted that in other systems, such as 
the modified Slater KDP model,12 there exists a two
dimensional distribution of zeros, in which case the 
critical behaviour shows a quite different character.9 In 
this paper, it is shown that the zeros of the ferro
magnetic Ising model with arbitrarily mixed spin 
values of Sj = t, 1, and -! lie on a unit circle in 
the fugacity plane, which has been expected to hold 
from a computer experiment for finite lattices.13 

Exact solutions for S = -! and S = 1 have been known 
only in the one-dimensional Ising model.14 

2. PROPERTIES OF THE PARTITION 
FUNCTION OF THE ISING MODEL 

Consider a crystal lattice with an Ising spin of spin 
Sj at the jth lattice site. The total energy of this system 
is given by 

:Ie = - L JijSiS j - rnH L Sj' (2.1) 
i>j j 

1 T. D. Lee and C. N. Yang, Phys. Rev. 87, 410 (1952). 
2 M. Suzuki, Progr. Theoret. Phys. (Kyoto) 38, 289, 744, 1225 

(1967). 
3 M. Suzuki, Pro gr. Theoret. Phys. (Kyoto) 39,349 (1968). 
• R. Abe, Progr. Theoret. Phys. (Kyoto) 38, 72, 568 (1967). 
6 M. E. Fisher, Lectures in Theoretical Physics vile (University 

of Colorado Press, Boulder, Colorado, 1964), p. 1. 
6 G. L. Jones, J. Math. Phys. 7, 2000 (1966). 
7 R. Abe, Pro gr. Theoret. Phys. (Kyoto) 37,1070 (1966); 38, 322 

(1967). 
8 S. Grossmann and W. Rosenhauer, Z. Physik 207, 138 (1967). 
• M. Suzuki, Progr. Theoret. Phys. (Kyoto) 38, 1243 (1967). 
10 S. Ono, Y. Karaki, M. Suzuki, and C. Kawabata, Phys. Letters 

24A, 703 (1967); J. Phys. Soc. Japan 25,54 (1968). 
11 S. Katsura, Progr. Theoret. Phys. (Kyoto) 38, 1415 (1967). 
12 F. Y. WU, Phys. Rev. Letters 18, 605 (1967). 
13 C. Kawabata. M. Suzuki, S. Ono, and Y. Karaki,Phys. Letters 

(to be published). 
14 M. Suzuki, B. Tsujiyama, and S. Katsura, J. Math. Phys. 8, 

124 (1967). 

where the symbol i > j means that each pair (i,j) 
should be counted only once, and Sj is the Z com
ponent of the spin operator (Sj = Sj' Sj - I, ... , 
-Sj). The partition function 8 N is 

8 N = Tr exp C~jKiiSiSj + h t Sj), (2.2) 

where 
Kij = Jij/kT and h = mH/kT. (2.3) 

It is convenient to introduce the following function 
In of the variables Z1' ... , zn: 

fn(Zl, ... , zn; 51, ... , Sn) 
8 1 8 n 

= L ... L IT xi/'S; IT zji, (2.4) 
81=-81 Sn=-Sn i> i j 

which corresponds to the partition function in an 
inhomogeneous field, putting 

xi} = e-K ;; and Zj = e-lIi • (2.5) 

Expanding the above function with respect to the 
variable Zl' the following recurrence formula is 
easily obtained: 

81 

fn({Zj}; {Sj}) = L Z~Ak' (2.6) 
k=-81 

where 
Ak =fn-1({z jX1J}; 52,"', Sn)· (2.7) 

It is of use to notice that the following simple relations 
hold in general for real parameters {Xij}: 

(i) 

(ii) 

and 

f~({z;}; {Sj}) = fn({zj}; {Sj}), 

fn({lJzj}; {Sj}) = fn({Zj}; {Sj}), 

(2.8) 

(2.9) 

(iii) if / Z2/ = ... = / Zn / = I, then the following 
symmetry relations hold: 

A_k = A:; k = 51 ,51 - 1,"', -Sl' (2.10) 

In this paper, we prove that the zeros of the 
partition function of the ferromagnetic Ising model 
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with arbitrarily mixed spin values of Sj = t, 1, and I 
lie on a unit circle in the fugacity plane, including the 
case of all Si = S (S = t, 1, or I) as a special one. 
Namely, we shall prove the following theorem: 

Theorem 1: In the ferromagnetic system (Jii ~ 0), 
all the roots of the equation 

3 N({xij}; z; Sl'" . ,SN) = 0 

are on the unit circle for Sj = t, 1, or l. 

It is clear that 

(2.11) 

Therefore, Theorem 1 is an immediate consequence 
of the following theorem: 

Theorem 2: If In(Zl,"', Zn; {Sin = 0 and 
IZ11 ~ 1, ... , IZnl ~ 1, then 

IZ11 = IZ21 = ., . = IZnl = 1 

for 0 < Xii S 1 and Si = t, 1, or I. 

In the following sections, we assume that all the 
x's are different from 1. The proof can then be 
easily generalized to include the case when one or 
more of the x's are equal to 1. We prove Theorem 2 
by mathematical induction as did Lee and Yang. 

3. LEMMAS 

Consider the following conjugate reciprocal equa
tion: 

aozm + a1zffl-1 + ... + am = 0, 

am-k = a: and ao:;C O. (3.1) 

Lemma 1: If Zl = rei4> (r :;C 1) is a solution of the 
equation, then Z2 = (l/r)ei 4> is another solution of 
Eq. (3.1). 

This is evident. 

Lemma 2: If m is odd, one of the roots of Eq. (3.1), 
at least, must have the absolute magnitude equal to 1. 

Proof' If we assume that for all the roots {Zi} , 
IZi I :;C 1, then, in terms of Lemma 1, the following 
m + 1 roots should exist: 

Zl = rl e
i4>t, Z2 = (1/r1)ei4>t, ... , Zm = r pei4>D, 

zm+! = (1Irp)ei4>D; p = tem + 1). 

This is contradictory to the Gauss theorem. 

Lemma 3: Iflaol ~ lall in Eq. (3.1) for m = 1,2, or 3, 
then all the roots of Eq. (3.1) must have the absolute 
value equal to 1. 

Proof' The case of m = 1 is evident from a1 = a;:'. 
Next, if we assume that one of the roots of Eq. (3.1) 
is expressed as Z1 = rei 4> (r ¥- 1) in the case of m = 2, 
then the other root in terms of Lemma 1 is given by 
Z2 = (l/r)ei4>. Now the coefficients of Eq. (3.1) must 
satisfy the relation 

(3.2) 

Consequently, the following inequality should hold 
for one of the roots, at least, to have an absolute 
magnitude unequal to 1 : 

(3.3) 

Therefore, if laol ~ lall, at least, then all the roots must 
have an absolute magnitude equal to 1. 

In the case of m = 3, in terms of Lemma 2, one of 
the roots can be written as Zl = ei9

• If we assume that 
one of the other roots is expressed as Z2 = rei 4> (r ¥- 1), 
then the third root is given by Z3 = (l/r)ei4>. Now, we 
obtain the following relation between the roots and 
the coefficients: 

a11ao = _ei9 
- (r + l/r)ei4>. (3.4) 

Consequently, the following inequality should nold 
for one of the roots, at least, to have an absolute 
value unequal to 1: 

Therefore, if laol ~ la11, then all roots must have an 
absolute magnitude equal to 1. 

The fact that Lemma 3 is proven only for m = 1, 2, 
and 3 is what limits the proof to Sj S i. Lemma 3 
can be extended to higher m as the following theorem: 

If 

laol ~ la11 + ... lao-1l + (m ~ 1 - q) laal, 

q = [mI2], (3.6) 

then all the roots of Eq. (3.1) have the absolute value 
equal to 1. 

The proof and applications of this theorem will be 
reported in the forthcoming paper. If the sufficient 
condition (3.6) could be replaced by the inequality 

then the proof in the subsequent sections would be 
valid to the case of Sj ~ 2. However, we can easily 
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find a counter example to the condition (3.7) for 
m~4. 

4. PROOF IN THE CASE OF n = 1, 2 

In this section, Theorem 2 is proved for n = 1 and 
n = 2. In the case of n = 1, the proof is evident from 
the fact that the roots of the equation 11(Z, S) = ° 
are given by 

(Ok = exp {27Tik/(2S + I)}, k = 1,2,'" ,2S. (4.1) 

In the case of n = 2, the relevant polynomial is 
expressed as 

8, 
12(ZI, zz; SI' Sz) = 2 zUl(Z2Xl:; S2), (4.2) 

k=-S, 

where Sj = t, 1, or!,j = 1,2. 
Assume that there exists a set of z's equal to ZI and 

Z2 such that 
(4.3) 

and 
IZ11> I and IZ21 ~ 1. (4.4) 

Regarding Z2 as a function of ZI defined by (4.3), one 
obtains a limit:12 for Z2 as Zl ---+ 00, which satisfies the 
equation 

ftC:12x-s,; S2) = 0, x = X 12' (4.5) 

From the discussion for n = I, one obtains 

13'2x-S, I = 1. 

Now by condition ° < x < I we have 

13'21 < 1. 

Therefore, if we assume (4.3) and (4.4), there should 
exist a set of values z~, z; such that 

and 
Iz{j > 1, IZ21 = 1. (4.6) 

On the other hand, let us consider the equation 

(4.7) 

for IZ21 = 1. As the function z8'11(z, S2) is a poly
nomial of the order 2S2 , it can be decomposed into 
the form 

where 

2S, 
ZS'fl(Z; S2) = II (z - (Ok)' 

k=1 

(Ok = exp {27Tik/(2S2 + In 
and l(Okl = 1. If we define a function 4>(t) by 

4>(t) = 1/1(tz2; S2)1 2
, for IZ21 = 1, 

(4.8) 

then we obtain easily 

2S, 
4>'(t) = 4>(t)2(1 - t-2)/lt! - (Ok/t!z2Iz, (4.9) 

k=l 

and consequently 

4>'(t) > 0, for t > 1. (4.10) 

Namely, 4>(t) is a monotonically increasing function 
for t > 1. Therefore, the following inequality is 
obtained: 

Ifl(z2x-S,; S2)1 ~ IftCzzx-S,+1; S2)1 (4.11) 

for ° < x < 1 and IZ21 = 1. The sign of equality in 
Eq. (4.11) is valid for SI = t. By the use of Lemma 3 
and the formula (4.2), the root ZI of Eq. (4.7) must 
satisfy 

IZll = 1, 

which contradicts (4.6). This means that the assump
tion (4.4) is not true. Thus, Theorem 2 has been 
proved for n = 1 and n = 2. 

5. MAIN PARTS OF INDUCTION 

Assume that Theorem 2 is true for n = m - 2 and 
n = m - 1, but not true for n = m. We shall show 
that the above assumption leads to the inconsistent 
situation that the results of the following two parts 
are contradictory to each other. 

Part 1: Under the above assumption that Theorem 2 
is not true for n = m, there exists a set of z's equal to 
Zl' ... , Zm such that 

(5.1) 
and 

We can repeat Lee-Yang's procedure in a generalized 
form as follows. Keeping Z3,"', Zm fixed and 
regarding Z2 as a function of ZI defined by (5.1), 
one obtains a limit 3'2 for Z2 as Zl ---+ 00, which is 
given by the equation of the order 2S2 , 

fm_tChx12s\ zaxlf\ ... ,ZmXl~l; {Sj}) = 0, (5.3) 

unless the coefficient of the highest order in Eq. (5.3), 

fm_2({z jx1f'x;,f'}; {Sj};j 2 3), 

vanishes. Now write 

(5.4) 

'" x-s , - r z x-s , - r .,. Z x-S1 - r (5.5) 
0212 -<"2' 313 -<"3, 'm 1m -<"m' 

Equation (5.3) reduces to 

fm-la2, ... , ~m; {Sj}) = 0. (5.6) 
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Now, by condition (5.2), 

Isil > IZil ~ 1, j = 3,4, ... , m. (5.7) 

Under the assumption that Theorem 2 is true for 
n = m - 1, one obtains 

unless the polynomial (5.4) vanishes. In fact, the 
polynomial (5.4) does not vanish from the inequality 
(5.7) and from the assumption that Theorem 2 is 
true for n = m - 2. Therefore, keeping Z3' ... , Zm 
fixed one can increase IZll and define Z2 as a continuous 
function of ZI' Since by (5.2), IZ21 starts to be > 1 in 
absolute magnitude and tends to a limit < 1 in 
absolute magnitude as ZI ->- 00, there must be a value 
equal to z~ so that Z2 assumes a value z~ equal to 1 in 
absolute magnitude, i.e., 

and 

We can fix z~, Z4' ... , Zm and regard Z3 as a function 
of z~ and follow the same procedure as mentioned 
above. Continuing this way we finally get a set of 
values z~, ... , Z;;. such that 

fm(z~, ... , z~; {Si}) = 0 
and 

Iz~1 > 1, Iz~1 = ... = Iz~1 = 1. (5.9) 

Part 2: In this paragraph, we shall prove that if 
IZ21 = ... = IZml = 1 and 

fm({zi}; {Si}) = 0, (5.10) 
then 

(5.11) 

Proof: As the function z~'im-l({Zj}; {Sj}) is a 
polynomial of the order 2Sk with respect to the variable 
Zk' it can be decomposed into the form 

where {Z}k indicates a set of variables Z2' ... , Zk-l, 
Zk+1' ... , zm' Theorem 2 for n = m - 1 asserts that 
if IZ21 ~ 1,' .. , IZk-ll ~ 1, IZk+ll ~ 1, ... , IZml ~ 1, 
then 

(5.13) 

Now define a function rpm-l(t2, ... , tm) by 

rpm-l(t2,'" ,tm) = Ifm-l(t2z2,'" , tmzm; {Sj})12 

for IZ21 = ... = IZml = 1. (5.14) 

We obtain easily 

Orpm-l = rpm_1

2£(l - IWi,i{tz h)12/t~)/ 
Otk j=1 

1 
tk! - Wj,k(i tz }k) 12> 0, for all tk > 1 (5.15) 

tk Zk 

Namely, rpm-l(t2 , ••• , tm) is a monotonically increas~ 
ing function of all tk for tk > 1. Therefore, the 
following inequality is obtained: 

Ifm_l({x1JZj}; {Sj})1 ~ Ifm-l({x1rZj}; {Si})I, 
for Iz,.1 = 1 and k> k' ~ O. (5.16) 

In particular, from Eq. (2.7), we obtain 

IAs}1 ~ IAsell for IZ21 = ... = IZml = 1. (5.17) 

The sign of equality in Eq. (5.17) is valid for Sl = t. 
Therefore, in terms of Lemma 3 and the recurrence 
formula (2.6), one obtains that if IZ21 = ... = IZml = 
1 and 

then 

Thus, the results of Part 1 and Part 2 contradict 
each other, which means that Theorem 2 must hold 
for n = m. 

This completes the proof of Theorem 2 by induction. 

6. EXPRESSIONS FOR THERMODYNAMIC 
QUANTITIES AND CORRELATION FUNCTIONS 

In terms of Theorem 1, the partition function of the 
ferromagnetic Ising model with arbitrarily mixed spin 
values of Sj = t, 1, and! is expressed as 

where 
W j •k = exp (i();.k)' 

It is evident that if W = ei8 is a zero of 3 N , then 
w' = e-i8 is also another zero. Neglecting a constant 
term, the free energy of the above system for infinite 
N is represented as 

F 1" - - = g{sl(), t) log 2(cosh h - cos e) de, (6.2) 
kT 0 

where t = (T - Tc)/Te> h = mH/kT, and g{S}(e, t) is 
the distribution function of the zeros of the partition 
function in the fugacity plane under the configuration 
of spin {S}. The magnetization is obtained from Eq. 
(6.2): 

M = m sinh h r g{S)(e, t) de, (6.3) 
Jo cosh h - cos () 
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and the spontaneous magnetization is expressed in 
term of g{slO, t) as follows: 

Ms = 7Tmg{s}(O, t). (6.4) 

The susceptibility is derived from Eqs. (6.3) and (6.4) 
as follows: 

XO = m
2 So" g{S}(O, t) - g(S}(O, t) dO. (6.5) 

kT 0 1 - cos 0 

Correlation functions of even number of spins can be 
expressed as3 

J
" p{S}(O i'" j t) 

(Si' .. Sj) = 1 + e' 'g(siO, t) dO, 
o 2(cosh h - cos 0) 

(6.6) 

where Sj = Sj/Sj and p!S) is the spectral intensity of 
the correlation function {Si .•. Sj}. Correlation func
tions of odd number of spins can be also expressed as3 

(SiS; ... Sm> 

= (" (sinh h)piS}(O, ij . .. m, t) g{S}(O, t) dO. (6.7) 
Jo cosh h - cos 0 

The distribution function g{S}(O, t) and the spectral 
intensity p~S}(O, ij' .. m, t) satisfy the following 
normalization conditions 

g{slO, t) dO = - , J" 1 
o 2 

(6.8) 

and 

f" g{S}(O, t)p~S}(O, ij ... m, t) dO = 1. (6.9) 

These expressions can be fruitfully used in order to 
investigate the singularities of the thermodynamic 
quantities and correlation functions near the transition 
point.2- 4 

7. DISCUSSION 

As was discussed in previous papers,2-4 the distri
bution function of zeros for small (} and t, in terms of 

Eqs. (6.4) and (6.5), has been derived in the form 

(7.1) 

As usual, (x, (J, and y denote the indices of specific 
heat, spontaneous magnetization, and susceptibility, 
respectively. The magnetic equation of state is given by 

(7.2) 

in terms of Eqs. (6.3) and (7.1), which agrees with the 
results predicted by the scaling law.IS- I7 Namely, we 
obtain the relationsI 5-I8 

(X + 2f3 + y = 2 (7.3) 
and 

(X + (J(1 + b) = 2, (7.4) 

where b is the index of the critical magnetization. The 
index of the correlation length v is expressed as3 

v = (2{J + y)/d, (7.5) 

in terms of Eqs. (6.6) and (6.7), where dis the dimen
sionality of the system. 

As a special case, Theorem 1 holds for all Sj = 
S (S = !, 1, or i). Quite recently, Asano19 proved 
the case of S = 1. As another special case, Theorem 1 
can be applied to the ferromagnetic Ising model 
consisting oftwo sublattices with different spin values. 
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The quadratic Lagrangian eigenvalue problem {,,'P + "Q - (L + B)], = 0 and the associated time
dependent problem P~ + iQt + (L + B)W) = 0 are investigated for the case where P, Q, and Bare 
bounded linear Hermitian operators in Hilbert space, P is positive and invertible, L possesses a positive 
completely continuous Hermitian inverse, and L + B > O. Existence and completeness theorems for the 
eigenvectors as well as variational characterizations of the eigenvalues are given, and the general solution 
of the time-dependent problem is obtained in terms of an eigenvector expansion. Finally, these results are 
applied to the problem of small oscillations of a rotating elastic string. 

I. INTRODUCfION 

Existence and completeness theorems for the eigen
vectors of quadratic Lagrangian eigenvalue problems 
involving completely continuous Hermitian operators 
have been given in two earlier papers.1.2 Apart from 
finite-dimensional examples, the great majority of 
physical problems involve differential operators. We 
deal herein with one such type of problem, illustrated 
by the V'ibrations of a rotating elastic string, where the 
differential operator possesses a completely continuous 
positive inverse. This problem can be reduced to an 
equivalent problem already treated in Ref. 2, and 
existence and completeness theorems as well as 
variational characterizations of the eigenvalues are 
thereby obtained. The time-dependent problem is 
also discussed, and the solution is obtained as an 
eigenvector expansion. 

A note as to notation: Theorem 2.III denotes 
Theorem III of Ref. 2, while Theorem l.V denotes 
Theorem V of Ref. 1. 

ll. EIGENV ALVES, EIGENVECTORS, ETC. 

Theorem I: Let P, Q, B, and K be bounded linear 
Hermitian operators on and into the Hilbert space E, 
and suppose that K is positive semidefinite and com
pletely continuous. Let L be a linear operator with 
domain DL C E and range RL C E with the property 
that KL = Ion DL , and suppose that PK(E) C R L , 

QK(E) c R L , and BK(E) c R L • Then 

{A2P + lQ - (L + B)}{ = 0, ~ E DL , A#- 0, (1) 

holds if and only if 

{1-2(I + kBk) - A-1kQk - kPk}'Yj = 0, (2) 

with ~ = k1/, 'Yj = kL~, where. k == KI and the oper
ators kBk, kQk, and kPk are completely continuous 
and Hermitian. 

1 E. M. Barston, J. Math. Phys. 8, 523 (I967). 
• E. M. Barston, J. Math. Phys. 8, 1886 (1967). 

Proof Suppose Eq. (1) holds. Then ~ E DL implies 
k2L~ = ~. Define 1/ == kL~, so that k'Yj = ~. Equation 
(2) follows at once by multiplying Eq. (1) on the left 
with A-2k. Now suppose Eq. (2) holds. Multiplying 
Eq. (2) by A2 and setting ~ == k'Yj, we obtain 

'Yj = kH.J, HJ. == 12P + lQ - B, (3) 

~ = k'Yj = k2HJ.~ = KHJ.KHJ.~ = Kf, (4) 

where f== HJ.KHA~ E RL · Thus for some x E DL we 
have f= Lx, which leads to ,= Kf= KLx = x. 
Therefore ~ E DL and L~ = f = HAKHJ.' = HA~' 
which gives Eq. (I), and 1/ = kHJ.~ then implies 
'Yj = kL~. Since K is a completely continuous positive 
Hermitian operator, so is k = Kl, and the complete 
continuity of kBk, kQk, and kPk foHows from the 
bounded ness of B, Q, and P. 

Theorem II: Let the hypothesis of Theorem I hold, 
L + B> 0 on DL (DL #- 0), P ~ 0, and IIkPkll + 
IlkQkll > O. Then Eq. (1) possesses a nonempty 
sequence [finite or infinite, with at most 2(dim RK ) 

elements] of eigenvectors {{,,} (n = 1,2, ... ) with 
real nonzero eigenvalues 1" having the following 
properties: 

(A) ~n E DL , {l!P + l"Q - (L + B)}t" = 0, 

n = 1,2," '. (5) 

(B) {llnn is a monotonic, nondecreasing sequence 
and IA."I- 00 asn - 00. If P > o on Rkand dim RK = 
00, there are an infinite number of 1" > 0 as well 
as an infinite number of A." < O. 

(C) Dim M(l • .) < 00, where M(A,,) is the linear 
manifold of eigenvectors with eigenvalue A.n . 

(D) AmA"('m' P~n) + am, [L + B]~n) = <5mn , 

m, n = 1, 2, .. '. (6) 

2069 
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(E) Let either of the following statements hold: 

(E1) infa, P,) > 0, lh = E, y E Rk , Y E Rk , 

E G,') 

so that A ~ -1. Then there exists, E E, { ;;6 0, such 
that kBk{ = A{, k{;;6 0, and we have k{ = 
A-1k 2Bk{ = A-2k2j, where i== Bk2Bk{ E RL • There
fore k{ E DL , Bk{ = Bk2Lk, E RL , so that ALk{ = 
Bk{. Thus (k" [L + B]k,) = (1 + A)(k{, Lk{) and 
(k{, LkD = (KLk{, Lk,) = (Lk', KLkD ~ 0, so 

(E2) P = I, B = 0, Y E Rk , Y E RK . 

Then 
(7) that A ~ -1 implies (kt [L + B]k{) ~ ° for k{ ;;6 0, 

which contradicts L + B> ° on DL • Hence A > 0, 
(8) and r = [1 + kBk]! has the properties stated above. 

Equation (12), and therefore Eq. (1) (for An ;;6 0), 
is then equivalent to where 

fJm = ([L + Bgm, Y) + Am(P'm, y). 

(F) Let 

inf(" P,) > 0, 
E ({, {) 

(9) 

and DL = E or P = 1 and B = 0. Then, for y E DL , 

Y E Rk , and I'm (m = 1,2,· .. ,n) any n complex 
numbers, we have 

II y - ~ Ym{m \I: + II y - ~ YmAm{m II: 
= II y - ~ fJm'm II: 

+ II y - ~ fJmAm{m II: + ~ IfJm - yml
2 

~ II y - ~ fJm'm II: + 1/ y - ~ PmAm{m II: 
n 

= lIyll?r + Ilyll~ - ! IfJml2, (10) 
1 

lIyll?r + IIYII~ = ! IPmI2
, (11) 

m 

where the Pm are given by Eq. (9), T == L + B, and 
IIfll~ == (f, Pf)· 

Proof: Theorem I implies that, for An ;;6 0, Eq. (1) 
[and (5)] is equivalent to 

{A~2(I + kBk) - A--;/kQk - kPk}'fJn = 0, (12) 

with 
{n = k'fJn, 'fJn = kL'n' 

L + B > 0 on DL implies that 

A == inf(~' [I + kBk]~) > 0, 
E (~,~) 

(13) 

so that there exists a positive bounded Hermitian 
operator r with a positive bounded Hermitian inverse 
r-1, such thatr2 = / + kBk (r = [/ + kBk]i). Indeed, 
suppose A ~ 0. We have A = 1 + A, where 

A == inf(~' kBk~) , 
E (~,~) 

where 

and 
~n == r'fJn = rkL{n, 

{n = k'fJn = kr-l~n' (16) 

The problem is now reduced to the case of Theorem 
2.n, since P ~ ° and IlkPkll + IIkQk11 > 0 imply 
H ~ ° and IIHII + IIAII > O. If P > ° on Rk and 
dim RK = 00, then H has infinitely many positive 
eigenvalues. Theorem 1. V then implies the existence 
of an infinite number of positive (as well as negative) 
An' Statements (A), (B), and (C) follow from Theorem 
2.n (A), (B), and (C). Note that RiA C R

r
-

1k 
and 

RH C Rr-
1k

, so that we could restrict Eq. (14) to the 

Hilbert space Rr- 1k with no loss of eigenvectors. 

Since dim R
r
-

1k 
= dim RK , Theorem 2.ll yields 

2(dim RK ) as the maximum number of eigenvectors 'n. Equations (15) and (16) and Theorem 2.ll (D) 
give 

(rkL{m, rkL{n) + AmAn(~m' ,-lkPk,-l~n) = bmn . 

(17) 
Now, 

and 

(~m' ,-lkPk,-l~n) = (kr-l~m' Pkr-l~n) 
= ({m,P{J 

(rkL{m, rkL{n) = (kr 2kL{m' L{n) 

= (k[/ + kBk]kL{m, L{n) 

= ([k 2 + k 2Bk2]L{m, L{n) 

= ('m' [L + B]'n), 

so that (D) holds. In the circumstance that DL = E, 
we have RK = E(DL c RK), K> 0, k > 0, and 
H> ° if P > O. Therefore the set Sex) [cf. Theorem 
2.ll (E) and (F)] satisfies Sex) = E. If P = 1 and 
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B = 0, then r-1 = J, Hi = k, and Sex) = Rk • Let 
(El) or (E2) hold. Then there exist x E E, i E Sex), 
such that y = kr-1i, y = kr-1x, and Theorem 2.ll 
(F) yields 

m 
and 

m 
where 

flm == A:;"\Xm = Am(';m, Hx) + (';m, i). 

We have 

am' Hx) = (';m, r-1kPkr-1x) 

= (Pk,-I';m' kr-1x) = (P~m' y), 
(';m,i) = (rkL'm, i) = (L'm,kr2,-li) 

= (L'm' k[J + kBk]r-1x) 

= (L'm' y) + (L'm' KBy) 

= ([L + Bgm,y), 

(18) 

(19) 

(20) 

so that Eq. (9) holds. Equations (16), (19), and the 
fact that kr-l is bounded yield Eq. (7). Equation (8) 
follows from 

and Eq. (18), since 

II Hi{x - ~ flmAm';m}W 

= (x - ~ flmAm';m, r-1kPkr-l[x - ~ flmAm';mJ) 

= (y - ~flmAm'm' p[Y - *flmAm'mJ). 

Let y E D L , Y E Rk • Then there exists x E E such that 
y = kr-1x, and y = kr-1i for i = rkLy. Statement 
(F) is now an immediate consequence of Theorem 
2.ll (G) and (H), Eqs. (15), (16), and (20), and the 
fact that, for, E D L, 'Y} E E, we have 

IlrkL"12 = (rkL', rkLO 

= (kr2kL', LO = (k[I + kBk]kL" L,) 

= (', [L + Bm = II'II~, (21) 

11'Y}llk = ('Y), H'Y}) = (kr-1'Y), Pkr-I'Y}) = Ilkr-I'Y}II~. (22) 

This completes the proof of Theorem II. 

Theorem III: Let the hypothesis of Theorem I hold, 
P;;::: 0, L + B > 0 on DL , and suppose that the 
positive and negative eigenvalues of Eq. (1) are 
arranged in the nondecreasing and nonincreasing 
sequences ki ~ At ~ .. " AI;;::: A; ;;::: ... , respec
tively. Denote the corresponding eigenvectors which 

satisfy Eq. (6) by ';=. Then 

(A~)-l = max F(r;), 
'1E.!f'+ 

(A-;;)-1 = mil! F('Y}), 

(23) 

(24) 

(A~)-1 = min max F(r;) , (25) 

where 

tPmEEXE (tPm.~).=O 
m=1.2.·· . • n-l m=I.2.· .. . n-l 

1/EDLXDL 

max min F(r;) , 
tPmEEXE (tPm.~).=O 

m=1.2.··· .n-l m=1.2.·· ·.n-l 
~EDLXDL 

(26) 

(4), r;)2 == (4)1' r;1) + (4)2' r;2), (27) 

s; == {r; I r; E D L X D L , ([L + B]'~, 'Y}2) 

+ A~(P,;,'Y}I) = 0, m = 1,2,"', n - I}, 

(28) 
and 

Proof: Let 

'Y} ,= (~:) E D L X D L . 

Set U1 == rkL'Y}I' U2 == rkL'Y}2' so that 'Y}1 = k,-IU1 , 
'Y}2 = kr-1u2 (cf. Theorems I and II). Then we have 

('Y}I' P'Y}2) = (u1, Hu2), ('Y}2, Q'Y}2) = (u2, iAu2), 

('Y}I' P'Y}I) = (ul , Hu1), ('Y}2' [L + B]'Y}2) = (u2, u2), 

(30) 

where Hand iA are given by Eq. (15). Referring to 
Eqs. (14)-(16) and Theorem 2.Ill, we have the 
correspondence w;: = (2;:)-1, .;;; = rkL';;, ';; = 
kr-l ';;' , so that 'Y) E s;: implies 

u = e:) E V;, 
and therefore Theorem 2.llI gives 

"(A~)-l ;;::: ma~ F(r;), 
71 ESn 

(2";;)-1 ~ mil!. F('Y}). 
1fES n 

(31) 

(32) 

Equations (23) and (24) now follow immediately from 
the fact that 

F(r;) = (A;)-1 for 'Y) = C~~;) E s; . 

Suppose 'Y} E DL X DL and (4)m, 'Y})2 = 0, m = 1, 
2, ... , n - 1, where 

( 
A+P,+ ) 

4>m = [L ~ BR;:; . 
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This is equivalent to the statement that 'fJ E s~ , so that 
Eq. (23) implies 

(A~)-I ~ min max 
4> ",eEXE (4),..,,1.=0 

111=1.2.' ..... -1 m=1.2.· ..... -1 
"eDIXDL 

F('fJ). (33) 

Let {4>m}:;:'11 be any n - 1 vectors in E X E, and 
define 

e == (A;:;~;:;) 
m ~;:; 

for m = 1, 2, ... ,n. Equation (6) implies that the 
{em}::-I is linearly independent and thus spans an 
n-dimensional subspace M .. c DL X DL c E X E. 
Therefore, there exists a nonzero vector 

such that (4)m' 'fJ)2 = 0 for m = 1,2, ... ,n - 1. 
Since 

we have 
max F('fJ) ~ (A~)-\ 

( .... ,,'.=0 
m=I.2.·· ' ... -1 

"eDLXDL 

(34) 

(35) 

and Eq. (25) follows from Eqs. (33) and (35). The 
proof of Eq. (26) is similar. 

Lemma I: Let Land P be positive linear operators 
with domain and range in the Hilbert space E, 

DL c D p , 

15
1 

== inf(~' LD > 0, 15
2 

== inf(~' PD > 0, 
DL (~,~) DL a,~) 

and let the infinite sequences of vectors {~m} E D Land 
real numbers {Am} satisfy 

AmA .. am, P~,,) + (~m' L~,,) = 15m", 

m = 1, 2, .. '. Then, for any sequence of numbers 
{Cm}' ~;' ICm l2 < 00 implies that 

00 00 

~ Cm~m and ~ CmAm~m 
1 1 

both converge in E. 

Proof: Let y" ==~; Cm~m and z" ==~; C",Am~"" 
Then, 

(y" - Ym' L[y" - y",]) + (z" - z"" P[z" - zm) 

= (i Ck~k' L:i: C!~!) + (:i: C~k~k' P:i: CIAI~I) 
",+1 m+1 m+l m+1 

" .. 
= ~ CkC'{(~k' L~,) + A~,ak' P~z)} = ~ ICk I2. 

k.l=m+l m+l 
(36) 

Therefore 

" ~ 151'1 ~ ICkl2 (37) 

and 
m+l 

.. 
< 15-1 ~ IC 12 - 2"'::' k' (38) 

m+1 

so that ~;' ICm l2 < 00 implies that {Ym} and {z,,} are 
Cauchy sequences and hence converge in E. 

Lemma II: Let the hypothesis of Lemma I hold, 
IAml-+- 00 as m -+- 00, and ~;' IC",12 A~ < 00. Then 
the series 

converges uniformly in I( - 00 < I < (0) to a limit 
'fJ1(/) E E for 1=0, I, 2, and (d/dt)'fJI(/) = 'fJ1+I(t) for 
t E (-00, (0) and 1=0,1. 

Proof'~;' ICm l2 A~ < 00 and IAml-+- 00 as m -+- 00 

implies ~;' ICm l2 < 00. Let 

n 

~~'(/) == ~ C",(iAm>leiA .. t~", 
1 

for I = 0, 1, 2. It follows from Eqs. (37) and (38) of 
Lemma I that .. 

1I~~'(t) - ~~(/)1I2 ~ ~z~ ICk l
2 AiUl

, (39) 
m+1 

where 

~Z == {15~:, 1:: 0, P{l) == {O, 1 = 0, 1, 
152 , 1 - 1, 2, 2, 1 = 2. 

Thus {~~'(/)} is a uniform Cauchy sequence and 
converges uniformly to a limit element 'fJ1(t) E E for t E 

(- 00, (0) and I = 0, I, 2. Let to E (-00, (0). Wedefine 

{
~~I(/) - ~~'(to) 

, 1 ~ to, 
4>~'(/) == 1 - 10 1 = 0, 1, 

~~+ll(to), t = to ,n = 1, 2, ... , 

{

'fJZ(/) - 'fJ1(tO) , 

"Pz(t) == t - to 

'fJZ+I(to), 
1 = 0, 1, 

and we have 

lim 4>~'(t) = "Pz(t) for t E (- 00, (0) and 1 = 0, 1. 
"-+00 (40) 

We show that the convergence is uniform. Suppose 
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I ~ 10 • Then, 

cp~)( t) - cpt;;( t) 

" = (t - to)-1! {CiiAk)lei).ktO[ei).k(t-IO) - lKk} (41) 
m+1 

so that Eqs. (37) and (38) give 

n 

II cp~)(t) - cpt;;(t)1I 2 :s: ~/! ICk[ei).k(t-tO) - 1](t - to)-11 2 

m+1 
n 

:S:2~/!ICkI2A~, 1=0,1, (42) 
m+1 

where we have used the fact that for real A and 0, 
o ~ 0, 

(43) 

Since !~ ICkl2 A: < 00, Eq. (42) implies that {cp~)(/)} 
is a uniform Cauchy sequence for I ~ 10 and I = 0, 1, 
so we conclude from Eq. (40) that cp~)(/) converges to 
V'I(t) uniformly for all t E (- 00, (0) and I = 0, 1. 
For I = 0, 1 and each n, cp~)(/) is continuous at to, 
so the uniform convergence of cp~)(t) to V'/(t) implies 
that 11'1(/) is continuous at to, i.e., 

and 

Proof: We first show that 

inf(" [L + B1n > 0. 
DL a,n 

Let L' == L + B, K' == kr-2k (see Theorems I and II), 
and k' == (K')l. Then K' and k' are both ~ 0, Her
mitian, and completely continuous, and K'L' = Ion 
DL , since, for' E DL , 

Now ,= k'u for u = k'L", so that a, L") = 
(k' u, L' ') = (u, k'L' ') = (u, u) and 

(', n = (k'u, k'u) = (u, K'u). 

Therefore 

inf('- E,) > inf [(u, K'U)]-1 
DL (', ') - E (u, u) 

= [sup (u, K'U)]-1 = IIK'II-1 > 0. 
E (u, u) 

Therefore (d"l,ldt)(to) = "11+1(10) for 1=0, 1. Since 
10 was an arbitrary point of (- 00, (0), the proof is 
complete. implies 

Theorem IV: Let the hypothesis of Theorem II as 
well as (El) or (E2) of Theorem II be satisfied, and 
suppose that 

where {Cm} is a sequence of complex numbers and 
gm} and {Am} are the eigenvectors and eigenvalues 
obtained in Theorem II. Then the series 

converges uniformly in I( - 00 < t < (0) fot n = 0, 1, 
2,3,4. Let 

00 

W) == ! Cmei.t,.t'm , - 00 < t < 00. (45) 
1 

Then 

d"'(t) =! Cm(iAm)"ei). .. t'm , -00 < t < 00, (46) 
dtn 

1 

for n = 1, 2, 3, 4, '(t)EDL for tE(-OO, (0), and 
we have 

P~ + iQ' + [L + B]'(t) = 0, - 00 < t < 00, 

(47) 

00 

! ICmA;'1 2 A;' < 00 
1 

and 
00 

! ICm l2 A;' < 00 (IAml-+ 00 for m -+ (0). 
1 

Therefore, by Lemma II, the series 

00 

"I1(t) == ! Cm(iAm)Zei).,.t'm, 1=0,1,2, 
1 

00 

"I1+2(t) == ! [Cm{iAm)2](iAm)lei.t .. t'm, 1 = 0, 1, 2, 
1 

converge uniformly for t E (- 00, (0) and 1=0, 1,2, 
and we have d"lzldt = "11+1 for I = 0, 1, 2, 3. Thus Eq. 
(46) holds. Now 

-K{P~ + iQ' + Bn 
00 

= K! Cmei;.".t{A;'P'm + AmQ' ... - B'm} 
1 

00 00 

= K! C",ei)' .. tL'm = ! C",ei.t",tKL'm 
1 1 

00 

= '" C ei). .. tr . 
~ m '='m' 
1 

i.e., 
'(t) = -Kf, f== P~ + iQ' + B'. (49) 
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Therefore ~ = -Kj, ~ = -Kj, so that -/ = pKf + 
iQKj + BK/E RL , since PK(E) c RL , QK(E) C RL , 
and BK(E) C RL . Then -/= Lu for some u E DL , 

and Eq. (49) gives' = -K/= KLu = u; i.e., 'E 
DL and L, + /= 0, which is Eq. (47). We have ~ = 
-Kj and, E DL for all t E (- 00, (0), so that, in 
particular, ~(O) E RK and '(0) E DL C RK . Thus 
Eqs. (7) and (8) of Theorem II give 

00 00 

L Pm'm = ,(0) = L Cm'm, (50) 
1 '1 

00 00 

i L PmAm'm = ~(o) = L CmiAm'm, (51) 
1 1 

where 
i.e., 

Pm = ([L + B)'m' '(0» + Am(P'm' -i~(O»; 

00 00 

LYm'm = 0 = LYmAm'm 
1 1 

for Ym = Cm - Pm. Therefore 

0= ([L + B)'n' ~ Ym'm) + An (P'n, ~ YmAm'm) 
00 

= LYm{([L + Bgn, 'm) + AnAm(P'n, 'm)} = Yn' 
1 

(52) 
which establishes Eq. (48). 

III. THE ROTATING ELASTIC STRING 

Consider a straight free elastic string of length R, 
lying within a fixed plane P, in which the string will 
later be assumed to rotate. Let r be the coordinate 
and er the unit vector along the length of the string 
(0 ~ r ~ R), e8 the unit vector in P orthogonal to 
en K(r) the product of the cross-sectional area of the 
string and its modulus of elasticity at the point r, /-l(r) 
its mass per unit length, and let I; (in P) be the dis
placement vector associated with a deformation of the 
string. We write 

I; = ~rer + ~8e8' 
and for the strain € we obtain 

[ ( a~ )2 (a~ )2]! 
€ = 1 + a: + a: - 1. 

(53) 

(54) 

Assuming the (deformed) string to rotate about 
r = 0 with the angular velocity 0, we have 

er = Oe8 , e8 = -Oer, (55) 

so that the kinetic energy T of the deformed string can 
be written as 

T = t lR/-l(r){(~r - O~8)2 + [~8 + O(~r + r)]2} dr. 

(56) 

For the potential energy V we have 

V = rR 
AE €2 dr 

Jo 2 

= tlRK(r){[ (1 + ~;r+ (~:8)r - If dr. 

(57) 

Let the string be in a state of steady rotation, with 
angular velocity 0 about r = 0, with the deformation 
given by ~r = ~o(r) and ~6 == O. We take the ends of 
the deformed string to be fixed in the frame of rotation 
and consider small oscillations about this state of 
steady motion. To this end, we expand I; in a power
series expansion in the perturbation parameter t5, viz., 

~r = ~o(r) + t5~rl(r, t) + t52~r2 + ... , 
~8 = 0 + t5~81(r, t) + t52~82 + . . . . (58) 

Lagrange's equations for ~r and ~6 then yield, to first 
order in t5 and for 0 ~ r ~ R, 

(59) 

/-l[grl - 20~81 - 02~rl) - .E... {K(r) a~rl} = 0, (60) 
ar ar 

/-l[gOI + 20~r1 - .Q2~81) - :r {y(r) at;1} = 0, (61) 

where 

y(r) == K(r) d~O(l + d~O)-1 
dr dr 

and our boundary conditions are 

~rl = ~81 = 0 at r = 0 and r = R. (62) 

The rotating string is assumed to be under tension so 
that d~o/dr > 0, 0 ~ r ~ R, and therefore K(r) > 0 
implies y(r) > 0 for 0 ~ r ~ R. Equations (60) and 
(61) take the form of Eq. (47) in the Hilbert space 
L 2 [0, R) x L 2 [0, R), provided that we set 

P= (~ ~), 
L = (L1 0) 

o L ' 2 

Q = (0 i2.Q/-l) B = 0 
-i2.Q/-l 0' , 

Ll = - ~[K~] - /-l.Q2, (63) 
dr dr 

L2 = - :r[Y :r] - /-l02, ,= (::J 
We take 

DLI = DL• 

= D == {~I ~ E C2[0, R), ~(O) = ~(R) = O}, 
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DL = D X D (note that DL = E), and assume that 
f.1, > 0, f.1, E qo, R1, K > 0, K E CI [0, R], r > 0, 
r E CI[O, R], and that Q is sufficiently small (or K and 
r are sufficiently large) so that LI and L2 are both 
positive-definite on D. Then Ll and L2 have com
pletely continuous positive Hermitian inverses KI and 
K2 (integral operators with Green's functions as 
kernels) on L 2 [0, R] with the following properties: 
KILl = 1= K2L2 on D, RKI C C[O, R], and RK • C 

qo, R]. We also have RL, => qo, R] and RL2 => 
qo, R]. Therefore, 

K = (Kl 0) ° K2 
is a completely continuous positive Hermitian 
operator on E and satisfies KL = Ion DL , PK(E) C 

JOURNAL OF MATHEMATICAL PHYSICS 

R L , and QK(E) C R L , so that all the previous 
theorems are applicable. In particular, the system 
possesses infinitely many positive as well as negative 
eigenfrequencies Am' and the associated eigenmodes 'm are complete [in the sense of Eqs. (7) and (8)] for 
y and yin D x D. 
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A quantum field with nonlocal interaction is considered. We prove under a proper smoothness condi
tion on the interaction that the asymptotic limits of the annihilation-creation operators exist. The 
asymptotic limits are then used to prove that the state space decomposes as a tensor product of an in
coming (outgoing) Fock space and a zero-particle space. 

1. INTRODUCTION 

In quantum theories the scattering operator is of 
great significance in relating theory with observation. 
The scattering operator is given relative to a decom
position of the total-energy operator H into two 
parts. The free energy Ho and the interaction energy V: 

H= Ho + V. 

Hand Ho are self-adjoint operators on a Hilbert 
space :re. The pure states of the system are represented 
by elements in :re. If at the time zero the state is 
represented by "Po, then at the time t it is represented 
by eitH "Po. Asymptotically, for very large t, we expect 
the system to behave as if there were no interaction, 
that is, as if the energy operator were Ho: 

eitH"Po""'" eitH0"P±' for t ---+ ± 00. 

The scattering operator S is now defined by 

S"P- = "P+ 

and describes the asymptotic time transition of the 

system. We see that existence of S corresponds to the 
existence of the asymptotic limits 

since 

lim e-itHeitHo = W±, 
t-+±oo 

"Po = W±"P±' 

As is well known, there is also another way of de
scribing scattering, or asymptotic transition from 
very early to very late times, than by the scattering 
operator using asymptotic states as described above, 
that is, by using asymptotic operators. The advantages 
of using asymptotic operators in connection with 
quantum field theories were pointed out by 
Friedrichsl as well as by Kato and Mugibayashi.2 

In a quantum system, the observable quantities are 
represented by operators on the Hilbert space :re and, 
if the quantity at the time zero is represented by Ao, 

1 K. O. Friedrichs, Perturbation of Spectra in Hilbert Space 
(American Mathematical Society, Providence, R.I., 1965). 

2 Y. Kato and N. Mugibayashi, Progr. Theoret. Phys. (Kyoto) 
30, 103 (1963). 
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by eitH "Po. Asymptotically, for very large t, we expect 
the system to behave as if there were no interaction, 
that is, as if the energy operator were Ho: 

eitH"Po""'" eitH0"P±' for t ---+ ± 00. 

The scattering operator S is now defined by 
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and describes the asymptotic time transition of the 

system. We see that existence of S corresponds to the 
existence of the asymptotic limits 

since 
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t-+±oo 

"Po = W±"P±' 

As is well known, there is also another way of de
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very early to very late times, than by the scattering 
operator using asymptotic states as described above, 
that is, by using asymptotic operators. The advantages 
of using asymptotic operators in connection with 
quantum field theories were pointed out by 
Friedrichsl as well as by Kato and Mugibayashi.2 

In a quantum system, the observable quantities are 
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1 K. O. Friedrichs, Perturbation of Spectra in Hilbert Space 
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2 Y. Kato and N. Mugibayashi, Progr. Theoret. Phys. (Kyoto) 
30, 103 (1963). 
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then at the time t it is represented by e-itH AoeitH. 

Asymptotically, we expect the system to behave as if 
Ho were the energy operator, or 

e-itH AoeitH 
f"Oo./ e-itHoA±eitHo, for t -.. ± 00. 

The scattering is now given by the transition 

A_ -.. A+, 

describing the asymptotic transition of the system. 
We see that even if there exist no asymptotic states 
there still may exist asymptotic operators and we 
can, therefore, still study scattering of the system. 
We expect the mappings Ao':"'" A± to preserve the 
algebraic relations, so if we substitute e itH Aoe-itHo 

for Ao in the asymptotic relation above we have 

e-itHeitHoAoe-itHoeitH f"Oo./ A±, for t -.. ± 00, 

or the following relations: 

lim e-itHeitHoAoe-itHoeitH = A±. 

t-+±oo 

Together with the specification of the sense in 
which the limit is to be taken, we use this as a defini
tion of the asymptotic operators A±. 

In two earlier papers3 the author studied perturba
tion by annihilation--creation operators, using a tech
nique based on "gentleness." This technique, however, 
was not able to deal with the case of V containing 
pure annihilation and pure creation terms. In that 
case it is well known that there is a vacuum renormali
zation, i.e., a general shift of the whole spectrum of 
the energy operator (see, for instance, Ref. 1) and this 
causes considerable difficulties for the above men
tioned technique. 

On the other hand, Kato and Mugibayashi2 studied 
perturbations where V contained pure annihilation 
and pure creation terms, by an adaption of Cook's 
method" to the study of asymptotic limits of annihila
tion--creation operators, but with a very strong 
restriction on V, namely that the kernels of V be 
finite-dimensional. 

2. QUANTUM FIELD WITH NONLOCAL 
INTERACTION OR PERTURBATION 

BY ANNIHILATION-CREATION 
OPERATORS 

The free-energy operator H is given with respect to 
a specific representation of the Hilbert space Je, the 
so-called Fock representation. An element I in Je is 
given by a sequence In of complex-valued functions, 
where 10 is just a complex constant andln is a function 
In(XI' ... ,xn) of n variables Xl' ... , Xn , and each 

3 R. Hoogh-Krohn, Proc. Nat!. Acad. Sci. 58, 2187 (1967); 
Commun. Pure Appl. Math. 21, 313, 343 (1968). 

• J. M. Cook, J. Math. & Phys. 36, 82 (1957). 

Xi is a variable in the Euclidian 3-space E 3 • We 
consider only the case of one fermion field interacting 
with itself. The reason for this is partly one of nota
tional convenience and partly the fact that, if the 
interaction were more than quadratic in the boson 
field, some of the proofs would become more compli
cated. 

That we consider only one fermion field means that 
the . functions In(xI , ... ,xn) are all antisymmetric, 
i.e., 

fn(x I , ••• , xn) = ~ ~ (-l)"fn(x .. (ll' ••• , x .. (n»), 
n . .. 

where the summation runs over all permutations of 
the indices I, ... , n. The inner product in Je is given 
by 

(f, g) = n~on!r' J fn(x I ,"', xn) 

x gn(xI ,"', xn) dxl '" dxn . 

Let 0 be the self-adjoint operator in L2(E3): 

0= (-a + m2)! 

on its natural domain of definition, where a is the 
Laplacian 

02 02 02 

a=-+-+-OX2 oy2 OZ2 

and m a nonnegative constant called the "mass of the 
free fermion." Ho is then given by 

n 

(HOf)n(XI' ... , xn) = ~ 0Jn(XI, ... , x n), 
i~l 

where 0i is the operator 0 operating on the variable 
Xi, and (Hof)o = O. Ho is obviously self-adjoint on 
its natural domain of definition. The interaction 
operator V is now given in terms of the annihilation
creation operators. The annihilation operator a(x) is 
defined for X E E3 by 

(a(x)!Jn(XI, ... , xn) = (n + l)fn+I(X' Xl' ... , xn) 

and the creation o'perator a*(x) as the adjoint of a(x). 
a(x) and a*(x) are both improper operations but their 
definition is easily made precise in the following way. 
Let h .E L2(Es); define 

a(h) = f a(x)h(x) dx 

and a*(h) as the adjoint of a(h). The definition of 
the integral above is, of course, 

(a(h)f)n = (n + 1) f dx h(x)fn+I(x, Xl' ... , Xn)· 

It is easily verified that, due to the fact that 
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fn(xI , ... , xn) is antisymmetric, we have the follow
ing anticommutation relations characteristic of a 
fermion field: 

a(h)a(g) + a(g)a(h) = 0, 

a*(h)a*(g) + a*(g)a*(h) = 0, 

a*(h)a(g) + a(g)a*(h) = f g(x)h(x) dx. 

The last equality implies that 

lIa(h)1I ::;; IIh112' 

(1) 

so that, for hE L 2 , a(h) is a bounded operator. The 
interaction V is now given in the following way: 

V = I Vl:!' 
O:<;'k,!:<;'N 

where Vk! is given in terms of the kernel 

VkZ(XI,"', Xk IYI"" ,Yz), 

antisymmetric in Xl' ••. , Xk and YI' ... ,y" in the 
following way: 

VkZ = r . J VkzCxl' ... , Xk I YI' ... , y,) 

X a*(xI) ... a*(xk)a(YI) ... a(yz) 

X dxl ' .. dxkdYI ... dyz. 

Vk! may also be defined explicitly by 

(Vkz!)n(xI , ... , xn) 

= asym (;)l!J-. -J dYI'" dyz 

X Vkl(XI ,' •• , X k I Yl' ... , YI) 

X fm(YI,"', YI' Xk+l ,"', xn), 

where n = k - I + m and asym is short for the 
antisymmetrization with respect to the variables 
Xl' ••• ,Xn • Since a(h) is bounded for hE L2 , we 
see that, for VkZ(Xl,"', xk I Yt, ... , Yz) smooth 
enough, the operator V is bounded. We do assume 
that V is symmetric, i.e., 

VkZ(XI,"', Xl: \YI"" ,Yz) 

= VZk(YI,'" 'YI\ Xl"" ,xk)· 

Since V is bounded, H = Ho + V is also a self
adjoint operator with the same domain as Ho. 

We now prove the existence of the asymptotic 
annihilation and creation operators. Since V contains 
pure annihilation and pure creation terms, i.e., terms 
of the form Voz , and VkO , we know that the scattering 
operator or asymptotic states do not exist (see, for 
instance, Refs. 1, 3, or 5), but Friedrichs! argued 

SA. L. Chestyakov, Dok!. Akad. Nauk SSSR 158,66 (1964). 

that even with the pure annihilation and creation terms 
present the asymptotic annihilation and creation 
operators would still exist. The argument proceeded 
by indicating how the "clouding terms" would 
cancel each other asymptotically. Independently, Kato 
and Mugibayashi2 proved, in a very special case with 
finite-dimensional kernels VkZ(XI , ... , Xk \ YI' ... ,Yz), 
that the asymptotic operators did exist. We introduce 
the anticommutator of two operators A and B, by 
{A, B} = AB + BA, and the commutator by [A, B] = 
AB - BA, and observe that the definition of Ho 
together with (1) gives us the following relations: 

[Ho, a(h)] = a(-Oh), 

[Ho, a*ch)] = a*cOh), 

{a(h), a(g)} = {a*(h), a*(g)} = 0, 
(2) 

{a(h), a*(g)} = f h(x)g(x) dx. 

A set of operators Ho, a (h) , and a*(h)--such that 
(a(h»* = a*(h), a(h) is linear in h, and satisfies the 
relations in (2)-is called a "free-fermion field with 
mass m." If in addition there is in the Hilbert space 
Je an element 4> such that 

and the smallest closed subspace containing 4> and 
invariant under a*(h), for all hE L2(E3), is the 
Hilbert space Je itself, we say that we have a "Fock 
representation of the free-fermion field with vacuum 
energy ro," and 4> is called the "vacuum" state. 

We observe that our annihilation and creation 
operators together with the free-energy operator form 
a free-fermion field with mass m and that Je is the 
Fock representation with vacuum-energy zero. 

We define for h E L 2(E3): 

alh) = e-itHeitHoa(h)e-itHoeitH, 

a:Ch) = e-itHeitHoa*ch)e-itHoeitH, (3) 

and we observe that 

eitHoa(h)e-itHo = a(e-itnh), 

eitHoa*(h)e-itHo = a*(eitnh). (4) 

Lemma 1: Let Do. C L2(E3) be the domain of 0 
and Do the domain of Ho. For hE Do., a(h), and 
a*(h) leave Do invariant, i.e., 

a(h)Do C Do, a*(h)Do C Do, for hE Do.. 

Proof Let f E Do. From (2) we get the result that 
Hoa(h)j = a(h)Hof - a(Oh)j, and this proves that 
a(h)j E Do. The argument is identical for a*(h). 
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Since Do is also the domain of H, we find that eiHt, where 
as well as eitHo, leaves Do invariant. Hence we get lIu~lll = IIv~III = II uf II 00 = II vj II 00 = 1 
from (3) that, for f E Do, at(h)f is strongly differ- and 
entiable with respect to t, for h E Do., and I lai " .. ',i,.;,," .,;.1 < 00. 

:t at(h)j = _ie-itH[v, eitHoa(h)e-itHO]eitHj, 

!!:. ai(h)j = -ie-itH[v, eitHoa*(h)e-itHo]eitHj. (5) 
dt 

Integrating with respect to t, we get 

(a.(h) - a(h»j 

= -i LSe-itH[v, eitHOa(h)e-itHo]eitHj dt, 

(a*ch) - a*(h» 

= _iLSe-itH[V, eitHoa*ch)e-itHoJeitHjdt. (6) 

Observing that the operators on both sides are bounded 
operators, we conclude, since Do is dense in Je and 
since Do. is dense in L 2(E3 ), that 

a.(h) - a(h) = -iLSe-itH[V, eitHOa(h)e-itHO]eitH dt, 

ai(h) - a*ch) 

= -iLSe-itH[v, eitHOa(h)e-itHO]eitH dt, (7) 

for all h in L2(E3)' 

Lemma 2: Set htCx) = (eitnh) (x). For hE C;: , i.e., 
infinitely differentiable with compact support, we have 
that 

3 

sup IhtCx)1 :::;; C Itl-~· 

Proof: ht(x) is in fact the positive-frequency solution 
of the hyperbolic equation 

(:t22 - ~ + m2)htCx) = 0, 

with the initial condition hex). It is well known that 
this tends to zero in Loo faster than C It I-! when 
initial condition hex) is in C;: . 

From (7) we see that the question of the existence 
of the asymptotic annihilation and creation operators 
is equivalent to the question of convergence of the 
integrals on the right-hand side of (7). 

Assumption 1: The kernels VkZ(XI , •.. , x k I YI, ... ,Yz) 
of V have a representation in the following form: 

VkZ(XI , .•• , xk I YI' ... , Yl) 

= I ai ,,·· ·,i .. ·· ',iz asym asym ut,(xI) ... U:.cXk) 
x y 

We see that V is a bounded operator from this 
assumption, since lIull~:::;; lIuli oo • lIulll' 

We now state a theorem. 

Theorem 1: at(h) and ai(h) converge in the operator 
norm as t ~ ± 00, for all h E L 2(E3), and the limits 

a±(h) = norm lim atCh), a!(h) = norm lim ai(h) 
t-+±oo t-+±oo 

satisfy the same relations as do a(h) and a*(h), namely, 

{a±(h), a±(g)} = {a!(h), a~(g)} = 0, 

{a±(h), a!(g)} = f h(x)g(x) dx. 

Proof' First let hE C;' . We prove that the integrals 
on the right-hand side of (7) converge in the norm. 
Consider, therefore, the norm of the integrand 

lIe-itH[V, eitHOa(h)e-itHO]eitHIl 

= 1I[V,a(h_t)]II:::;; I II[Vkl,a(h_t)]ll· 
k,lS,N 

By Assumption I and Lemma 2, this is bounded by 
C Itl-! which is integrable at infinity. Hence the 
integrals on the right-hand side of (7) converge both 
at plus and minus infinity. This proves that atCh) and 
ai(h) converge in the norm for all h E C;: . Observing 
that lIatCh)lI:::;; IIhll2 and lIai(h)1I ~ IIh1l2' so that 
at(h) and a:(h) map L2(E3) into the operator algebra 
uniformly bounded in t, we get, from the fact that 
C;: is dense in L 2(E3 ), that atCh) converge in the norm 
for all h E L2(E3)' This proves the first part of the 
theorem. We get the second part as an immediate 
consequence of the first, observing that at (h) and ai(h) 
satisfy the same anticommutation relations for all t. 

Lemma 3: eitHoa(h)e-itHo tends strongly to zero as 
t ~ ± 00 for all h E L 2(E3). 

Proof' Since eitHoa(h)e-itHo is uniformly bounded 
for h E L 2(E3) and f E Je, it is enough to prove that 
the norm tends to zero for fin a dense set of Je and h 
in C;:. Therefore let f= {foJI"" Jm, 0, 0," .}, 
where each fn E Co for ° < n :::;; m. From Lemma 2 
we now get lIeitHoa(h)e-itHofll:::;; C Itl-! and this 
proves the lemma. 

Theorem 2: If 4> is an eigenstate of H, i.e., 

H4> = ).4>, 
then a±(h)4> = ° for all h E L2(E3)' 
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Proof" 

lIatCh)<fo1l = Ile-itHeitHoa(h)e-itHoeitH<fo11 

= Ile-it(H-;')eifHoa(h)e-itH04>1I 

= \leitHoa(h)e-itH°<foIl, 

which tends to zero as t -+ ± 00 by Lemma 3. 

Theorem 3: The operators H, a+(h), and a!(h), and 
the operators H, a_(h) , and a:(h) constitute free
fermion fields with mass m; i.e., the following com
mutation relations are satisfied for h E DO: 

[H, a±(h)] = a±( -Oh), 

[H, a!(h)] = a!(Oh). 

Proof: From Lemma 1 it follows that, for h E Do, 
atCh) and ai(h) both leave Do invariant. Hence for 
f E Do we have the following identity: 

HatCh)j = at(h)Hj + [H, atCh)]j 
= at(h)Hj + e-itH[H, eitHoa(h)e-itHo]eitHj 

= at(h)Hj + e-itH[V, eitHOa(h)e-itHo]eitHj 

+ e-itH[Ho, itHOa(h)e-itHo]eitHj 

= atCh)Hj + e-itH[V, eitHoa(h)e-itHo]eitHj 

+ e-itHeitHOa( _Oh)e-itHoitHj. 

Since we have already proved that the second term 
on the right-hand side tends to zero, we have that 
the right-hand side tends strongly to 

a±(h)Hf + a±( -Oh)f 

Making use of the fact that H is a closed operator 
we get that a±(h)f E Do and that 

Ha±(h)f= a±(h)Hf+ a±(-Qh)f 

This proves the first commutation relation; the second 
is proved in the same way. 

Corollary: Let h E Do; then the operators a±(h) and 
a~ (h) leave Do or the domain of H invariant. 

3. THE TOTAL ENERGY OPERATOR H 

It is an interesting fact that Theorem 3 may be used 
to get some information on the spectrum of H. 

Since H is bounded below, i.e., there exists a con
stant Wo such that 

(j, Hf) 2 wo(f,f), for all fE Do, 

we have that the spectral decomposition of H takes 
the form 

H =J.ooA dE;.. 
Wo 

As - L\ is a positive operator, we see that 0 = 
(-L\ + m2)! is bounded below by m, i.e., 

(h, Qh) 2 m(h, h), for all hE Do. 

Lemma 4: Let fE Je, then f= Ed if and only if 
there exists a constant c such that 

Proof: 

From the theory of the Laplace transform we know 
that the existence of a constant C1 such that 

f e2t"i dU, E;J) :s;: c1e2t
;', for all t > 0, 

is equivalent with the measure d(f, E"if) having sup
port bounded above by A. But this is the same as 
f=E;.j 

Lemma 5: For any h E L 2(Ea) we have 

a±(h)E;.Je c: E;._mJe. 

Proof: From Theorem 3, we have that, for f E Do 
and h E Dn , 

[H, a±(h)]f = -a±(Oh)f 

This gives us that 

eitHa±(h)e-itHj = a±(e-itnh)j. 

Since the operators in this equation are uniformly 
bounded inf as well as in h, we get that this equation 
is valid for all f E Je and all h E L2(Ea). Hence, 

eitHa±(h)j = a±(e-itnh)eitHj. 

For f = E;.f, the right-hand side of this equation 
is analytic in t for 1m t > 0, since Q is bounded 
below. So by analytic continuation for h E L2(Ea) and 
f E E;.Je, we have that 

etHa±(h)j = a±(e-tnh)etHj, 

for t > 0. Hence, 

II etHa±(h)j II = lIa±(e-tnh)etHfil 

:s;: \la±(e-tOh)II\letHfil 

:s;: Ile-tnhl1 2 IletHEdll 
~ ce-tmetA = cet(;'-m). 

By Lemma 4, a±(h)f E E;._mJe, and this proves 
Lemma 5. 

Since H is bounded below by wo, we have that 
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Ewo_< = 0 for all E > o. By Lemma 5 we get that 
a+(h) and ajh) annihilate Ewo_<+m for all hE L2(E3). 

Let V'; and V~ be the maximal closed subspaces in 
Je annihilated by all operators of the type a+(hl) ... 
a+(hn+1) and a_(hl) ... a_(hn+1)' respectively, where 
hI ... hn+1 is in L2(E3). 

Lemma 6: H is reduced by V'; and by V~, i.e., 

HV~ c V~, HV~ c V~. 

Moreover, V± C V±+l and 

Je = U V~ = U V~. 
n n 

Proof" Since 

a±(hl) ... a±(hn+1)eitH 

= eitHa±(eitnhl) ... a±(eitnhn+1)' 

we see that V± is invariant under ettH , hence H is 
reduced by Vl. 

That V± c Vr-1 follows from the anticommutation 
relations of the a±(h). From Lemma 5 we get that 
EV!o~+nmJe c V±' and this proves that UnV± is 
dense in Je. 

Let us now define the incoming and outgoing n
particle spaces Je~ and Je~ by 

Je~ = V!, Je~ = V~ - V~-t, for n ~ 1. 

Lemma 7: Je± is the smallest closed subspace con
taining all vectors of the form 

a!(hl) ... a!(hn)v, 

where v E Je~ , and hI' ... , hn is in L2(E3). H is re-
duced by Je~ and Je = !:=oJe± where the sum is a 
direct sum of Hilbert spaces. 

Proof: The last part of the lemma follows immedi
ately from Lemma 6. To prove the first part we see 
that the anticommutation relations for a~(h) and a±(g) 
imply that a~ (hI) ... a~ (hn)v is in V± but not in 
V;t\ hence in Je± . 

Let f be in Je± and suppose that f is orthogonal 
to all vectors of the form I.l~(hl)· .. a~(hn)v with 

v EJe~. Then 

o = (f, a!(h1), ••• , a!(hn)v) 

= (a±(hn), ... , a±(h1)f, v). 

Since f E Je±, a±(hn)· .. a±(h1)f is in Je~ because it 
is annihilated by all a±(h). By the identity above it is 
orthogonal to all elements in Je~, hence 

a±(hn) ... a±(h1)f = O. 

This gives us that f E V±l; but, as f E Je ± ' f must be 
zero and the lemma is proved. 

Theorem 4: The Hilbert space Je decomposes in 
two ways as a tensor product of two Hilbert spaces 

Je = :F ® Je~, Je = :F ® Je~, 

where :F is the Fokk representation of a free-fermion 
field with mass m, and Je~ is the outgoing (incoming) 
zero-particle spaces. 

According to these decompositions the total-energy 
operator H decomposes as a sum 

H = Ho ® 1 + 1 ® H~, 

H = Ho ® 1 + 1 ® H~, 

where Ho is the free-energy operator with mass m in 
:F, and H~ is the restriction of H to Je~ . 

Proof: The identification of Je with :F @ JeO± is 
given by 

a!(h1) ... a!(hn)v ~ a*ch1) ... a*(hn)cPo ® v, 

where a*(h) is the creation operator in :F, cPo is the 
vacuum state in :F, and v E Je~ . 

The anticommutation relations, together with 
Lemma 7, gives us that this is a norm-preserving 
identification of all Je with :F ® Je~. The rest of the 
theorem now follows from the commutation relations 
between Hand a!(h), i.e., from Theorem 3. 
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The equations governing the potentials for electromagnetic waves in moving lossy media are obtained 
by using a covariant formulation. A versatile form of the time-dependent Green's function is derived by 
first transforming the wave equation to the normal form and then applying the Fourier-integral technique. 
The time-harmonic Green's function is also obtained. 

INTRODUCfION 

The problem of electrodynamics of moving lossy 
media was recently treated by Besieris and Compton,l 
based on the indefinite form of Maxwell-Minkowski 
equations. In this paper we utilize a covariant formu
lation previously used by Lee and Papas2 in treating 
the lossless case to derive the equations governing the 
potentials of moving lossy media. Besieris and Comp
ton applied the Riemann matrix to solve for the 
time-dependent Green's function. We show that the 
simplest way of solving such a wave equation is to use 
an affine transformation. This transformation enables 
us to bring the wave equation to its normal form, and 
thus simplifies the integration considerably. In 
addition, since the transformation includes an 
arbitrary parameter, we obtain a versatile representa
tion for the time-dependent Green's function. As a 
result, we are able to identify our form of the time
dependent Green's function with that obtained by 
applying the Lorentz transformation to the time
dependent Green's function in a stationary lossy 
medium. Finally, we obtain the time-harmonic 
Green's function by applying the Fourier integral 
to the time-dependent Green's function. 

FORMULATION OF THE PROBLEM 

In the rest frame :E' of a moving medium, the 
scalar and vector potentials satisfy the inhomo
geneous equations 

V',2 _ ~ _u _ _ an!!.... A' = _ ' J' 
( 

,2 :12 , ,2 :1) 

c2 Ot'2 e' c2 ot' p , 
(1) 

(2) 

where p', e', and a' are the permeability, permittivity, 
and conductivity of the medium, and n' = c(p' e')! 
is its index of refraction. 

Transforming (1) and (2), with the help of a 4-

1 I. M. Besieris and R. T. Compton. J. Math. Phys. 8, 2445 (1967). 
• K. S. H. Lee and C. H. Papas, J. Math. Phys. S, 1668 (1964). 

vector,2 to the:E frame, we obtain 

(4) 

Equations (3) and (4) are identical to the equations 
given by Lee and Papas,2 except that we have inserted 
the operator 

to account for the conductivity of the medium. We 
then rewrite (3) and (4) in the following form3 : 

(L-P.E. -q~)A 
OZ ot 

(L - P ~ - q ~) cp oz at 
= - ~[!!. - (n,2 - 1) v. J], (6) 

e' a (1 - {32)C2 

3 There is an algebraic error in Ref. I. It can be easily checked 
that (ISa) in Ref. 1 does not follow from (17). The correct equations 
are (5) and (6) of the present work. Because of this error in Ref. 1, 
no attempt is made to compare our results with theirs. 

2081 



                                                                                                                                    

2082 K. C. CHEN AND J. L. YEN 

where 

02 02 1 02 n 02 

L=-+-+---2--
OX2 0);2 a ot2 a otoz 

and 

1 - fJ2 V 

a = 1 '2fJ2' fJ = - , -n c 

1 

We define the time-dependent Green's function 
G(R, T) as the solution of 

( L - pi - q~) G(R, T) = b(R)b(T), (8) 
oz at 

where 
R = r - r', T = I - I'. 

GREEN'S FUNCTIONS 

Any second-order hyperbolic partial differential 
equation with constant coefficients can be brought 
into the normal form by an affine transformation.4 

In the general case, one can include an arbitrary 
parameter in the transformation. This allows the 
derivation of different forms of the time-dependent 

where the integrations are along the real axes, and 
RI = fl - f~, Tl = 11 - t~. The integration can be 
simplified by introducing the transformations w~ = 
WI - jq/2, k~. = klz + jp/2 and then deforming the 
contours to the real w~, k~. axes. Since no singularity 
is enclosed, we obtain 

1 
G(R, T) = -------,-

(27T)4(,u' E')! 

where 

X J exp (jk{ • Rl + jW{TI) dk~ dw{ 

W~2 - k{: - k~ - k~ - (qi - pD/4 
X exp (-qITI/2 + P1ZI/2), (18) 

In terms of the spherical polar coordinate k~ = (k; + 
k2 + k'2)! y lz' 

, R. Courant and D. Hilbert, Methods of Mathematical Physics 
(Interscience Publishers, Inc., New York, 1962). 

Green's function. The affine transformation with 
three particular values of parameter is discussed in 
the Appendix. 

Let us introduce the transformation 

1 
tl = ± ! [(A ± l)t + (AOC ± b)z], (9) 

2 la,u' E' AI 
1 

ZI = ± ! [(A T l)t + (AOC T b)z], (10) 
2Ia,u'E'AI 

where the signs should be chosen so that 11 increases 
with I, and oc and b are given by 

oc = n + a(.u' E')! (11) 
and 

(12) 

It is shown in the Appendix that (8) transforms into 

02G 02G (02G 02G oG OG) 
- oti + ozi + EI OX2 + oy2 - PI OZI - qi ot

l 

= (1/,u' E')!b(ti - t;)b(ZI - zDb(p - pI), (13) 
where 

EI = { 1, for a> 0 (or n'fJ < 1), 
-1, for a<O (or n'fJ> 1), (14) 

and 
PI = p(ozi/oz) + q(OZI/01), (15) 

ql = p(oti/oz) + q(OII/OI). (16) 

The solution of (13) for n' fJ < 1 is 

and 1>k = tan-I (ky/k.,) in the transformed space, 
the integrations are carried out with respect to Ok 
and 1>k' Then, (18) reduces to 

1 
G(R,T) = ! 

(27T )3(,u' E') 
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and dropping terms that always vanish, we haves 

-1 
G(R, T) = t exp (-qlTl/2 + P1Zl/2) 

47T(,u' E') 

x {b(Rl - T 1) + (a'/2E') t 
Rl (R1 - 1"1) 

X J 1[(a'/2e')(Rl - TJt ]u(R1 - 1"1)}' (22) 

where u(x) is the unit step function, and [(qi - pi)/4]! 
has been reduced to a' /2e' by using (15) and (16). 

G(R,T) = 

( 1 t exp (ql'Tl/2 - P1Z1/2) 
(27T)4(,u' E') 

Similarly, the solution of (13) for n' fJ > 1 is 

(23) 

Integration with respect to k~z yields 

l x J exp (jk",X + jkyY + jW{1"l) sin [k! + k! + W~2 - (qi - p~)/4]tZl dk", dky dwf, 

[k! + k! + wi2 
- (qi - pDJ4]! 

Z1> 0, (24) 

0, otherwise, 
where 

X=x-x', Y=y-y'. 

Introducing X = P cos~, Y = P sin ~ and k", = kp cos X, ky = kp sin X' and integrating with respect to X' 
we obtain 

G(R ) _ 1 (/2 Z /2)f oo 1'" Jo(kpp) sin ZI[k! + W;'2 - (qi - pi)/4] t 
,T - ~ exp q1T l - PI 1 

(27Tl(,u'E')2 
-00 0 [k; + W;'2 - (qi - pD/4]! 

This, in turn, yields 
x exp (jW{Tl)kp dkp dw~. (25) 

G(R, T) = 

0, otherwise, 
where 

R~ = (Zi - X 2 
- Y2)!. 

The support of b(R~ + T1) and u( - R~ -1"1) for R~, 1"1 ;;::: 0 is R~ + 1"1 = 0, which is satisfied only 
when T = ° and 

R = [~(n'2 - fJ2)Z2 _ X2 _ Y2J! = 0.6 

n'2 1 - fJ2 
For T 7Jf 0, again, we can drop these two terms. There remains 

( 

-1 1 exp (qlTl/2 - P1Zd2){b(R~ - Tl) + (a'/2E')! J 1[(a'/2E')(R;' - TJt]u(R{ - T
1
)}, 

47T(,u' E')" Rf (R~ - Tl) 
G(R,T) = zi;;::: X2 + y2, 

0, otherwise. 

(27) 

• With a choice of A = 10/1X1 in the affine transformation, one can impose the causality condition in the integral. Since the equivalence of 
the solutions for different values of A follows from the uniqueness theorem of the partial.differential equation, we conclude that (22) satisfies 
the causality condition. 

• A = lo/IX I is assumed to satisfy the causality condition. 
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Equations (22) and (27) are independent of A., 
because of the uniqueness of the solution of the 
partial differential equation. To explain this point, we 
consider the wavefront of (22). Using (9) and (10), we 
have, for n'p < 1, 

__ 1_ [(A. + l}r + (txA. + ~)Z]2 
4ap.'e' 

which is independent of A., as expected. A similar 
expression can be derived for n' P > 1 by using (27). 
The spheroidal shape of the wavefront of (22), i.e., 
(28), was discussed in great detail by Besieris and 
Compton.1 One can easily show that the wavefront 
of (27) is a hyperboloid. 

To see that (22) reduces to that derived by Comp
ton7 for the lossless case. With a' = 0, PI = ql = O. 
Thus, (22) becomes 

G(R, T) = -1 ~(Rl - Tl) (29) 
4n(p.'e')! Rl 

Choosing A. = IMtxl, i.e., applying the transformation 
(A6) and (A7) , and using the identity ~(ax) = 
1/lal ~(x), we have 

G R T = -=!. (n'2 - P2)_1 ~[T _ R1o (n'2 - P2)], 
( ,) 4 ' 1 R2 R 1 R2 

7Tn - P 10 C - P 

(30) 

where 

(31) 

Equation (30) is exactly the formula Compton 
derived. 

We then proceed to show that with the choice of 
A. = 11 - n'PI/11 + n'PI (see the Appendix), (22) re
duces to that obtained by applying the Lorentz 
transformation to the Green's function in a stationary 
lossy medium. Using (A8), (A9), (15), and (16), we 
obtain 

PI = 0, ql = a' p.' c/n'. (32) 

7 R. T. Compton, J. Math. Phys. 7, 2145 (1966). 

Substitution of (A8), (A9), and (32) into (22) gives 

G(R,T) = -1 !exp(-a'T'/2e') 
4n(p.'e') 

X {~(R' - cT'/n')+ (a'/2e') 

R' (R.' - cT'/n')! 

X J 1[( a' /2e')(R' - cT'/ni]u(R' - CT' /n')}, (33) 

where , ( Z/_2) 
T = y T - V ('-, (34) 

(35) Z' = y(Z - VT), 
and 

R' = (X2 + P + Z'2)!. (36) 

One immediately recognizes that (33) is the time
dependent Green's function for electromagnetic waves 
in a stationary lossy medium, i.e., the solution of the 
well-known wave equation we began with, which is 

V,2 - -- - -- G = ~(r - r')~(t - I'). ( 
n,2a2 a'n,2 a) 

c2al,2 e' c2 at' 
(37) 

Therefore, we arrive at the conclusion that for 
n' P < 1, the simplest way of obtaining the time
dependent Green's function is by applying the Lorentz 
transformation to that in a stationary lossy medium. 
Note that the same transformation gives the correct 
result for n' P > 1 (Cerenkov radiation)8 if one 
replaces (36) by 

R' = (_X2 - P + Z'2)!. (38) 

Lastly, we let A. = 1. Again (A4), (AS), (IS), and 
(16) yield 

PI = ±a'p.'yv lall, (39) 

ql = ±a'p.'y lal!/(p.'e')!, (40) 

where tile upper sign is for n' P < 1 and the lower 
sign for n' P > 1. Substituting (A4) , (AS), (39), and 
(40) into (22) and (26), we have, for n'p < 1, 

-1 
G(R,T) = ! 

4n(p.'e') 

where 

X exp [( -a'y/2e')(T + QZ) +a'p.'yvaZ/2] 

X [~[Rll - (T + QZ)/(ap.'e')!] 

Rll 

+ (a'/2e') 

[Ril - (T + QZ)/(af"e')!r 

X J 1{(a'/2e')[Rll - (T + QZ)/(af"e,)l]*} 

X u[Rn - (T + Qz)/(af"e')!]} (41) 

Rll = (aZ2 + X2 + Y2)!; (42) 

8 For.,- #< O. 
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for n'p > 1, 

-1 exp [(-a'y/2e'Kr + nZ) + a'ft'VaZ/2][c5[R~l - (r + nZ)/laft'e'l
t
] 

477{ft' e')! R~l 
+ c5[R~l + (r + nZ)/laft'e'I!] + (a'/2e') 

R~l [R~l - (r + nZ)/laft'e'lt]! 

x Jl{(a'/2e')[R~l - (r + nZ)/laft'el!]!}{u[R~l - (r + nZ)/laft'e'lt] 
(43) G(R,r) = 

lo, otherwise 

- u[ - R~l - (r + nZ)/laft' e'l t ]) 1 lal Z2 ~ X2 + y2, 

where 
(44) 

Before taking the Fourier transform of (41) and· (43) to yield the time-harmonic Green's function, 
notice that (26) instead of (27) should be used for n'p> 1, because the value of the function at t = 0 
contributes to its Fourier transform for all frequencies. We then write (41) and (43) as follows: 

-1 1 a t t 
G(R, r) = * exp [-(a'y/2e')(r + nZ) + a'ft'yvaZ/2] - -- [Jo{(a'/2e')[R ll - (r + OZ)/Iaft'e' I ] } 

477{ft' e') Rll aRll 

x U[Rll - (r + nZ)/laft'e'lt]], (45) 

for n'p < 1; 

{

-I t exp [-(a'y/2e')(r + OZ) + a'ft'yvaZ/2] ~ ~ [Jo{(a'/2e')[Ril - (r + nZ)/laft'e'lt]t} 
477{ft' e') Ril aRil 

G(R, r) = X {U[R~l _ (r + OZ)/laft'e'l t ] - U[-R~l - (r + nZ)/laft'e'ltJ)], lal Z2 ~ X2 + y2, 

0, otherwise, 

for n'p> 1. 
(46) 

Since Rll and R~l in (45) and (46) do not depend on r, it is easy to perform the Fourier transform to give 
the time-harmonic Green's function. The result of such a calculation is 

-at 1 t ! 
G(R, w) = -- exp (-a'yO/2 + a'ft'yva/2)Z exp j[(w - ja'y/2e')2 - (a'/2e')2/1aft'e'I~] (Ru laft'e'l - OZ), 

47TRU 

for n'p < 1; 

{
_Ia~t exp (-a'yO/2e' + a'ft'yva/2)Z 
27TRU 

G(R, w) = X cos [(w - j(T'y/2e')2 - (a'/2e,)2/laft'e'l t ]t . (R~l laft'e'l t - OZ), 

0, otherwise, 

for n'p > l. 
Separating the real and imaginary parts in the exponentials, we finally obtain 

-at t ! 
G(R, w) = -- exp (-a'yO/2e' + a'ft'yva/2)Z exp _{j[(p2 + Q2) + P] 

47TRU 

(47) 

+ [(P2 + Q2)t _ P]*}(Rula,u'e'l t - nZ) (49) 
for n'p < 1; 

{_Ia~t exp {( -a'yO/2e' + a'ft'yva/2)Z _ [(P2 + Q2)t - P]t(R~l laft'e'lt - OZ)} 
27TRU 

G(R, w) = X cos [(P2 + Q2)* + P]t(R~l laft'e'l t _ OZ), lal Z2 ~ X 2 + y2, (50) 

0, otherwise, 
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for n' fJ > 1, where 

p = Iw2 - (a'y/2E')2 - (a'/2E')2/la,u'E'l l l (51) 

and 
Q = a'yw/E'. (52) 

With a' = 0, (49) and (50) become 

-al 1 
G(R, w) = -- exp -j(Rll!a,u'E'! - QZ)w, (53) 

47TRll 

for n'fJ < 1; 

{

-!al! cos w(R~lla,u'E'lt - QZ), 
G(R, w) = 27TR~1 

lal Z2 ;;:: X 2 + y2, (54) 
0, otherwise, 

for n'fJ> 1. 
Equations (53) and (54) can then be compared with 

the formulas given by Lee and Papas.2.9· 

APPENDIX 

The affine transformation 

where 

.; = t + ocz, 
'fj = t + t5z, 

oc = Q + a(,u' E')t, t5 = Q - a(,u' E')t, 

transforms the operator 

1. ~ _ 2 QL + (Q2 
-,u'Ela)~ + ... (Al) 

a OZ2 a ozot a ot2 

into 
02 

-4,u'E'a -- + .... 
0;0'fj 

(A2) 

Another transformation, 

1 
tl = ± t (A'; ± 'fj) 

2Ia,u'E'AI 

= ±1 t [(A ± 1)t + (AOC ± t5)z], (9) 
2Ia,u'E'AI 

• There are some notational differences between Ref. 2 and our 
work, e.g., a (Ref. 2) = lal!. To compare (53) and (54) with the 
formulas in Ref. 2, we give the notational conversions as follows: 

k (Ref. 2) laltn'ko = lalfn''''/c = lalt(p'.,'}iw, 
f {3(n" - l)w 

bk (Ref. 2) = k lal {3y2[(n" - J)/n') = c(1 _ n'2{J2) = wO. 

Also, the Green's functions are defined with a difference in sign. 

1 
ZI = ± 1 (M =F 'fj) 

2Ia,u'E'AI 

= ±l 1 [(A =F 1)t + (AOC =F t5)z], 
2Ia,u'E'AI~ 

brings (A2) into 

(10) 

= ~ t5(p - P')t5(Zl - zDt5(tl - tD. (A3) 
(,u' E') 

1/2Ia,u'E'A\! is the scale factor used to give the mag
nitude of the coefficients of (A3) unity and El is 
given by (15). Also, in (9) and (10), the signs should 
be chosen so that tl increases with t. 

These transformations are described in most books 
on partial differential equations. The only difference 
is the introduction of the parameter A, of which we 
would like to discuss three particular choices. 

Consider A = 1. Equations (9) and (10) reduce to 

(A4) 

(AS) 

This choice of A is used to derive the time-harmonic 
Green's function. 

Setting A = I bloc I in (9) and (10), we have 

{ 

tl = (n\-=-fJ;Sct, 

z = .!.(n'2 - fJ2)![Z _ (n,2 - l)vt]. 
1 n' 1 _ fJ2 (n'2 - fJ2) 

(A6) 

(A7) 

Finally, for A = 11 - n' fJl!II + n' fJl, (9) and (10) 
become 

(A8) 

(A9) 

Aside from a minor factor (c/n'), (A8) and (A9) is the 
familiar Lorentz transformation. 
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We define directly the matrix elements of the generators of the algebra of U(n) x Ion on a chosen basis. 
This construction, though naturally infinite-dimensional, has a very close formal resemblance (inter
pretable, if so desired, in terms of a suitably defined "contraction" procedure) to the Gel'fand-Zetlin 
(GZ) representation for U(n + 1). The representations we obtain are characterized by (n - 1) integers 
and one continuous parameter. We then exploit the formal analogy with the GZ pattern in order to prove 
the necessary commutation relations and to derive the explicit expressions for some invariants. However, 
direct alternative methods are indicated where they are useful. Our representation is easily enlarged to 
that of (U(n)@ U(I» x Ion, which we use, together with a deformation formula to obtain a class of 
representations of the U(n, 1) algebra. The irreducible components are characterized by (n - 1) integers 
and two continuous parameters. We compare our deformation formula with that of Rosen and Roman. 
We indicate briefly the typical difficulties that arise for the case IU(p, q) (q ~ 1). Parallel constructions, 
finally, are given for the IO(n) and O(n, 1) algebras 

1. INTRODUCTION 

In Sec. 2, we show how a very simple formal 
modification of the well-known Gel'fand-Zetlin (GZ) 
matrix elementsl for U(n + 1) leads to a representa
tion of the /U(n) algebra, defined in (2.2)-(2.5). The 
representations obtained are labeled by (n - 1) 
integers and one continuous parameter, which we 
can take to be real. 

We can easily generalize our algebra to that of 

(U(n) @ U(1) X /2n (1.1) 

and use this as a starting point to obtain a class of 
representations of the U(n, 1) algebra. The necessary 
deformation formula and the corresponding explicit 
results for U(n, 1) representations [labeled by (n - 1) 
integers and two continuous real parameters] are 
given in Sec. 3. 

The deformation formulas used [(4.3)-(4.5)] are 
also applicable to the more general case of 

(U(p,q) @ U(1) X /2n -+ U(p,q + 1). (1.2) 

But then formal difficulties arise if we want to start 
with a representation which diagonalizes all the 
Casimir operators of the homogeneous part. This 
seems to be a general phenomenon (see our discussion 
of the Poincare algebra2 and some references quoted 
in that paper). In Sec. 5, we examine (briefly) exactly 
how the difficulties (different from those encountered 
in Ref. 2) manifest themselves if we start with the 
discrete Gel'fand-Graev (GG) representation.3 In 
order to obtain well-behaved matrix elements corre-

1 I. M. Gel'fand and M. L. Zetlin, Dokl. Akad. Nauk SSSR 71, 
825 (1950); G. E. Baird and L. C. Biedenham, J. Math. Phys. 4,1449 
(1963); J. G. Nagel and M. Moshinsky, ibid. 6, 682 (1965). 

o A. Chakrabarti, M. Levy-Nahas, and R. Seneor, J. Math. Phys. 
9, 1274 (I968). 

3 I. M. Gel'fand and M. I. Graev, Izv. Akad. Nauk SSSR Ser. 
Mat. 29, 1329 (1965); I. T. Todorov, Trieste preprint IC/66/71. 

sponding to the deformation (1.2), we should use 
representations of /U(p, q) which diagonalize the 
generators of the Abelian sub algebra (or probably at 
least some of them4). But this is a separate problem. 
In this paper we confine ourselves to representations 
of /U(n) reduced with respect to those of U(n), in 
which none of the "translation" generators are 
diagonal, and we have a maximum number of 
discrete parameters. 

In Sec. 4, we elucidate the close connection of our 
deformation formula with that proposed by Rosen 
and Roman.5 We obtained the deformation formula 
in the form used in the text, since we have been 
thinking in terms of contractions and deformations of 
algebras without altering the number of generators. 

For both cases, unitary (Sec. 2) and orthogonal 
(Sec. 6), we merely indicate the necessary prescriptions 
for interpreting the passage to the inhomogeneous 
algebra as a Wigner-Inonu contraction, since, once 
one notices the needed coefficients [as in (2.15)], the 
passage to the infinite limit is not really necessary 
unless one has a definite physical interpretation in 
view (as for the passage to the Galilei group for 
c -+ 00), which is not our case. 

Everywhere, we exploit, as far as possible, the 
known results for the GZ basis. This, in our opinion, 
gives a better understanding of the structure of the 
formulas, both for the homogeneous and inhomo
geneous case. To show, however, that other techniques 
can be introduced usefully, we calculate the second
order invariant (~(2») in two different ways. The 
second, and the longer, method proves useful later on. 

• R. Mirman, J. Math. Phys. 8, 57 (1967). 
5 J. Rosen and P. Roman, J. Math. Phys. 7, 2072 (1966). Some 

interesting constructions are also given by P. Chand, C. L. Mehta, 
N. Mukunda, and E. C. G. Sudarshan, Syracuse University Preprint 
SU-1206-90. 

2087 
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The basic results for the discrete representations 
for the homogeneous case (particularly the GZ 
representations for the compact case) are supposed to 
be known. l. 3 Nevertheless, we recapitulate, very 
briefly, some results in the Appendix-mainly in 
order to fix our notations and conventions and, 
sometimes, for the sake of ready comparison. 

2. REPRESENTATIONS OF IU(n) 

In this section we give the matrix elements of the 
generators of the algebra of 

U(n) X 12n (2.1) 

acting on a basis to be defined below. In (2.1), U(n) 
represents the maximal compact subalgebra [with the 
generators A~ (i,j = 1, ... ,n)] and 12n is an Abelian 
subalgebra formed by the 2n generators 1~+1' 1':+1 
(i = 1, ... ,n) in semidirect product with U(n). 
(The index n + 1 is evidently not necessary here or in 
the other formulas in this section. But, so far as this 
paper is concerned, we prefer this notation in order 
to display, as clearly as possible, certain very useful 
analogies.) 

The commutation relations are 

[A:, A~] = ~:A~ - ~~A:, (2.2) 

[A;' 1~+1] = -~~/~+I' [AJ, 1;+1] = ~:r;+\ (2.3) 

[I~+1' I~+1] = [1;+\ 17+1
] = [1,"+1, I~+1] = 0, (2.4) 

with 

(ADt = A{, (I~+1)t = 1,"+1 (i,j, k, 1 = 1,' .. ,n). 

(2.5) 

Let us now define the (infinite-dimensional) basis 

(2.6) 

where K is an arbitrary real number and the integers 
h satisfy the following inequalities: 

hi HI ~ hi; ~ hi+l HI (i,j = 1, ... ,n) (2.7) 
and 

The matrix elements of A~ acting on this basis are 
formally identical with the familiar ones of the GZ 
formalism [Ref. 1, Appendix A). 

Those of the I's are defined as follows. The nonzero 
matrix elements of I~+1 and I~+1 are given (in the 
notation of the Appendix) by 

[
fr (hin+1 - hin - i + j + 1) i1 (h in- 1 - hin - i + j)]! 

(h - 11 In Ih) - .=2 ,-1 in n+l - K II 
(hin - hin - i + j + 1)(hin - h jn - i + j) 

1 S. S n;i* i 

(2.9) 

= (hi I~+1lhin - 1)* (j = 1, ... , n). (2.10) 

The matrix elements of I~+1 ' 1,"+1 (i = 1, ... , n - 1) 
are obtained from (2.3), (2.9), and (2.10). 

[Taking K to be complex amounts to a different 
phase convention for the I's; the invariants to be 
evaluated would then be functions of (KK*)! instead 
of K2. We will always choose K to be real.] Thus we 
have effectively a representation characterized by 
the (n - 1) integral discrete parameters hi n+1 (i = 
1, ... ,n) and one real continuous parameter K. 

Let us now compare the matrix elements (2.9), 
(2.10) with the corresponding ones of A~+1 and A~+1 
for a (finite-dimensional) GZ basis of U(n + 1). The 
difference arises, evidently, from the absence in (2.6) 
of the upper and lower bounds 

(2.11) 

(which make the GZ basis finite-dimensional) and the 
suppression in the definition (2.9) of a corresponding 

factor (always real): 

[- (hI n+1 - hi n+j)(hn+1 n+1 - hin - n + j))!. (2.12) 

It is true that this modification changes fundamentally 
the nature of the basis, releasing the outermost 
diagonals so that we may have 

hll ::;; h12 ::;; ... ::;; hln ~ + 00, 

hll ~ h22 ~ ... ~ hnn ~ - 00, 

and, in particular, 

hll ~ + 00 or - 00. 

(2.13) 

(2.14) 

Since the matrix elements are defined explicitly, 
one can try to verify all the necessary properties 
directly. But a more economical method is to exploit 
the known results for the GZ basis in spite of the 
fundamental differences between the two cases. 
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What is sufficient for our purpose is that, as a 
formal expression [for K =;l: 0 and supposing, for the 
moment, that the I's of (2.9), (2.10) are acting on 
states whose parameters happen to be in the ranges 
conforming to those for V(n + 1)], we have 

(hi [A~+1, A~+1] Ih) 

= -K-
2(h 1n+1hn+ln+1)<hl [I~+\ I~+l] Ih) 

+ (other terms not containing the 

product ~l n+1hn+1 n+l)' (2.15) 

But we also have 

[A~+\ A~_l] Ih) = (A~ - A~!~) Ih) 

= (2 i~ hin - ~~ hin- 1 - ]\n+1) Ih). 

(2.16) 

Since the right-hand side of (2.16) does not contain 
the product (hI n+1hn+1 n+1)' comparing it with (2.15), 
we obtain 

(2.17) 

(For the trivial case K = 0, the result is again evident.) 
Now if we pass out of the previous domains of the 

parameters, the validity of (2.17) is not affected, since 
that depends on formal cancelations and not on 
particular values. What we have rather to ensure is the 
essential Hermiticity restriction (2.10). But this point is 
guaranteed through our choice of the extreme factors 
(namely, those involving h1n+1 and hn+1 n+l) in (2.12). 
Hence, in general, we can write 

K(hl [I~+1, I~+I] Ih)K = O. (2.17') 

Once this crucial result is established, the rest 
follows quite easily. For this it is only necessary to 
note that the vanishing of the nondiagonal terms in 
(2.16) does not depend on the factors suppressed 
(2.12) and that, in such relations as 

[A~+1' A~+d = 0 = [A7+1, A7+1] (i,j = 1, ... , n), 

(2.18) 

the coefficients of the factors containing (under 
square root) hi n+l (i = 1, ... ,n) each vanish sep
arately. The derivation of (2.3) is also now evident 
from analogy. 

Let us note, for subsequent use, that we can 
immediately enlarge our algebra to that of 

(V(n) ® V(I» x 12n , (2.19) 

by defining (introducing an extra parameter 0: 

A~!~ I h)(K,~) = (~ + i~ hi n+1 - i~ hin) Ih)(K,~), 
(2.20) 

where ~ is an arbitrary real number, if A~t~ is to be 
Hermitic diagonal. Now, 

[A~t~, A}] = 0 (i,j = 1,"', n), 

[A n+l In+1] = _ I n+1 (2.20') 
n+l' 1 l • 

The other matrix elements remain unchanged. 
We could, of course, have absorbed the sum on 
hi n+1 in ~. But we prefer the form (2.20) for the 
eventual simplicity of certain formulas. 

The representation (2.20) has now for the first-order 
invariant 

~(1) Ih)(K,~) == (]IA~) Ih)(K,~) 

= (~ + i~ hi n+1) Ih)(K,,)· (2.21) 

We will also need the second- and third-order invar
iants defined as 

n 
A _ ~ In+1Ii 
U(2) - "'- i n+l, 

i=1 
n 

A _ ~ In+1AiIi + An+1A 
U(3) - "'- i i n+l n+lU(2)' 

i,;=1 

(2.22) 

(2.23) 

respectively. The general expressions for the eigen
values of these operators will also be denoted by 
~(l), ~(2)' and ~(3)' respectively. 

For the calculation of these eigenvalues, we can 
again very usefully employ a technique similar to 
that of (2.15). 

For example, the second-order Casimir operator of 
V(n + 1) in the GZ representation is given by6 

U<n+1)(hl C~IIA}A~) Ih)U(n+1) 

n+l 
=! hin+1(hin+l + n + 2 - 2i). (2.24) 

i=I 

Comparing [as for (2.15)] the coefficients of 

on both sides of (2.24), we obtain 

2hl n+1hn+l n+1 - hI n+lhn+I n+l (2~~2») = O. (2.25) 

[The first term comes from (A~tD2.] Hence, 

(2.26) 

This expression is the same for the algebras (2.1) and 
(2.19). 

6 A. M. Peremolov and V. S. Popov, Sov. J. Nuc1. Phys. 3, 676 
819 (1966); S, 489 (1967). 
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Other techniques are, however, possible; for 
future use we indicate a relatively simple method. 

As is well known6 the evaluation of the invariants is 
greatly facilitated for the compact case by the use of 
"maximal" (or "minimal") states, namely, the 
states for which the variable parameters attain their 
maximal (or minimal) values. In our case, strictly 
speaking, there are no such states, the representation 
being of infinite dimensions. Nevertheless, we can 
attain a relative simplicity by considering, for example, 
such a "pseudo minimal" state as, 

(The corresponding "pseudomaximal" state can also 
be used.) 

Acting on such a state, I~+1 has only one nonzero 
matrix element corresponding to 

(2.28) 

In fact, denoting (for our immediate purpose) such a 
state by 

(2.29) 

we have (in an obvious notation): 

~(2) = 

= 

x 1+ 

(2.30) 

Continuing in this fashion, we find that we have finally 
to evaluate 

x [1 + ... [1 + (A~)2[1 + (A~)2]] .. -} (2.31) 

where 

(AI) ::;:::::/hnn+1 hnn-1IAI!hnn+1 hnn -1), 
2 (m) \ h _ 1 2 h 

nn nn 

(2.32) 

and so on. Namely, we start for the A's each time with 
a true minimal state modified only by (hnn - 1) at 
the extreme right; whereas for I~+1' it is the matrix 
element corresponding to (2.28). These matrix ele
ments are sufficiently simple, so that, starting with 
the innermost term and continuing outwards, after 
an easy calculation we obtain 

(2.33) 

(2.34) 

We have taken the trouble of rederiving (2.26) by a 
longer method for the reason that the factorization 
(2.33) will be useful later on when the l's will be 
replaced by different operators. 

Let us now evaluate ~(3) in a similar fashion. We 
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note that 

(2.35) 

hnn 

= (I~+1)~m)[(A~)(m) + (A~-l)~m)[<A~=~)(m) - 2 

+ ... + (A~)~m)[(A~) - 2(n - 1)]' .. ] (2.36) 

= K2(h nn - n). (2.37) 

This gives 

~(3) = (K,,)(hl C.~/;+1A~I;+l + A~ti~(2)) Ih)(K,,) 

= 

x 

hnn 
hnn 

hnn (K,,) 

= K2«hnn - n) + (' - hnn» 
= K2(' - n). (2.38) 

The fact that ~(3) does not contain hi n+l (i = 2, ... , n) 
is a consequence of our definition (2.20). 

It should be noted that for algebra (2.1) [as well 
as for (2.9)] we can define ~(3) as 

~(3) =.i IF+IA}I;+1 - (iAl)~(2) 
t,.1=l z=l 

(2.39) 

= -K2(ihin+l + n). 
'~2 

(2.40) 

In fact [for (2.9)], replacing A~tt in (2.23) by 

!(An+1 _ i Ai) - A n+1 - !(nfAi) (2.41) 
2 n+l i~J i - n+l 2 i~l ' , 

we merely subtract i~(1)~(2) from the previous 
definition. In the following sections we will use the 
form (2.38). 

As a final remark we may add the hint that, if one 
is intt:rested in interpreting the results of Sec. 2 as a 
contraction process, in the GZ basis one should make. 

while 

remains finite. 

3. THE DEFORMATION 
[U(n) ® U(l)] X 12n ->- U(n, 1) 

Our starting point is the algebra of 

(U(n) ® U(1) X 12n , (3.1) 

whose representations we have discussed in Sec. 2. 
Let us now define7 

A~+1 = ± [~, I~+l] + iEf~+l' (3.2) 

AF+! ::::: ±[~, IF+l] + iEfF+!, (3.3) 

where € is real and arbitrary, and [with the definitions 
(2.22), (2.23)]: 

~ == --\-[(.i A~A:) + (~(3) + n)A~t~J. (3.4) 
2~(2) ',J~l ~(2) 

It is to be noted that, for a nontrivial representation 
of the /'s, we always have 

~(2) > O. (3.5) 

We obtain [with the convention of choosing the + 
sign in (4.3), (4.4)]: 

+ ~(3) Ii ] . Ii -- n+1 + IE n+l 
2~(2) 

(3.6) 

(3.7) 

It may be verified [with the help of (2.2)-(2.5)] that 
now we have 

[Ai A j] [An+1 An+l] 0 
n+l, n+l = i 'j = (3.8) 

and 

(3.9) 

7 Often the deformation formulas are written in a form which is 
essentially what we obtain by dividing (3.2), (3.3) by € [see Ref. 2 and 
also M. Levy-Nahas, J. Math. Phys. 8, 1211 (1967»). Since our 
purpose is to reproduce exactly the algebra of U(n, 1) and not to 
study it as a perturbation, the forms (3.2) and (3.3) are the ones 
suitable for us. 
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In other words, the generators 

A; (i,j = 1, ... , n + 1) 

now generate the algebra of [see (AI)-(A3)]: 

U(n, 1). 

In particular, if we start with the explicit matrix 
elements of Sec. 2, we obtain at once those for the 
deformed representation, whose representations are 
now labeled by 

(i) (n - 1) integers hi n+1 (i = 2, ... , n) 

and 
(ii) two continuous real parameters' and €. 

[For our present purpose, we can always consider 
K = + 1, as K is normalized away in (3.6) through the 
substitution € -- €K. Since € is as yet arbitrary, this 
involves no loss of generality.] 

We can denote such a basis of U(n, 1) as 

h2 n+2 

hln h2n 

hI n-l 

hn n+1 

hn- 1 n 

hn- 1 n-l 
(3.10) 

The nonzero matrix elements of A:+1 and A:+1 can 
now be shown to be given by 

(h;n - 11 A~+1lh) 
= 0<' - n) + i€ - (h;n - j» (h;n - 11/:+1 Ih) 

(3.11) 

= -(hi A~+l Ih;n - 1)* (j = 1, ... ,n). (3.12) 

The proof is very simple on using (All) to evaluate the 
first term of .i in (3.2) and (3.4). From the result 
(3.11) we can construct all the matrix elements of 
A~+l' AI'+l (i = 1, ... , n). 

The first-order invariant remains, evidently, the 
same as (2.21), namely 

.i(l) Ih)({,£) = (, + i~ hin+1) Ih)({,£). (3.13) 

Let us now evaluate .i(2) . 
We have 

(3.14) 

(3.15) 

+ (A~~;)2 + (n + l)A~~i - .i(l) . (3.16) 

We will now consider the diagonal matrix elements 
of these terms acting on a pseudo minimal state (2.27). 
The first term can be evaluated just as in (2.30)-(2.33). 
A difference arises, since now (considering first the 
case € = 0) we have instead, taking account of (3.7), 

(3.17) 

The second term is just the .i(2) for U(n) which, 
for this state, comes out as 

t~hin+l(hin+1 + n + 1 - 2(i - 1» 

+ hnnChnn + n + 1 - 2n)}. (3.19) 

Now substituting for the diagonal terms in (3.16) 
and adding them to (3.18) and (3.19), we obtain 
(for € = 0) 

n 

.i(2) = ! hi n+l(h i n+l + n + 2 - 2i) + ta2 - n2
). 

;=2 

(3.20) 
For 

€ :F 0, 
we note that 

AI'+1A~+1 = ([.i, 1:,+1] + id:,+1)([.i, 1~+1] + id~+1) 
= [.i, I;'+l][.i, I~+l] - €2/;'+ln+l' (3.21) 

Hence, we finally obtain 

.i(2) Ih)({,£) = t~2hin+l(hin+l + n + 2 - 2i) 

+ t<,2 - 4€2 - n2)} Ih)(C,E)' (3.22) 

An analogous exercise can be performed for .i(S) 
also. However, we will not attempt, in this article, a 
systematic explicit evaluation of the invariants. 

In order to compare with familiar things, let us 
now consider a very simple and somewhat special 
case, namely the representation of 

U(l,I) 

obtained by our technique. 
The starting point in the representation of 

(U(I)@ U(I» X /2' (3.23) 
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given (for K = 1) by 

A! Ih ll\{) = hn Ihl1)(~)' 
A~ Ihll)(~) = ({ - h ll ) Ihll)(~)' (3.24) 

I~ Ihu)(O = Ihll - 1)(0' I: Ihu)({) = lhll + 1)({). 

(3.25) 
We obtain, for U(l, 1), 

A~ Ihll)(C,£) = (t({ - 1) + i€ - (hu - 1» Ihll - 1)(C,£)' 
(3.26) 

A~ Ihn)({.d = -(t({ - 1) - i€ - (hu» Ihu + 1){e,£)' 

(3.27) 
Defining 

(K1 + iK2) == K+ = iA~, (Kl - iK2) == K_ = iAL 
Ka == Ko = t(A~ - A~), (3.28) 

we obtain the Hermitian generators K1 , K2 , Ka 
satisfying the SU(I, 1) algebras,s 

[Kl' K21 = -iKa, [Ka, Kd = iK2' 

[K2 , KaJ = iKl' (3.29) 
with 

[-!(K+K_ + K_K+) + (KO)2] Ihl1)({.<l 

= _(€2 + !) Ihll)({.<l' (3.30) 

Thus, so far as this subalgebra is concerned, { does 
not appear in the invariant, but only in the matrix 
elements in the combination 

(3.31) 

Thus we obtain the following continuous representa
tion of SU(I, 1)10; 

K± 1m). = ± .!. (2m ± 1 ± i2€) 1m ± 1)., (3.32) 
2 

Ko 1m). = m 1m)£- (333) 

The restriction of m to integral or half-integral values 
can only come through global properties. 

Another particularly simple case (for arbitrary n) is 

8 This and more the general cases (relevant for us) of SU(p, I) have 
been studied from the algebraic point of view by L. C. Biedenharn, 
J. Nuyts, and N. Straumann, Ann. Inst. Henri Poincare 3,13 (1965); 
L. C. Biedenharn. Non-Compact Groups in Particle Physics, Yutze 
Chow, Ed. (W. A. Benjamin, Inc., New York, 1966), p. 23. 

9 We may note, however. the point that in our case the continuous 
parameters (in contrast to the discrete ones) always occur outside 
the square root in the matrix elements. Hence, evidently without 
detailed calculations, we can say that tests involving the nonnega
tivity of norms such as are performed in Ref. 8 can impose no 
restrictions on them. In our representation the distinction between 
the two types of parameters is thus particularly clear from the 
beginning. Explicit examples in Sec. 6 show how, by suitably 
redefining the phases, we can obtain real matrix elements. 

10 It has been pointed out to the author by Monique Levy-Nahas 
that (as might have been expected for this particular case) the same 
form can also be obtained by calculating 0(2, 1) with the corre
sponding deformation formula for the orthogonal groups. 

obtained when 

hi n+l = 0 (i = 1, ... ,n) (3.34) 

with the states 

0 0 0 0 

h1n 0 0 hnn 

hI n-l 0 0 hn- 1 n-l 

(~. e) 

(3.35) 

The only nonzero matrix elements of A:+I are now 
given by 

(h in - 11 A:+1lh) 

= O({ - n) + i€ - (hIn - 1» 
x (h1n- 1 - h1n)(hn-ln-l - hin - n»)! (3.36) 

(hnn -hln -n+2)(hnn-h1n -n+l 
and 

(hnn - 11 A:+llh) 

= O({ - n) + iE - (h nn - n» 

X (h1n- 1 - hnn + n - 1)(hn- 1n- 1 - hnn + l»)t. 
(hin - hnn + n)(h1n - hnn + n - 1) 

(3.37) 
The first two invariants are now simply 

~(1) = { 
and 

(3.38) 

(3.39) 

4. COMPARISON WITH THE ROSEN-ROMAN 
CONSTRUCTION 

Let us again start with the algebra (2.2)-(2.5) of 

U(n) x 12n • 

Defining (in terms of an arbitrary real parameter A) 
n 

B:+1 = 1 ArI~+l + AI:+l' (4.1) 

we have 

[B:+l' (B:+l)t] 

i=l 

= (i Iin+lI~+l)(A: + 21.) + (.i Ir+lA}I~+1)' (4.2) 
1.=1 1,,=1 

Starting from this result, it is easy to verify that, 
instead of enlarging the algebra first [as in (2.19)
(2.21)J and then utilizing (3.2)-(3.7) for the deforma
tion, we can also start directly with the algebra of 

U(n) x 12n , 
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and define (for the moment putting € = 0): instead of (3.40) and (3.41) with 

A n 1 Bn (An+1)t n+1 = T n+1 = - n 
~(2) 

(4.3) L+ = A~, L_ = A~, L3 = t(A~ - A:), (4.14) 

and 

Since , in (2.20) and A. in (4.1 )-(4.4) are as yet both 
arbitrary, it is easy to see that 110 essential differences 
arise, as compared to the construction of Sec. 3. For 
this we need only ascertain that the commutation 
relations of 

(4.5) 

correspond to those of 

-A~!i (4.6) 

of (2.20), which implies that the matrix elements 
(diagonal) of (4.5) are of the form 

(some invariant term) + (thin). (4.7) 

Now coming to the (Rosen-Roman) construction,5 
upon translating their notation into ours through the 
relations 

Qi = (I~+l - Ir+1), Ri = i(I~+l + Ir+1), (4.8) 

we find that their result corresponds to the choice 
[in (4.1)-(4.4)] of the particular value 

A. = n12. (4.9) 

Besides this, as compared to Sec. 3, it is implied that 

€ = O. (4.10) 

We prefer to display the roles of these two contin
uous parameters a, €) as in Sec. 3. 

As already noted in the Introduction, our deforma
tion formula is applicable to the more general case 
of U(p, q), though here we utilize it only for the 
explicit construction of U(n, 1) representations. 

Let us finally add a remark about the alternatives 

€ = ±I (4.11) 

given by RR [see their equations (121)-(124)]. 
Taking as an example the simple case discussed in 

(3.36)-(3.45), we note that they correspond to 

€ = -1. (4.12) 
Corresponding to 

€ = +1, (4.13) 

we would have the familiar rotation algebra 

(4.15) 

with L3 Hermitic and L1, L2 anti-Hermitic, since 

A~ = -(A~t. 
This is a general phenomenon for the choice (4.13). 
When integrable, such algebras should leave to non
unitary representations obtained by some "suitably 
defined" 11 continuation of the unitary representations 
for the case (4.12). 

In Sec. 3, we have considered only the one-way 
process leading to the required Hermiticity conditions. 

5. REMARKS ABOUT IU(p,q) 

We will now discuss the difficulties that prevent a 
construction similar to that of Sec. 2, when the 
starting point is the GG bases3 for U(p, q + 1) 
instead of U(n + 1). 

Let us start by considering a very simple, though 
rather special, case. 

For /U(2) we have constructed the basis (with 
K=I,say): 

(5.1) 

with, for example, 

(h
12 

- 11 I~ Ih) = ( (h23 - h12)(hll - h12) )!. 
(h22 - h12)(h22 - h12 - 1) 

(5.2) 

Now considering the case /U(I, 1), say, in particular, 
the representation of U(l, 1) (see Appendix) with 

IX+ = 0, 

with the bases 

(5.3) 

we find that the required Hermiticity restrictions 
(along with the commutation relations) can only be 
maintained if we replace h23 in (5.1) (h12 ~ h23 ~ h22) 
by a correspondingly shifted parameter. Thus, we 

11 For examples of such techniques, though not exactly for these 
cases, see J. Kuriyan, N. Mukunda, and E. C. G. Sudarshan, 
J. Math. Phys. 9, 2100 (1968). Also, w. J. Holman III and L. C. 
Biedenham, Jr., Ann. Phys. N.Y. 39, 1 (1966). 
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may write, for example, 

h13 ) 
h12 h22 , 

hll 

(5.4) 

with 

(h12 - 11 I; Ih) = (_ (h13 - h12 + 1)(hll - h12»)i, 
(h22 - h12)(h22 - h12 - 1) 

(5.5) 

and corresponding expressions for the other matrix 
elements. [Note also the extra minus sign as compared 
to (5.2).] 

But now the change in the system of inequalities is 
such that the term 

(5.6) 

in the denominator is no longer canceled out in time 
as h12 is decreased step by step towards h22 . Such a 
difficulty arises for the other matrix elements and is, 
in fact, quite a general one for a noncom pact homo
geneous part. Thus our previous construction fails. 

Let us consider now the case q 2 2. Starting from a 
representation of U(p, q + 1) with P + q = n, we find 
that the shifts in the inequalities bring together, in the 
GG patterns, either one pair (for 0(+ = 0 or 0(_ = 0) 
or two pairs (for 0(+ = 1, ... ,p - 1) of the param

eters hi n+l' 

Thus, for example, for U(2, 2) we have (writing 
explicitly only the two top rows): 

for 0(+ = 0: 

h14 [h 24h34] h44 

h13 h23 h33' 

for 0(+ = 1: 
[h14h24] [h34h44 ] 

h13 h23 h33' 

and for 0(+ = 2: 

h14 

(5.7) 

(5.8) 

(5.9) 

In each case the Hermiticity restrictions can be met 
only by suppressing such paired terms. This, however, 
removes essential barriers between the parameters of 
the next row; hence the construction fails. 

It is amusing to note that, for the cases 

0(+ = 1, . . . ,p - 1, (5.10) 

on suppressing both the pairs we could have obtained 

(if everything remained well defined) representations 
of IU(p, q) with 

~(2) = o. (5.11) 

Such representation would have been rigid under 
such a deformation as (4.1), like the case of zero-mass 
discrete spin representations of the Poincare algebra 
considered by us elsewhere. 2 

The special case 
q = 1 

is again best discussed by starting with a particular 
case, namely 

U(2, 1) ~ IU(2). 

Corresponding to (5.7)-(5.9), we now have 

0(+ = 0: 

0(+ = 1: 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

The above patterns again illustrate a general 
feature, namely, for U(p, q) with 

P = n - 1, q = 1. 

We have a grouped pair for the extreme cases (0(+ = 0 
or 0(_ = 0) and a grouped triplet for all other cases. 
Now, indeed, we can define the matrix elements of 
I~+1 by suppressing [as in (2.12), but leaving in the 
minus sign] the factors corresponding to the grouped 
pair (or one pair chosen from the triplet). In each 
case, however, what we obtain is not essentially 
different from the construction of Sec. 2. 

6. O(n + 1) ---* lO(n) ---* O(n, 1) 

In this section we give the construction analogous 
to the preceeding ones for the case of orthogonal 
algebras. Since the techniques are quite similar, and 
even simpler in certain respects, we will content 
ourselves with briefly stating the results. 

So far as D(n) is concerned, we adopt (with minor 
changes) the conventions of Pang and Hecht12 and 
we define the [D(n) algebra through the following 
commutation relations for the generators (all skew 

12 S. C. Pang and K. T. Hecht, J. Math. Phys. 8, 1233 (1967). 
This paper contains references to other sources. 
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symmetric and Hermitian): 

[J. I J.;] = i(<5, i J; i + <51 i J. . - <5. i J .. 
'I l' 'I Z ).1 2 1 2: 1 2: '1'2 'I 2: 11'2 

- <5 .. J. i) (6.1) 
'1 '2 'I 2: ' 

[Jii , In+l k] = i( <5ikIn+1 i - <5jkIn+l i)' 

[In+! k
1

, In+! k.] = 0 (i,j, k = 1, ... , n). (6.2) 

In order to construct the bases, in contrast to the 

unitary case, we need now suppress only one param
eter (the leading one) of the GZ basis for O(n + 1) 
and, of course, the corresponding factors in the 
matrix elements. [e.g., in the following formula (6.5), 
the index f3 starts from 2 instead of from 1, as in 
formula (5.46) of Ref. (12).] If we want to use the 
language of contraction, we should start by making 
hn•1 -- 00. 

A. n =2k 

We parametrize the basis vectors of IO(2k) as 

h2k+! 2 

Ih)" == 

h2k k-1 

h2k-1 k-1 

h 2k- 2 k-1 

h21 Ie 

(6.3) 

where K is a continuous real parameter and the (k - 1) discrete ones (h2k+12 ••• , h2k+! k) satisfy the inequalities 

h2k 1 ~ h2k+! 2 ~ h2k 2 ~ ••• ~ h2k+! k ~ h2k k ~ -h2k+1 k' (6.4) 

The key matrix elements for the I's (from which the others can be deduced) are given by 

(h2ki + 11 12k+12k Ih) = ~h[1 t;:I~~:'~ 7::~ 1)(1"", + I",) IT (1,>-" _ I", _ 1)(1,.,." + I",)]! 
IK P=2 «=1 

= "2 IT (l:h - l:k j)(l~h - (12k i + 1)2) 
«*i 

= -(h2kl + 11 1 2k2k+!lh), (6.5) 
where 

(6.6) 

B. n = 2k - 1 
The basis vectors are now 

h2k 2 h2k k-1 h2k k 

h2k-l1 h2k-1 2 h 2k- 1 k-1 

h 2k- 21 h 2k- 22 

Ih)1e == (6.7) 

h41 h42 

hal 

h21 I< 
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where 

h2k- 11 ~ h2k 2 ~ ••• h2k k-1 ~ h2k- 1 k-1 ~ Ih2k kl· (6.8) 

The key matrix elements are now given [as compared to (5.44) and (5.45) of Ref. 12] by 

k k-1 
II 12k P II 12k-2a. 

(hi 12k-12k Ih) = K k~~2 ~~1 (6.10) 

II 12k-la(l2k-la - 1) 
~~1 

In both cases (A) and (B), the second-order Casimir 
operator is given by 

Ll(2) Ih) = C~/n+lkln+lk) Ih) = K2Ih). (6.11) 

The deformation corresponding to that of Sec. 3 is 
now given by the relatively simple and well-known5•13 

formula, namely 

where 

i 
J m.n+1 = + -!- [Ll, I mn+1] + AImn+l' (6.12) 

6.(2) 

(6.13) 

and A is a real continuous parameter. 
As in Sec. 3, we can (without loss of generality) put 

IC = 1 
in the formulas for IO(n), and consider the generators 

n 

J;n+1 = 2. (Iin+lJi; + Jiin+1) + AI;n+1 
i~1 

acting on the basis 
(j = 1,"', n) (6.14) 

(6.15) 

The O(n, 1) algebra is now given by replacing the 
third equation in (6.1) by 

[In+l k, ,In+! k
2

] = -iJk ,k
2

' (6.2') 

The explicit expressions for the matrix elements of 
Jm n+l are again easily obtained by noting that,6,12 for 
n = 2k, 

k k-1 
Ll = 2. h:k i + 2. (2k - 2i)h2ki (6.16) 

i~1 i~1 

and, for n = 2k - 1, 
k-1 k-l 

6. = 2.h~k-li + 2.(2k - 2i - 1)h2k_1i . (6.17) 
i=l i=l 

13 T. O. Philips and E. P. Wigner (to be published). 

(6.9) 

Finally, from (6.5), (6.9), (6.10), (6.16), and (6.17) 
we obtain 

(h 2k ; + 11 12k+12k I h);. 

= {-i(2h2k; + 2k - 2j + 1) + A} 

X (h 2k ; + 11 12k+l2kIh) 

[putting K = 1 in (6.5)], (6.18\ 

(h 2k- 1; + 11 J2k-12k [h) 

= {-i(2h2k_1 j + 2k - 2j) + A} 

X (h 2k- li + 11 12k-12k Ih) 

[putting K = 1 in (6.9)], (6.19 
and 

(hi 12k-12k Ih);. = A(hl 12k-12k Ih) 

[putting IC = 1 in (6.10)]. (6.20) 

We now briefly consider two simple but important 
particular cases: 

n = 3,4; 

namely, the homogeneous Lorentz group, the de Sitte 
group (and their corresponding contracted Euc1idea: 
groups). 

The first thing to be noted is that the phase con
vention, adopted as being rather suitable for the 
general case, is not the one most familiar for n = 3. 
In fact, for 0(3, 1), making trivial changes in orde 
to introduce more familiar symbols, 

m 

jo), 
Ih) == j " (6.21 i 

with 

1alh) == 112 1h) = m Ih), (6.22) 

(11 ± iJ2) Ih) 

= T i(113 ± iJ2a) Ih) 

= Ti«(j T m)(j ± m + 1»! j (6.23) 

m ± 1 
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and 

K31h) == J34 1h) 

= (j + 1 - iA) 

x ((j~ - (j + 1)2)(m2 - (j + 1)2»)~ 
(j + 1)2(4(j + 1)2 - 1) 

x . + 1~ 10 + A jom . 
1 .( . + 1) 1 

m A 11m 
) 

+ C + iA) ((j~ -l)(m
2 -l»)t 

J l(4/- 1) 

X j - 1 j). 
m A 

(6.24) 

(The corresponding formulas for 134 need hardly be 
written down separately.) The two invariants are 
given by putting Kl == J14 and K2 == J24 : 

(K2 _ J2) Ih) = (1.2 - j~ + 1) Ih), 

K • J Ih) = Ajo Ih). (6.25) 

The formula (6.24) has been utilized by JOOS14 

[formula (4.22) of Ref. 14] and differs through a phase 
convention from a more familiar version. 7,14 Thus we 
note that the well-known continuous parameter A 
characterizing the irreducible representations of HLG 

corresponds exactly to the deformation parameter 
introduced in (6.12). (The above particular case has 
been discussed15 with the additional restriction A = 0). 

Let us now consider the case of 0(4, 1). Strom16 

has studied a certain basis of 0(4, 1) which can be 
contracted directly to the angular-momentum basis 
of the Poincare group. He obtained it by transforming 
the usual discrete basis reduced by diagonalizing the 
0(3) 129 0(3) subgroup. Our formalism (6.18) for 
this particular case directly gives the required basis, 
apart from a difference in phase convention. In order 
to make this more explicit, starting with the basis 

hS2 

(6.26) 

(6.27) 

The new phase makes the matrix elements all real 
and we have 

'(h41 + 11 J 45 1h)' = '(hi J451h41 + 1)' = (h41 + l)(h41 + 2) + C : A))! 
1 

(
h52 - h41 - 1)(h52 + h41 + 2)(h31 - h41 - 1)(h31 + h41 + 2»)~ 

X (h~2 _ (h41 + 1)2)(h;2 - (h41 + 2)2) 
(6.28) 

and 
2 1 

'(h42 + 11 J45 Ih)' = '(hi J45 Ih42 + 1)' = (h42(h42 + 1) + 1 : A r 
(

h52 - h42)(h52 + _h42 + 1)(h3l - h42)(h3l + h42 + 1»)~ 
X «h41 + 1)2 _ h!2)«h41 + 1)2 - (h42 + 1)2) . 

(6.29) 

Now substituting 

HI + A.~ == a, hS2 == S, 

h41 + 1 == 1, h42 == n, h3l == j, h2l == m? (6.30) 

we obtain the basis of Strom, with the two invariants 

o = -s(s + 1) + 2 + a 
and 

0' = -s(s + l)a. (6.31) 

Thus we see that, after contraction, h52(== S) plays 

14 H. Joos, Fortschr. Physik 10, 65 (1962). 
15 A. Sankaranarayanan, Nuovo Cimento 52A, 91 (1967). See also: 

J. Math. Phys. 9, 611 (1968)). 
16 S. Strom, Arkiv Fysik 30,455 (1965). 

the role of the spin of the irreducible representation 
of the Poincare algebra. (The discussion in Sec. 4 of 
Ref. 2 may also be compared in this connection.) 

Also to be noted is the fact that, as compared to 
Ref. 16 we do not get the full range of a, since in our 
case 

a = i(1 + .1.
2

) 2 i· 

7. CONCLUSION 

(6.32) 

As is well known, during the last few years, a very 
considerable amount of attention has been devoted 
to the possible applications of noncompact groups in 
particle physics. The last-named of the Refs. 8 and the 
lectures of Nambu and the following ones in the 
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Rochester Proceedings17 contain a fair amount of 
references to the original papers. 

Even in molecular quantum mechanics18 applications 
of 10(4) and 0(4, 1) have been studied. [The possi
bilities of 0(4, 1) are not, of course, limited to internal 
symmetries onlyP] 

The intriguing possibility, of course, is that of 
classifying "towers" of multiplets corresponding to 
the successive irreducible representations of the 
homogeneous compact subgroup through the action 
of the noncompact generators which act as transition 
operators. 

Since, for physical applications, it is often interest
ing to have as many discrete quantum numbers as 
possible, we have explicitly constructed such bases 
for IU(n) and IO(n), which have then been related, 
through suitable deformation formulas, to U(n, 1) 
and O(n, 1), respectively. 

In this paper, however, we have not studied the 
problems of integrability and explicit construction of 
finite transformation matrix elements. 
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APPENDIX 

The generators A~ of U(p, q) (p ~ q, p + q = n) 
satisfy the commutation relations 

[AL A~] = b;A~ - b~A; (i,j, k, I = 1,"', n), (AI) 

along with the relations 

(ADt = +(AD, for (i,j) S p or > p, (A2) 

= -(AD, for i S p, j > p 

or i > p, j s p. (A3) 
For the case 

q = 0, p = n, (A4) 

an orthonormalized basis is given by the Gel'fand
Zetlin (GZ) patterns 

Ih) == , (AS) 

with the inequalities 

hi i-I ~ hi; ~ hi+l HI' 

The key matrix elements are given by 

A~ Ih) = (~lhik -:~:hik-l) Ih) 
and 

(A6) 

(A7) 

[ 

k+l k-l ]i I1 (hik+l - h;k - i + j + l) II (h ik- 1 - h;k - i + j) . 
(h;k - 11 A:+llh) = -' 1 ,-1 (j = 1, ... , k), n (h ik - h;k - i + j + l)(hik - h;k - i + j) 

l~i5:k.i*j 

(AS) 

where 
Ih;k - 1) 

denotes the state differing from Ih) only through the 
change hjk -+ hjk - 1. The phase is chosen so that 
(AS) is positive. From (AS), together with (AI) and 
(A2), all other matrix elements can be obtained. 

The explicit values of the Casimir operators of 
degree m defined as 

(A9) 

are known. 6 We need only 

(AlO) 

17 Proceedings of the 1967 International Conference on Particles 
and Fields (Interscience Publishers, Inc., New York, 1967). 

18 C. E. Wulfrnan and Y. Takahata, J. Chern. Phys. 47, 488 (1967). 

and 

C.~lA;A~) 111) = (~lhin(hin + n + 1 - 2i)) Ih). 

(All) 

For the noncompact case (q ~ 1) the bases for the 
discrete GeI'fand-Graev (GG) representations are 
obtained simply by changing the system of inequal
ities (A6) for the previous case [see (Al3) and 
(AI4)]. 

The formal expression for the matrix elements and 
invariants remain unchanged, but we have to note the 
altered phases implied through the changed inequal
ities. The changes in the inequalities are indicated by 
corresponding shifts of the relative positions of the 
parameters in the pattern. 

For each pair of nonnegative integers cx.+, cx._ 
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satisfying 

iX+ + iX_ = P (iX+ = 0, I, ... ,p), (AI2) 

an inequivalent representation is obtained by changing 
(only) the inequalities corresponding to the first iX+ 

and the last iX_ elements of each of the top q rows as 
follows: 

and 

h;-CL +2 HI ~ h;_,c +1 HI 

~ ... ~ hHI HI ~ hi; + 1. (AI4) 

The patterns induced by these shifts will be clearer 
on referring to the examples discussed in Sec. 5. 

As regards the phases, for our purposes, we need 
only note that now the right-hand side of (A8) is 
pure imaginary for 

k=p (AlS) 

~ ... ~ ha.+i ~ ha.+Hl + 1 (Al3) and real (positive or negative) otherwise. 
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1. INTRODUCTION 

Lie groups and Lie algebras have become increas
ingly familiar to particle physicists. Conservation laws 
and symmetries have been studied in terms of invari
ance and noninvariance groups. The central idea that 
is exploited in these applications is the assumption 
that the analytic properties of amplitudes have their 
counterpart in the analytic properties of the repre
sentations of Lie algebras. 

We have studied the representation theory of Lie 
algebras in terms of analytic representations. Specif
ically, we wished to show that every linear representa
tion of a (locally compact) Lie algebra is a special case 
of a master analytic representation; that the unitary 
representation of any of the Lie groups with this Lie 
algebra is a specialization of the master analytic 
representation (MAR). 

The theory of the MAR synthesizes all Hermitian 
representations of the Lie algebra. It also brings out 
the relation between the representations of two 

* Research supported by the National Science Foundation. 
t Present address: UCLA, Los Angeles, California. 
t Present address: Tata Institute of Fundamental Research, 

Bombay, India. 
§ Supported by USAEC. 

different Lie algebras whose complex extensions are 
isomorphic. This is, therefore, an elegant and 
powerful method for finding the unitary representa
tions of various noncompact groups. 

Elsewhere,1 we have illustrated the technique by 
finding the representations of some pseudo-orthogonal 
groups. 

When a noncompact group is such that its maximal 
compact subgroup labels the states within a VIR 
uniquely, we believe that the MAR method is quite 
straightforward, and it is not too difficult to see why 
it works. We, however, believe that this method is 
quite general and fundamental and is applicable to 
many other groups as wei\. In particular, one could 
reduce VIR's of a noncom pact group with respect to 
a noncompact subgroup. In this direction we have 
made a beginning by reducing representation of 
0(2, I) with respect to 0(1, O. Throughout the paper 
we use, as far as possible, only infinitesimal-operator 
techniques. A difficult problem is to find out when a 
representation of the Lie algebra permits exponentia
tion to provide a representation of the group. We do 

1 J. G. Kuriyan, N. Mukunda, and E. C. Sudarshan, Commun. 
Math. Phys. 8,204 (1968). 
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1 J. G. Kuriyan, N. Mukunda, and E. C. Sudarshan, Commun. 
Math. Phys. 8,204 (1968). 
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not address ourselves to this problem. We do hope to 
demonstrate, however, the simplicity and the con
sequent ease with which some of these groups can be 
handled. 

Various authors have investigated the representation 
theory of groups which make use of some of the ideas 
mentioned above; particular mention must be made of 
the work of Barut and Fronsdal, Hermann, Holman 
and Biedenharn, and Fronsda1.2 The results of this 
theory have been used in other investigations by one 
or another of the present authors of this paper,3 and 
the theory was announced more than two years ago 
at the Third Coral Gables Conference'; an account 
was given in a thesis by one of us (J. G. K.).5 

The reduction of noncompact groups with respect 
to noncompact subgroups has been carried out by 
Mukunda, Strom, and Sciarrino and Toller,S using 
global techniques. Our approach is in the spirit of 
Joos' 7 classic work on the Poincare group. Subsequent 
to the completion of our work, Barut and Philips8 

have extended our techniques to study (global) 
representations of the group 0(2, 1). Much more 
recently Itzykson9 has attacked the same problem as 
ours using very similar methods. 

The plan of the paper is as follows. In Sec. 2 we 
review the salient points of the method of MAR by 
applying it to the group 80(3) and deriving the VIR 
of 80(2, 1). Section 3 deals with the solution of the 
reduction of 80(2, 1) in an 80(1, 1) basis. For those 
who have lost sight of the method of MAR, in Sec. 4 
we derive the essential results of Sec. 3 by using the 
recipe given in Sec. 1. We conclude the paper with a 
discussion. 

2. VIR OF SO(2, 1) OBTAINED FROM THE 
VIR OF SO(3) 

We recapitulate the recipe prescribed by the method 
of MAR. First carry out the Weyl's unitary trick to 
obtain the generators of 0(2, 1) from those of 0(3). 

2 A. O. Barut and C. Fronsdal, Proc. Roy. Soc. A287, 532 (1965); 
R. Hermann, Commun. Math. Phys. 3, 75 (1966); W. J. Holman 
and L. C. Biedenharn, Ann. Phys. (N.Y.) 39, I (1966); C. Fronsdal, 
Proceedings of the IAEA Conference, Trieste, 1965 (lAEA, Vienna, 
1965). 

3 J. G. Kuriyan and E. C. G. Sudarshan, Phys. Letters 21, 106 
(1966); N. Mukunda, Conference on Non-compact Groups in Particles, 
Y. Chow, Editor (W. A. Benjamin, Inc., New York, 1966). 

• E. c. G. Sudarshan in Proceedings of the Third Coral Gables 
Conference 1966, A. Perlmutter, J. Wojtaszek, E. C. G. Sudarshan, 
and B. Kursunoglu, Eds. (W. H. Freeman and Company, San 
Francisco, 1966). 

• J. G. Kuriyan, Ph.D. thesis, Syracuse University, 1966. 
6 N. Mukunda, J. Math. Phys. 9, 50, 417 (1968); S. Strom, Arkiv 

Fysik 34, 215 (1967); A. Sciarrino and M. ToUer, J. Math. Phys. 
8, 1252 (1967). 

, H. Joos, Fortschr. Physik 10, 65 (1962). 
6 A. O. Barut and R. N. Philips, Commun. Math. Phys. 8, 52 

(1968). 
• C. Itzykson, Stanford Linear Acceleration Center preprint, 1968. 

Then analytically continue the matrix elements into 
regions in which the corresponding operators are 
Hermitian. 

The simplest application of the method of MAR is 
to 80(3). The commutation relations are well known 
and the matrix elements of Jo and J+ are 

<ml Jo 1m) = m, 

(m ± 11 J± 1m) = {(j + t)2 - (m ± i)2}, (2.1) 

with 2j a nonnegative integer. 
Weyl's unitary trick gives the prescription for the 

generators of 0(2, 1) (distinguished by primes): 

Jo ->- J~ = Jo, 

J± ->- J,-± = iJ±, (2.2) 

so that the matrix elements of J~ and J~ are 

(ml J~ 1m) = m, 

(m ± 11 J~ 1m) = {em ± W - (j + i)2}t. (2.3) 

To get Hermitian representations with 

(J~)t = J~, (J'-±)t = J~, (2.4) 

we search for the domain of m and the values of the 
parameter j, considering the matrix elements (2.3) as 
analytic functions Mits variables. We get the following 
classes of representations: 

(i) Dt 2j + 1 nonnegative integer; m ~ j + 1, 
(ii) Dj 2j + 1 nonnegative integer; 

(iii) C2 
(iv) C! 
(v) E. 

(vi) [ 

m ~ -j - 1, 
j = -i + ia, a ~ 0 m integral, 
j = -t + ia, a > 0 m half integral, 
j = -i + s, t > s > 0 m integral, 
j = 0, m = O. 

Thus we obtain all the different classes of representa
tions that BargmannlO first derived by analyzing the 
master analytic function in Eq. (2.3), which are subject 
to conditions 2.4 (Hermiticity or unitarity correlation). 

3. REPRESENTATIONS OF 0(2,1) IN AN 
0(1, 1) BASIS 

In this section we present a direct construction of 
Hermitian representations of the Lie algebra of the 
group 0(2, 1) in a basis in which the (noncompact) 
generator of the 0(1, 1) subgroup is diagonal. This is 
an interesting problem in itself, with many "peculiar" 
features and so we shall deviate from the pattern set 
in Sec. 2 and attempt to solve this directly. In Sec. 4 
we follow the usual spirit of MAR and deduce the 
representations of 0(2, 1) in an 0(1, 1) basis from a 
knowledge of the representations of 0(2, 1) in an 
0(2) basis. 

10 V. Bargmann, Ann. Math. 48, 568 (1947). 
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The Lie algebra of 0(2, 1) has three independent 
elements J1 , J2 , J a obeying the commutation rules 

[J1,J2] = -iJa , 

[J2 ,Ja] = iJ1 , 

[Ja,Jt1=iJ2 • 

(3.1 a) 

(3.1 b) 

(3.lc) 

A representation of the Jj by Hermitian operators 
would lead to a unitary representation of the group 
0(2, I). The operator Q given by 

Q = J~ - J~ - J~ (3.2) 

commutes with the J j and so reduces to a real number 
in every Hermitian irreducible representation of the 

J1 • 

We want to introduce a complete set of orthonormal 
eigenvectors for the operator J2 in the space of a 
representation of the J j • Naturally we used to know 
the nature of the eigenvalue spectrum of J2 • To this 
end, let us rewrite (3.1) in terms of the Hermitian 
operators J ± : 

Then (3.1) reads 
[J2 , J±] = ±iJ±, 

[J+ ,J-] = 2iJ2. 

(3.3) 

(3.4a) 

(3.4b) 

The Hermitian operators J2 and J+ form a subalgebra 
of the 0(2, I) Lie algebra. An irreducible Hermitian 
representation of all the J j may be expected to be 
reducible with respect to the subalgebra generated by 
J2 and J+. Imagine this further reduction has been 
carried out. Within an irreducible representation of 
J 2 and J+, what can be said about the spectrum of 
eigenvalues of J2 and J+? First we find easily that for 
all real oc, 

exp (-iocJ2)J+ exp (iocJ2) = eaJ+, (3.5) 

so that the eigenvalue spectrum of J + consists of all 
real positive or of all real negative numbers. One can 
then consider a Hermitian operator In J+ or In (-J+), 
depending on whether J+ is positive- or negative
semidefinite. Then assuming In J+ to be Hermitian, 
say, we find 

exp (ioc In J+)J2 exp (-ioc In J+) = J 2 + oc. (3.6) 

The spectrum of J2 then consists of all real numbers 
from - 00 to + 00. This then is the situation within a 
subspace irreducible under J 2 and J+ alone. 

It is natural then to introduce a basis of eigenvectors 
of J2 as follows: 

J 2 IA; r) = AlA; r); (A'; r' I A; r) = Dr'rD(A' - A); 

- 00 < A, A' < 00. (3.7) 

What we have to discover is how often a given 

eigenvalue A appears, or how many irreducible 
representations of J2 and J+ are needed to synthesize 
our irreducible representation of J2 , J+, and J_. The 
label r corresponds to this "multiplicity." It is clear 
though that the range of values of r is independent of 
the particular eigenvalue I.. 

At this point we must comment on the structure of 
the commutation rules (3.4a). Taken literally, they 
seem to say, for example, that the state 

(3.8) 

is an eigenstate of J2 with eigenvalue A + i. This is 
impossible since J2 is a Hermitian operator. We infer 
that it is not possible to apply the operators J± to 
the vectors IA; r). The solution to this problem is the 
following. We must remember that in any case the 
states II.; r) are "ideal" vectors, which do not represent 
normalizable vectors in Hilbert space. Omitting for the 
moment the index r, a normalizable vector I~) is 
really a linear combination of the form 

(3.9) 

The wavefunction ~(A) is normalizable in the sense 

(3.10) 

and the total Hilbert space is made up of all vectors 
I ~) with (Lebesgue) square-integrable wavefunctions 
~(J.). Now the generators J2 , J± are, in general, un
bounded operators and each one has a corresponding 
domain of vectors I~) on which it is defined. For 
example, J2 can only act on a vector I~) if, in addition 
to ~(A), even A~(J.) is square-integrable. [In this sense, 
(3.7) is quite formal.] Among all wavefunctions ~(A), 
those that J+ can act upon are characterized as 
follows: ~(A) should be the boundary value of an 
analytic function of A, such thatf(A)~(A - i) is also a 
square-integrable wavefunction: 

(3.11) 

Here, f(A) is a function to be determined, and which 
plays the role of the matrix element of J+. Thus for a 
vector in the domain of J+, the wavefunction ~(A) 
determines, via analytic continuation, a unique new 
wavefunctionf(A)~(A - i), and 

J+ I~) = J+ L: dJ. ~(A) IA) = L: dAf(A)~(A - i) 11.)· 

(3.12) 

Assuming that a wavefunction ~(A) is such that both 
J2J+ and J+J2 may be applied to it, one can explicitly 
verify the validity of (3.4a). A similar situation exists 
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for J_. [We should also remark that all three operators 
J 2 , J+, J_ possess a common dense domain of vectors 
on which all the commutation rules (304) may be 
verified.] The function f(A) plays the role of a matrix 
element of J + . 

Just as the use of the ideal vectors IA) conveys in a 
formal but succinct manner the fact that the Hilbert 
space consists of all square-integrable wavefunctions 
4>(A), it is natural to introduce a formalism that 
conveys the information of the last paragraph [and 
especially (3.12)] in an equally compact and elegant 
manner. We introduce, then, new "states" labeled as 
follows: 

and write 
II. ± i), 

J+ 14» == L: dAf(A)4>(). - i) 1,1) 

=L: dAf(A + i)4>().) II. + i), 

(3.13) 

J-I4» == L:d). g(). + i)4>(A + i) 1,1) (3.14) 

= L: dA g().)4>(A) 1,1 - i), 

J+ IA) = f(A + i) II. + i), 
J_I).) = g(A) I). - i). 

The use of such objects as I). ± i) is only a convenient 
way of representing equations like (3.12). However, 
their use turns out to have a practical advantage as 
well. 

We have yet to discover the range of the index r in 
the states IA; r). For the moment we continue to omit 
this index. Let us now apply the commutation rule 
(3Ab) to a state IA). Using (3.14) we get 

f(A)g().) - f(). + i)g(). + i) = 2i). (3.15) 

with the solution 

f(A)g().) = ao - 1.(,1 - i), (3.16) 

where ao is a constant. Ifwe use the notationj(j + 1) 
to denote the eigenvalue of Q, we find 

Q = j(j + 1) = -aD (3.17) 
and then 

f().)g().) = -j(j + 1) - 1.(1. - i) 

= -(j + t)2 - (A - ti)2; (3.18) 

j is in general a complex variable such that j(j + 1) 
is real. 

An interesting feature of this problem is that (3Ab) 
leads only to the product f().)g(A), and f().) cannot 
be related to g(A) in any other way. This is because 
each of the operators J+ and J_ is Hermitian. If we 

had been working in a basis of eigenstates of the 
compact generator J3 , then the corresponding raising 
and lowering operators J1 ± iJ2 are Hermitian 
conjugates of one another. In that case, the com
mutation rule analogous to (3Ab), 

(3.19) 

evaluated between eigenstates of J3 , leads to an 
equation which determines the absolute magnitudes 
of the matrix elements of J1 ± iJ2 • [This is also 
familiar from the treatment of representations of 
0(3).] In the present case, we are free to choose 
f().) in any way we please; then g(A) is fixed by (3.18). 
The only condition we must obey is that J+ and J_ are 
Hermitian; the scalar product with respect to which 
they must be Hermitian has already been specified in 
Eqs. (3.10) and (3.7). 

Let us write b2 = - (j + t)2 and consider first the 
case where bothf().) and g().) are linear in A: 

f().) = b + A - ti; g().) = b - A + ti. (3.20) 

According to (3.14), the operators J+, L, J2 acting on 
a wavefunction 4>().) may then be represented as 

J 2 = A, 

J+ = (b + A - ti) exp (-i ~) 
= exp (-i :A)(b + ). + ti), 

J_ = (b - A - ti)exp (i :,1) 

= exp (i o~)(b - A + to.' 

(3.21) 

Working purely formally, exp (±i 0/0,1) is a Hermitian 
operator, and J± will also be Hermitian if and only if 

b* = b. (3.22) 

Consequently, such a choice for f(A) and g(A) can 
lead to Hermitian J+ and J_ only if j is a complex 
number of the form 

j = -t + ib, b real, (3.23) 
and 

Q = -t - b2 S -to (3,24) 

We are then dealing with the continuous nonexcep
tional series of unitary representations of 0(2, 1). 

The problem of the index r, or the problem of 
multiplicity of eigenvalues of J2 , is solved by trying to 
construct the eigenfunctions of the compact generator 
J3 , whose eigenvalue spectrum is known to be discrete. 
For this purpose, we pass to the description of states 
by wavefunctions 1p(x), where x is a real variable 
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related to I., via a Fourier transformation: 

VI(X) = (21lr*L: ei",;'cp(A) dA, 

IIVI(X)11
2 

= L:IVI(X)1
2 

dx. 

In the x language we have 

J 2 = -j~ 
ax' 

J+ = e-"'(b + ii - i :x), 

J_ = eil:(b + ti + i :J. 

(3.25) 

(3.26) 

Let us look for eigenfunctions of J a = i(J+ - J_) 
for an eigenvalue m: 

-i cosh x ~ Vlm(x) ax 
- (b + ti) sinh xVlm(x) = mVlm(x); (3.27) 

the solution turns out to be 

1Pm(x) = -- --- (cosh X)-i+ib. (3.28) 1 (1 + ie",)m 
(27T)! 1 - ie"' 

Restricting ourselves now to single-valued repre
sentations of 0(2, 1), m is an integer, positive, 
negative, or zero. The question now is this: how often 
must each eigenvalue I. of J2 appear in order that J a 
have one eigenvector for each integer m as eigenvalue, 
and such that eigenvectors of J a for distinct eigenvalues 
be orthogonal? We can explicitly compute the scalar 
product of two wavefunctions VIm (x) and Vlm'(X): 

L: dx VI!(X)Vlm'(X), (3.29) 

and we find that this expression is of the form {j • m,m 
only if m and m' are both even integers or both odd 
integers! Thus the set of functions 

Vl2n(X) , n = 0, ±1, ±2,"', (3.30) 

by itself forms a complete orthonormal basis for the 
Hilbert space of square-integrable functions of n; 
and the same is true for the set of functions 

V'2n+l (x) , n = 0, ±1, ±2, .... (3.31) 

This shows that if we assume that every eigenvalue A 
of J2 occurs only once [in a representation of the 
continuous nonexceptional series of 0(2, 1)], we have 
a contradiction since we end up with the wrong 
spectrum of eigenvalues for the compact generator J a. 
But it is quite clear that this situation can be remedied 
as follows. We define the eigenfunctions of J a to be 

two-rowed column vectors, each element being made 
up of a function of x: 

'I" = ( Vlm(x) ) . - 0 ±1 ±2 ... 
m (_1)m

Vlm
(x) ' m -, , , . 

(3.32) 

By definition the 'I" m are to be a basis for the Hilbert 
space of a representation of J1 , J2 , J a. Since each of 
the sets of wavefunctions (3.30) and (3.31) forms a 
~omplete orthonormal system for the space of square
tntegrable functions of x, it is clear that every column 
vector of the form 

<I> = (cp1(X») , 
cp2(X) 

11<1>112 == L: dx(lcpl(XW + Icp2(X)12
) < 00, (3.33) 

where CP1(X) and cp2(X) are chosen quite independently 
of one another, can be expanded as a linear combina
tion of the 'I" m' And one can see that one now has 

('I" m' 'I" m') = {jmm'; m, m' = 0, ±1, ±2,' ... 
(3.34) 

The requirement that Ja have the right spectrum of 
eigenvalues led to the fact that we have to consider a 
Hilbert space of wavefunctions of the type (3.33). 
The variable x is related by Fourier transformation to 
A, which is the eigenvalue of J 2 • It follows that in 
representations of J1 , J2 , and J a corresponding to the 
continuous nonexceptional series, every eigenvalue 
A of J2 appears twice; the multiplicity index r has two 
values. This is in agreement with the observation of 
Bargmann.lO Corresponding to the two values of the 
multiplicity index r, the expressions (3.26) have to be 
modified by writing the generators as two-dimensional 
matrices in addition to being linear differential 
operators in x. The appropriate expressions have been 
derived elsewhere,n and here we quote the results: 

J 2 = -i.E.. ®'(f 
dx 3' 

J1 = [i sinh x ~ + i(t - ib) cosh x] 0 (f3' (3.35) 

J 3 = [-iCOShX d~ - i(t - ib)SinhX] 01. 

To summarize the above discussion, the factoriza
tion of Eq. (3.18) so as to yield the simplest possible 
expressions for the functions 1(1.) and g(A) led to 
operators J± which were Hermitian only when the 
parameter b was real. This corresponded exactly 

11 See N. Mukunda, Ref. 6. 
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to the continuous nonexceptional representations of 
0(2, 1). The fact that f().) and g().) were linear in A 
meant that in trying to solve the eigenvalue equation 
for the compact generator J 3 , (3.27), we had a first
order differential equation. The condition that the 
eigenvalues of J 3 differ from one another by integers, 
and not by even integers, led to the doubling of the 
spectrum of the noncompact generator J2 • 

There are two other simple choices for f().) and 
g(A) which could be made, namely 

f().) = ).(). - i) + j(j + 1); g().) = -1 (3.36) 

and 

f().) = -).(). - i) - j(j+ 1); g().) = +1. (3.37) 

The operators J2 , and J + , J _ will then be 

J 2 = )., 

J+ = ±[).(). - i) + j(j + 1)] exp ( -i :).) 

= ±exp (-i :).) [).(). + i) + j(j + 1)], 
(3.38) 

J_ = 1=exp (i :).). 
The over-all ± signs in J + and 1= signs in J _ corre
spond, respectively, to (3.36) and (3.37). These choices 
for I().) and g().) are suited to a description of the 
discrete classes of UIR's of 0(2, 1) as we show now. 

We first demonstrate that the choice (3.36) leads to 
the discrete representations D<+) of 0(2, 1). The 
eigenvalue equation for the operator J 3 is 

x d (d"P ) Ja"P(x) = -ie- dx dx - "P 

If we introduce the variable z = 2ex , and the function 
e/>(z) = 2"P(x)/z, then (3.39) becomes 

~~(Z2 de/» + [m _! _j(j ~ l)]e/>(Z) = O. 
Z2 dz dz z 4 z 

(3.40) 

This is exactly the form of the radial equation for the 
bound states of the nonrelativistic hydrogen atom. 
For any of the following values of j: 

j = 0, 1,2,'" , (3.41) 

we know that normalizable solutions of (3.40) exist; 
for a given j, we find one bound-state type discrete 
solution for each of the following values of m: 

m = j + 1, j + 2, ... , oo. (3.42) 

It must be kept in mind that in our problem the norm 
of e/>(z) is given by 

II e/>(z) II 2 = tlOOIe/>(ZW z dz (3.43) 

and this is not the same as the normalization integral 
for radial wavefunctions of the three-dimensional 
hydrogen atom. The solutions to (3.40) are, apart 
from normalization constants, 

e/>m(z) = e-z/2zjL~~~(z), m = j + 1,j + 2,···,00. 

(3.44) 

(The L~(z) are the associated Laguerre polynomials.12] 

Knowing the behavior of e/>m(z) both near z = 0 and 
z = 00, the basic Eq. (3.40) can be used to show 

fx; e/>m,(z)*e/>m(Z)Z dz = 0 if m ¥- mi. (3.45) 

Thus the operators J2 , J± corresponding to the 
choice (3.36) lead to the correct spectrum of J3 , and 
give rise to the discrete representations of 0(2, 1) of 
the type Dl+). If instead we use (3.37), then the 
eigenvalue equation for J 3 for any eigenvalue m is the 
same as (3.40) but with m replaced by -m. This time, 
bound-state type solutions exist provided 

m= -j-1, -j-2,"',-oo (3.46) 

and we are led to the discrete representations of the 
type DJc-). In both cases, Di+) and Di-), we see that 
each eigenvalue A of J2 appears exactly once. 

Now we present a construction of the exceptional 
class of UIR's of 0(2, 1) in an 0(1, 1) basis. In this 
class of representations, the Casimir invariant Q has 
the form 

Q = -t + k2; -t < Q < 0, 0 < k < t. (3.47) 

As in Sec. 3, we begin with a set of eigenvectors of 
J2 : 

J2 \)') = )'\A); (A' 1 A) = b(A' - A); 

-00 < A, A' < 00, (3.48) 

and applying the operators J± = J1 ± J 3 to these 
vectors we arrive at the following equation for the 
functions f(A) and g(A): 

f(A)g(A) = -(A - ti)2 - k 2. (3.49) 

The operators J ± would be given by 

J+ = exp (-i :x)fCA + i); J_ = exp (i :).)g(A). 
(3.50) 

However, we must obey the condition that J+ and J_ 

12 For example, L. 1. Schiff, Quantum Mechanics (McGraw-Hili 
Book Co., New York, 1952). 
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are separately Hermitian operators. If, analogous to 
the nonexceptional continuous representation treated 
in Sec. 3, we attempt to express J(A) and g(A) as 
quantities linear in A by writing, say, 

J(A) = A - ii + ik, g(J.) = -(A - ii - ik), 

(3.51) 

then clearly the Hermiticity of J+ and J_ is violated. 
It is desirable, nonetheless, to have both J and g 
linear in A. We can reconcile these two requirements 
by working with an indefinite-metric space: we 
introduce a triplet of Pauli matrices 'fa' IX = 1, 2, 3, 
we double the spectrum of J2 and write 

f(A) = A - ti + ikrl , 
g(A) = - (J. - ii) + ikrl' 

J 2 1.,1.; a) = A IJ.; a), 

(A'; a' I J.; a) = eS(A' - A)('fa)a'a' 

Then J+ and J_ are given by 

J+ = exp (-i o~)f(J. + i) 

= e-"'[-i ~ + ~ + ikrl ], ax 2 

(3.52) 

J_ = exp (i~) g(A) = e"'[i ~ + !.. + ikrlJ. (3.53) 
oJ. ax 2 

[Subscripts a, b, c', b', ... will be used to denote rows 
and columns associated with the matrices Ta.] Be
cause of the indefinite metric introduced by the 
matrix T3 above, the operatorsJ+ andJ_ are Hermitian 
with respect to this metric. [We should call them 
pseudo-Hermitian.] It should be emphasized that the 
doubling of the spectrum of J2 introduced above is not 
the same as the possible need for doubling the 
spectrum of J2 within a VIR of 0(2, 1) belonging to 
the continuous exceptional family. Whether or not this 
latter doubling is called for has to be investigated. 
The doubling introduced above is just so that J+ and 
J_ may be represented by linear differential operators 
in x, and so that at the same time they may be (pseudo) 
Hermitian with respect to the appropriate metric. 
If the spectrum of J 2 within a VIR of 0(2, 1) is 
covered twice, this will certainly have nothing to do 
with an indefinite metric. 

Again we compute the eigenfunctions of J 3 , and 
see whether we can find an orthonormal family of such 
eigenfunctions, with the eigenvalues being all integers, 
positive, negative, and zero. Since on the one hand 
the spectrum of J 3 within a VIR of 0(2, 1) is simple, 

and on the other hand we have explicitly introduced a 
doubling of states via the indefinite metric above, we 
would expect to find two eigenvectors of J 3 for each 
eigenvalue m: 

J3'Ym,a=m'Ym,a; m=O,±I,±2,"', a=I,2 

(3.54) 
with the property 

(3.55) 

We first compute the eigenfunctions of J 3 , taking J 3' 

from (3.53), 

Ja"Pm == -i[COSh x ~ + i sinh x ax 

We find indeed two independent solutions which we 
choose to be 

_ [ h ]_!(l + i sinh x)m "Pm,! - cos x 
cosh x 

X (COSh X)-k + (cosh X)+k) , 
(cosh X)-k - (cosh xl 
\ 

_ [ h ]_!(l + i sinh x)m "Pm,2 - cos x 
cosh x 

( 
cosh X )-k - (cosh X )k) 

X (cosh X)-k + (cosh X)k . 
(3.56) 

The column vectors appearing in these wavefunctions 
are vectors in the space of the T'L matrices. When we 
compute the inner products 

("Pm',a" "Pm,a) = L: dx "P~"a-Cxh"Pm,a(x) 
of these wavefunctions, however, we find 

("Pm',l, "Pm,2) = ("Pm',2, "Pm, I) = 0; 

("Pm',l' '!pm,l) = -( "Pm',2' "Pm,2) 

(

47T' if m = m', 

4 i(m-m'),T/2 
= . e [1 _ (_l)m+m'], 

l(m - m') 

if m ~ m'. (3.57) 

Thus the expected relations (3.55) hold only for odd 
values of m, or only for even values of m, but not 
jointly for both. This is exactly the situation encoun
tered in our analysis of the continuous nonexceptional 
VIR's. Again we introduce a second doubling of the 
spectrum of J2 • We use the Pauli matrices au to describe 
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this degree of freedom. Thus we may define the gener
ators to be 

J 
. a 

2 = -l'-- . (ja, 
OX 

Ja = -{COSh x :x + ! sinh x + hI sinh xl 
J l = {sinh x :x + t cosh x + hI cosh xJ(ja. 

(3.58) 

The eigenfunctions of J a are 

'Y = _1_ [cosh xr! (1 + i sinh x)m 
m,l 2(27T)! cosh x 

(
cosh X)-k + (cosh X)k) ( 1 ) 

X (cosh X)-k _ (cosh xt (8) (_1)m ' 

'Y m,2 = _1_ [cosh XJ-!(l + i sinh x)m 
2(27T)! cosh x 

X (COSh xrk 
- (cosh X)k) (8) ( 1 ). 

(cosh X)-k + (cosh X)k (_1)m 

(3.59) 

In each of these wavefunctions, the first column 
vector is in the space of the T a , while the second is in 
the space of the (ja' They obey 

roo t 
('Y m'a' , 'Y ma) == )-00 dx'Y m'a,(X)Ta'Y mix) 

= !5m'm( Ta)a'a' (3.60) 

The doubling of the spectrum of J 2 associated with 
the matrices (ja represents a true doubling within a 
VIR of 0(2, I). Again within an exceptional VIR 
of 0(2, I), for each eigenvalue A, j2 has two inde
pendent eigenvectors. The generators (3.58) are, at the 
same time, linear differential operators as well as four
dimensional matrices. They give rise to a reducible 
representation of 0(2, I). The exceptional VIR of 
0(2, I) corresponding to the parameter k appears 
once with states of positive norm, and once with states 
of negative norm. The reduction of this representation 
of 0(2, I) into two irreducible parts is not equivalent 
to diagonalizing the metric operator Ta, since J1 and 
J 3 involve the operator T1' However, we can show 
explicitly that if we start with a vector <1> and apply 
to it the generators J + ' L, and J2 repeatedly, we then 
obtain an irreducible subspace all of whose elements 
have positive, negative, or zero norm according as <1> 
has positive, negative, or zero norm. It is easiest to 
show this using the eigenfunctions of J 3' We find that 
the raising and lowering operators J1 ± iJ2 , with 
respect to the eigenvalues of J 3 , act on 'Y m,a as 

follows: 

(Jl + iJ2)'Y m,a = L i[(m + !) + kTIJaa,'f'm+l,a" 
a' 

(Jl - iJ 2)'Y m,a = L (-i)[(m - t) - kTl]aa,q;'m-l,a" 
a' 

(3.61) 

[Thus, the vectors 'Y m,l by themselves are not in
variant under the action of the generators!] If we now 
construct a sequence of vectors <1> m' one for each 
value of m, 

(3.62) 
a 

and demand that J l ± iJ2 acting on <1>m give, respec
tively, some multiples of <1> m±1' we find 

i[(m + t) + kTl]<fo(m) = cm<fo(m + I), 

-i[(m - t) - kT1]<fo(m) = dm-l<fo(m - I), (3.63) 

cmdm = (m - t)2 - k 2 > O. 

Here cm and dm are nonvanishing complex numbers. 
The norms of the <1>m then obey 

(<1>m+1' <1>m+1) = <fo(m + 1) tTa<fo(m + 1) 

= icm i-2 [em + t)2 - k2]<fo(m)tT3 <fo(m) 

= icm i-2 [em + t)2 - k 2](<1>m, <1>m). 

(3.64) 

Thus the vectors <1>m appearing in such a sequence, 
span an irreducible subspace under 0(2, I); and all of 
them have norms of the same sign. (In particular, all 
their norms might vanish.) For example, for the two 
choices 

and 

<1>0' = 'YO,2, 

we obtain two sequences <1>m and <1>~; the former have 
all positive norms, the latter all negative norms. 
[<1>m do not coincide with 'Y m,l for all m!] This accom
plishes the reduction of the original representation of 
0(2, I) into two irreducible parts. 

It seems as if the freedom of choosing S (or (j) to be 
positive or negative in the expression j = - t + S 
(or j = -t + i(j) for the continuous exceptional (or 
nonexceptional) class of representations of 0(2, 1) 
is related to the feature of the doubling of the spectrum 
explained earlier. A careful analysis of 0(4, I) in an 
0(3, 1) basis ought to test the validity of this con
jecture. 

4. 0(2, 1) IN AN 0(1, 1) BASIS VIA MAR 

Here we would like to indicate how the method of 
MAR can be used to obtain the representations of 
0(2, 1) in an 0(1, 1) basis from a knowledge of the 
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representations of 0(2, 1) in an 0(2) basis-and thus 
obtain Eq. (3.18) which was explicitly derived from 
first principles in the main body of the text. More 
specifically, we shall use the method of MAR and 
Eg. (2.3) to obtain Eq. (3.18). 

We define 

Nl =: J~, 

N2=:iJ~, 

N3=:iJ~, 

(4.1) 

and observe that Nu N 2 , N3 generate an 0(2, 1) 
group which leaves -N; - N; + N; invariant. Our 
aim is to diagonalize N2 . 

The eigenstate 1m) of J~ with eigenvalue m is now an 
eigenstate of N2 , which we can I It)', with eigenvalues 
It == im. That is 

N211t)' =: iJ~ 1m) = im 1m) =: It lit)', (4.2) 

where we define 
It=: im 

and (4.3) 
II.)' =: 1m). 

The raising and lowering operators defined by 

N± =: J; ± iJ~ =: J~ (4.4) 

change the (eigen-) state of J~ with eigenvalue m = 
-ilt to a state of eigenvalue m ± I = -i(A ± i) 

Therefore we can use the notation of Sec. 3, and 
proceed in a cavalier fashion, to define f(A) and g(A): 

N+ lit)' =f(1t + i) lit + i/, 
N_ IA)' = g(lt) IA - i)', (4.5) 

such that 
N+N_ lit)' = f(lt)g{lt) lit)'. (4.6) 

The Ihs of Eq. (4.6) is thus 

N+N_IIt)' = J~J'-Im) 
= (m - t)2 - (j +D2 1m) 

= (-ilt - t)2 - (j + t)21W 
= -(It + ti)2 - (j + t? lit)', 

(4.7a) 

(4.7b) 

(4.7c) 

(4.7d) 

where to obtain (4.7a) and (4.7c) we have used Eqs. 
(4.3) and (4.4) and to obtain (4.7b) we have used Eq. 
(4.3). 

We have, on comparing (4.7) with Eq. (4.6), 
<[It)g(A) = -(It + ti)2 - (j + D2 which is Eq. (3.18). 
This serves to illustrate the power of the method of 

MAR and renders the claims of general validity of this 
principle more plausible-at least to the discerning 
reader. 

5. DISCUSSION 

We had asserted that the method of MAR is not 
only useful for the purpose of reducing noncompact 
groups with respect to its maximal compact subgroups, 
but also to reduce noncompact groups with respect to 
its noncompact subgroups. To render this assertion 
plausible, we reduced 0(2, 1) with respect to an 
0(1, 1) subgroup. Since this problem at the time of 
writing this paper had been handled only with global 
techniques, we analyzed this problem in great detail 
(Sec. 3)-and later (in Sec. 4) obtained the same results 
in a MAR. 

We have not attempted to formulate the prescrip
tion in those cases where a state labeling problem 
exists. We hope that when the state labeling problem 
is solved one could guarantee the method of MAR 
to those cases as well. 

The crucial fact that is exploited in the whole 
approach is that there exists a master analytic 
function which describes the representations of 
groups that have the same complex extension-and 
once this is determined, the representations are 
obtained after some algebraic manipulations. The 
implication is that a student, armed with the matrix 
elements of the generators of the group SU(n) and 
SO(n) that are tabulated in Gel'fand and Tseitiin,13 
can obtain after some trivial manipulations the matrix 
elements of the generators of the groups such as 
SU(n - I, 1), SO(n - I, 1)14 [and perhaps even 
SU(n - 2, 2), SO(n - 2, 2)!]. Then these can be 
analyzed to obtain the representations of the group in 
question. 
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The variational principle of Bohm and Pines for the ground-state energy of the electron gas with 
uniform neutralizing positive-charge background, employing auxiliary variables, is reviewed as an illus
tration of the past use of auxiliary variables and as an example of the type of physical system to which the 
variational principle of this paper can be applied. We then develop this variational principle for the 
logarithm of the partition function of a physical system at nonzero temperatures, employing auxiliary 
variables. The variation~1 principle contains a trial Hamiltonian H'in an extended Hilbert space. For 
H' equal to its optimal value H, the variational expression In Q' is equal to the logarithm of the partition 
function In Q. For H'"# H, it is shown that In Q ~ In Q' for H' - H sufficiently small or temperatures 
sufficiently high, or for sufficiently low temperatures when an additional assumption is made, which 
reduces to one made by Bohm and Pines when applied to the electron gas. The variational expression 
In Q' contains more complicated trace formulas than are usually encountered in quantum statistical 
mechanics; one possible method of evaluation is sketched leading to a simpler approximate formula 
for In Q'. Corrections to the variational approximation for In Q are provided by the second- and higher
order terms in a certain perturbation expansion of In Q. The variational principle developed here implies 
the variational principle of Bohm and Pines in the zero-temperature limit; in the "no auxiliary variable" 
limit it reduces to a modified form of Peierls' variational theorem. It is shown how the variational 
principle can be applied to any physical system containing charged particles in which the long-range 
collective effects of the Coulomb interaction are important. 

This paper is divided into three sections. The 
variational principle for the logarithm of the partition 
function, employing auxiliary variables, which is the 
main contribution of the paper, is developed in Sec. 
II. In Sec. I we discuss auxiliary variables and statisti
cal mechanics preparatory to Sec. II. In Sec. III we 
examine the results of the preceding sections. 

I. PRELIMINARY REMARKS 

When Bohm and Pines l set out to compute the 
ground-state energy of an electron gas in the presence 
of a uniform neutralizing positive charge background, 
they were faced with the mathematical and physical 
problem of dealing in a fairly accurate manner with 
the long-wavelength Fourier components of the elec
trostatic interaction between electrons. The mathe
matical problem was that these Fourier components 
caused straightforward perturbation theory to diverge. 
The physical problem was that plasma modes of 
oscillation were known to exist in an ionized gas 
which is, to a good approximation, an electron gas 
with neutralizing positive charge background. 

Bohm and Pines were interested in the electron-gas 
problem as a mathematically simpler model of the 
conduction electrons in a metallic crystal, which is 
well approximated by the conduction electrons 
moving in a neutralizing lattice of positive charge 
distribution. Because they were aware that straight
forward perturbation theory would not work, and 
they felt that plasma modes made an important con-

tribution to the ground-state energy of an electron 
gas at the densities found for conduction electrons in 
metals, Bohm and Pines added extra degrees of 
freedom to the physical system by introducing auxil
iary variables that more directly represented the 
plasma modes than did the individual electron coordi
nates. They did this in essentially the following way: 

The physical system under consideration is that of 
N electrons. confined to a region of volume V in the 
presence of a neutralizing uniform positive charge 
density. N and V are large but not independent, since 
the electron density NjV is to have a prescribed value. 
N and V are to be taken large enough so that when 
appropriate we can let N and V approach infinity, 
holding NfV fixed, with negligible error. 

One physically reasonable method of confining the 
N electrons is to place them inside a cubical box with 
impenetrable, perfectly conducting walls. A less 
physically obvious but equivalent and mathematically 
simpler procedure is to confine the electrons to a 
cubical box of volume V subject to periodic boundary 
conditions on the nonrelativistic wavefunction and 
its normal gradient. The electrostatic potential of 
each electron must also satisfy the same boundary 
conditions. If we neglect spin interactions, then, as 
the nonrelativistic Hamiltonian operator of the 
physical system, we obtain 

N 2 

H = L l!J... + 27T€2v-l Lkk-\p~Pk - N), (1) 
i~l2m k*O 

1 D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953). where Pi is the vector-momentum operator of the ith 
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electron, pi = Pi· Pi' m is the mass of the electron, € 

the magnitude of its charge, 

k = 27TV-i[/il + mi2 + nis], (2) 

where il , i2, and i3 are unit vectors parallel, respec
tively, to three mutually perpendicular edges of the 
cubical box, I, m, and n are any integers, and the 
operator 

(3) 

where r j is the position operator of the jth electron. 
pt is the adjoint of Pk. 

If we apply an external electrostatic field, derivable 
from a potential 4>(r) , to the system of N electrons 
plus neutralizing positive charge background, we 
obtain the Hamiltonian operator 

H", = H - €jt4>(rj) + €NV-1JJJ 4>(r)dx dy dz 

cube 

+ (87T)-l J JJ(V 4>(r» 2 dx dy dz. (4) 
cube 

In the above equation, H is the Hamiltonian operator 
of Eq. (I), the second term on the right-hand side is 
the electrostatic energy of the N electrons, the third 
term is the electrostatic energy of the positive charge 
background and the fourth term is the electrostatic
field energy. 

If we take the electrostatic potential of the form 

4>(r) = 27T!V-! Lk k-l f3:eik
. r + 4>0' (5) 

O<k<kc 

where 13k and 4>0 are independent of r, 4>ri = 4>0' 

13: = f3-k' (6) 

and kc is a positive value of k that we are free to 
choose, then H", of Eq. (4) becomes, using Eqs. 
(I), (5), and (6), 

N 2 

H", = H{f3k} == L l?!.. + 27T€2V-
1 Lk k-\P~Pk - N) 

i~12m k?kc 

lIt + t !k [(13k - 27T1rV-1r€k- l pk) 
O<k<kc 

x (13k - 27T!V-!€k-l pk) - 47T€2NV-1k-2]. (7) 

What Bohm and Pines2 did was to introduce new 
complex-coordinate operators qk and their canonically 
conjugate momentum operators 7Tk • Thus 

[qk" qk] = [7Tk ', 7Tk ] = 0, 

(8) 

where bkk = 1, bk'k = 0 for k' ¥= k, and [A, B] de-

2 D. Bohm, K. Huang, and D. Pines, Phys. Rev. 107, 71 (1957). 

notes the commutator AB-BA of the operators A and 
B. The operators were further taken to satisfy the 
relations: 

t t 
qk = q-k' 7Tk = 7T_k • (9) 

The operators qk' 7Tk were taken to commute with the 
coordinate, momentum, and spin operators of each 
electron. The Hilbert space upon which these new 
operators, plus the original electron operators, oper
ate was taken as one in which the position and z 
component of spin operators for each electron, plus 
each operator qk' were a complete set of commuting 
operators, i.e., the simultaneous eigenvectors of these 
op€rators are nondegenerate and form a complete set. 
In this "extended" Hilbert space, Bohm and Pines 
defined an "extended" Hamiltonian operator Hext 
by replacing the complex numbers 13k' 13: = f3-k' 
in Eq. (7) by the operators 7Tk , 7Tt = 7T_k [we have 
used Eqs. (6) and (9)]. Thus, 

(10) 

where H{f3k} is defined in Eq. (7). 
It is possible to establish the following results, 

based on Eq. (10), and the fact that H{f3k} of Eq. (7) 
is the Hamiltonian operator for a physical system 
and must, therefore, possess a complete orthonormal 
set of eigenvectors: 

(A) Hext possesses a complete set of eigenvectors; 
(B) Every eigenvalue of Hext is an eigenvalue of 

H{f3k} for some value of {13k}' and for every value 
of {13k} every eigenvalue of H{f3k} is an eigenvalue of 

H cxt · 
If EO{f3k}' denotes the ground-state (lowest) energy 

of the Hamiltonian operator H{f3k}' then what Bohm 
and PinesL3 assumed was that 

EO{f3k} ~ Eo{O}, V {13k} ¥= {O}. (11) 

Stating Eq. (II) in physical terms: 
(C) The ground-state energy of the physical system 

in the presence of any external electrostatic field, 
whose potential is of the form of Eq. (5), is assumed 
to be never less than the ground-state energy in the 
absence of the external electrostatic field. 

From (A), (B), and Eq. (11) we then obtain as the 
standard variational principle for the lowest eigen
value of the Hermitian operator H ext : 

(extl H ext lext)/(ext I ext) ~ Eo, (12) 

where lext) is any nonzero vector in the extended 
Hilbert space, and Eo = Eo{O} is the ground-state 

3 The actual assumption made (p. 614 of Ref. 1) was that the 
ground state of Hext was nondegenerate. This assumption was then 
used to show that ground-state energy of Hext was Eo{O}, from which 
Eq. (11) follows. 
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energy of the N-electron system being considered 
(with no external electrostatic field present). 

If the response of the electron gas in its ground 
state to the applied electrostatic field, neglecting 
effects from the surface of the cubical volume V, 
is linear, homogeneous, and isotropic, we then 
obtain as the electrostatic energy 

_1_ fffE(r). D(r) dx dy dz =! Zk f3:f3k, (13) 
(87T) 20<k<kc E(k) 

cube 

where E(r) and D(r) are the macroscopic electric
field and displacement vectors, respectively, and E(k) 
is the static dielectric constant for an electrostatic 
field of wavenumber vector k. 

When Eq. (13) is valid we see that statement (C) 
is valid if and only if the static dielectric constant 
E(k) is nonnegative for 0 < k < k c • In the random
phase or equivalent approximation the electrostatic 
energy of the electron gas in its ground state always 
has the form given in Eq. (13) with E(k) > 0 for 
k > 0. 4 As the density of the electron gas increases, 
the random-phase approximation becomes more and 
more accurate, so that assumption (C) is valid for 
the electron gas at high densities. 

Statement (C), or the nonnegativeness of E(k) in 
Eq. (13) for the case of a linear, homogeneous, 
isotropic, electrostatic response, is a statement of 
stability of the zero-field ground state of the physical 
system. If (C) did not hold it would be energetically 
possible to have a spontaneous transition from the 
zero-field ground state to some nonzero electrostatic
field ground state. 

Equation (12) is a variational principle for the 
lowest energy Eo of the physical system in terms of an 
operator and vectors in the extended Hilbert space. 
This enables us to use trial vectors lext) that have no 
counterparts I ) in the physical Hilbert space, and 
yet yield a lower upper limit to Eo than can be ob
tained from the usual variational principle 

(IHI)/( I) ;;:: Eo, (14) 

with computationally tractable choices of the vec
tors I ). 

The operators qk and 7Tk introduced by Bohm and 
Pines2 are non-Hermitian operators related by Eq. (9). 
For our purposes it is more convenient to deal with 
independent Hermitian canonically conjugate opera
tors. The operators Xk , Yk defined below have such 
properties: 

Xk == Hqk + q-k + i(qk - q-k)]' 
(15) 

Equation (15) can be inverted to give 

qk = HXk + X_k - i(Xk - X-k)], 

7Tk = HYk + Lk + i(Yk - L k)]. (16) 

In this paper we extend the use of auxiliary vari
ables of the type employed by Bohm and Pines to 
obtaining thermodynamic properties of a system in 
thermodynamic equilibrium at temperature T, with 
T > O. More specifically, we will obtain a variational 
principle which in the limit T --+ 0 implies Eq. (12) 
when applied to the electron gas with a uniform 
neutralizing positive charge background. 

We begin by reviewing some basic concepts of 
statistical mechanics and thermodynamics. A physical 
system that is confined to a finite region of space 
possesses a complete orthonormal set Ii) of energy 
eigenvectors with corresponding energy eigenvalues 
E i , where i takes on a set of integer values. If this 
system is in thermodynamic equilibrium, then the 
eigenvalues Ei are independent of time and the 
probability Pi of finding the system in the ith energy 
eigenstate is proportional to the Boltzmann factor, 
exp ( - EdkT), where k is Boltzmann's constant and 
T is the temperature. Thus, 

Pi ='Q-l exp (-EdkT). (17) 

Since we must have 'LiPi = 1, we see that 

'Li exp (-EdkT) 

must converge and that 

Q = 'Li exp (-Ei/kT). (\8) 

The quantity Q is called the partition function. The 
Helmholtz function (or free energy), 

A == U- TS, (19) 

where U is the internal energy and S the entropy, is 
related to Q by the simple relation 

A = -kTln Q. (20) 

It is a fundamental theorem of thermodynamics that 
all thermodynamic properties of a physical system 
can be expressed in terms of the Helmholtz function, 
and thus, from Eq. (20), in terms of the partition 
function. 

For the subsequent discussion, it is convenient to 
define 

f3 = l/kT. (21) 

Then Eq. (18) for the partition function Q becomes 

(22) 
4 J. Lindhard, Kg!. Danske Videnskab. SeIskab, Mat.-Fys. Medd. 

28,57 (1954). This completes the preliminary remarks. 
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II. VARIATIONAL PRINCIPLE 

~h~ main pUr:P0se of this paper is to develop a 
vanatlOnal pnnclple for the logarithm of the partition 
function In Q in terms of operators in an extended 
Hilbert space Je'. This extended Hilbert space arises 
from the physical Hilbert space Je through the intro
duction of auxiliary operators similar to the operators 
Xk , Yk ofEq. (15). We proceed as follows. 

Our first task is to construct an extended Hilbert 
space analogous to the one used by Bohm and 
Pin~sl for the electron gas, to define canonically 
conjugate operators analogous to X k , Yk of Eq. (15), 
and to define an Hermitian operator analogous to 
H ext of Eq. (10) in the extended Hilbert space. 

If Ho is the Hamiltonian operator of the physical 
system being considered, then if the system is in 
thermodynamic equilibrium Ho must be independent 
of time. Since the vectors Ii) are energy eigenvectors 
[cf. discussion preceding Eq. (17)], we have 

Ho Ii) = Ei Ii). (23) 

Let Yl, ... ,Y 9 be a set of g real variables. Choose an 
Hermitian operator H(YI' ... ,Yg) for each value of 
Yl, ... ,Yg such that 

H(O, ... , 0) = Ho. (24) 

The operators Ho, H(Yl"", Y g) and the vectors 
Ii) are all in the physical Hilbert space Je. The 
Hermitian operators H(YI' ... ,Yg) are analogous to 
the operators H{Pk} of Eq. (7). 

Now take any complete orthonormal set IIX) in the 
physical Hilbert space Je, where IX takes on a set of 
integer values. Consider the set of all functions of IX 

and the real variables Xl, .•• , Xg• This set of func
tions forms a linear vector space 'lY. We define 
operators Xl' ... , X g , Yl ,'" , Yg in 'lY as follows: 
For any functionf(lX, Xl' .•. , Xg), 

X;[(IX, Xl' •.. , Xg) == Xi!(IX, Xl' ..• , Xg), 

i = I, 2, . . . ,g, (25) 

and for any function f( IX, Xl' ..• , Xg) possessing first 

Partial derivatives with respect to Xl ... X , 'g' 

Y,f(lX, Xl' ... , Xg) == ili(%xj)!(IX, Xl' ..• , Xg), 

j = I, 2, ... ,g. (26) 

It then follows that 

[Xi' Xj] = [Yi , Y j] = 0, [Yj , Xk] = -ilibjk , (27) 

where bkk = 1, bjk = 0 for j ¢ k, and [A, B] == AB
BA, when operating on any function of IX, Xl' ... , Xg 
possessing continuous second partial derivatives with 
respect to Xl' ... , xg. If we require that all functions 

f( IX, Xl' •.. , Xg) satisfy the relation 

l:,.L:·· ·L:lf(lX, Xl"", Xg)12 dX I ••• dXg < 00, 

then we obtain a Hilbert space Je<Xl analogous to the 
extended Hilbert space used by Bohm and Pines for 
the ~lectron gas. The operators Xi' Yi are canonically 
conjugate operators in this Hilbert space analogous 
to the operators Xk , Yk of Eq. (15) for the electron 
gas. 

The Hilbert space Je<Xl is not suitable for the varia
tional principle to be developed in this paper. This 
is b:cause the eigenvalues of the operators Yi are 
contmuous, so that a projection operator onto the 
linear manifold of all simultaneous eigenvectors of 
Yi , i = 1, 2, ... ,g, with eigenvalues zero does not 
exist in Je<Xl' To remedy this situation we define the 
extended Hilbert space Je' as the set of all functions 
of IX, Xl, ... , Xg, f( IX, Xl' ..• , Xg), that are periodic 
in Xi with period L i , i = 1, 2, ... ,g, and satisfy the 
relation 

J

1L1 J1L2 J1L. l:,. . . . If(lX, Xl' ••• , Xg)12 
-lL1 -lL2 -lLo 

x dXg ••. dX2 dX I < 00. (28) 

We denote such a function f(lX, Xl' ••• ,Xg) as I'), 
where the prime denotes the vector is in the Hilbert 
space Je'. The inner product of two functions 
h (IX, Xl' ••• , Xg), f2( IX, Xl> ••• , Xg) in Je' is defined 
as follows: 

J

1L1 ilL2 ilL. 
(' 1 I ' 2) == l:,. . . . /i(IX, Xl' •.• , Xg) 

-lL1 -lL2 -lLg 
X f2(1X, Xl' ••• , Xg) dXg ... dX2 dxl . (29) 

From the definition of Je' and Eq. (26) we see that 
Yi , i = I, 2,···, g, are operators in the Hilbert 
space Je'. Examination of Eq. (25) shows that the 
operators Xi are not in Je', and we do not ... se these 
operators. 

We define an Hermitian operator analogous to H cxt 
ofEq. (10) as follows: The functions of IX X ••• X' , l' ,g. 
I' p, nl , ... , no) 

== [U Lirlbp" exp [27Ti ~/nixi/Li)l (30) 

where nl , ... , ng take on all integer values independ
ent of each other, P takes on the same set of integer 
values as IX does and 15"" = 1, bp,. = 0 for P ¢ IX, are 
a complete orthonormal set in the Hilbert space Je', 
so that 

9 

(' P', n~, ... , n~ I' p, nl' ... , ng) = bfJ'fJ II bn 'n , 
i=l I, 

(31) 
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where {)fJP = {)n;n; = 1 and {)p'fJ = {)n;,n; = ° for 
P' ~ p, n; ~ nj • We define the operator H in the 
extended Hilbert space Je' as one whose matrix 
elements 

(' (J', n~,"', n;1 H I' p, n1,"', ng) 

From the above eguation and the fact that 
H(y!, ... ,Yg) are Hermitian operators, it follows 
that H is an Hermitian operator. H is analogous to 
the operator Hext of Eg. (10) for the electron gas. 

Our next task is to formulate the variational 
principle for In Q, where Q is given in Egs. (I8) or 
(22). From Eqs. (26) and (30) we see that 

1'; I' p, n1' ... , ng) = (hniILi) I' (J, n1, ... , ny), 

i=1,2,"',g, (33) 

so that the operators Yi are Hermitian, i.e., 

Y; = 1';. (34) 

We define the operator A in the Hilbert space Je' as 
follows: 

9 

A I' p, n1"", ng) == IT {)njo I' (J, n1"", ng), 
j=1 

V {J, n1"", ng, (35) 

where {)oo = 1 and {)njO = ° for nj ~ O. From the 
above eguation we can show that 

At = A, A2 = A. (36) 

Geometrically, A is the projection operator onto the 
linear manifold of simultaneous eigenvectors of 
Y1, ... , Yg with eigenvalues zero. 

The operator A is a function of the operators 
Y1 , ••• , Yg , as can be seen from Egs. (33) and (35). 
An explicit form for this function is as follows:. 

A = [ir L jJ-1J!L1 J!L2 . . . J!LU 
j=1 -!L1 -!L2 -!Lu 

x exp (ili-1 g c;jYj) dc;g' .. dc;2 dc;1' (37) 

This can be shown by applying both sides of the above 
equation to the complete orthonormal set of vectors 
I' p, n1, ... , ng) and using Egs. (33) and (35). 

The variational principle for In Q is as follows: If 
H' is any Hermitian operator in the extended Hilbert 
space Je', i.e., 

H,t =H', 
for which 

(38) 

In Q' == In Tr {Ae-fJH'} - [fofJ Tr {Ae-yH'(H - H') 

x e-(fJ-Y)H'} dyjTr {Ae-fJH'} ] (39) 

exists, where Tr denotes the trace operation in Je', 
then 

In Q ~ In Q', (40) 

for AH' = H' A, or H - H' small, or (J small. The 
validity of Eq. (40) for large p is investigated sepa
rately. The operator H' plays the role of a trial 
Hamiltonian in the variational principle, Egs. (39) 
and (40). 

We now consider some preliminary relations that 
are to be used in the proof of Eg. (40). 

We define vectors I' i, n1, ... , ng) in the extended 
Hilbert space Je' as follows: 

I' i, n1, ... , ng) = ~ .. (IX.I i) I' IX, n1, ... ,ng). (41) 

The vectors Ii) and IIX.) are completely orthonormal 
sets in the physical Hilbert space Je, with Ii) satisfying 
Eg. (23). The vectors IIX) were introduced prior to 
Eq. (25). Eq. (41) can be inverted to yield 

I' p, n1,"', ng) = ~i(i I (J) I' i, n1,"', ng)' (42) 

From Eg. (31) and (41) we get 
9 

(' i', n~, ... , n; I' i, n1' ... , ng) = {)i'i IT ()n/n' 
j=l ' 

(43) 

In obtaining the last two equations we have used the 
completeness and orthonormality of the vector sets 
Ii) and 1«). Since the vectors I' p, n1 , ••• ,ng) are a 
complete set, Eq. (42) establishes the vectors I'i, 
n1 , ••• ,ng) as a complete set. Equation (43) is a 
statement of the orthonormality of I' i, n1' ... , ng)' 

From Eqs. (35) and (41) we get 
9 

A I' i, n1,"', ng) = n ()njo I' i, n1,"', ng), (44) 
1=1 

where {)oo = 1 and ()n;O = ° for nj ~ 0, and from Eq. 
(23), (24), (32), (41), and the fact that the vectors 
I IX) and I' IX, n1 ••• , ng) are complete orthonormal 
sets in the Hilbert spaces Je and Je' respectively, we 
get 

HI' i, 0, ... ,0) = Ei I' i, 0, ... ,0), (45) 

where the eigenvalues Ei are the same as in Eq. (23). 
We make extensive use of properties of the trace 

operation in proving Eq. (40). We write down ex
plicitly the following inequality: 

F or any operator A: 

Tr {AtA} > 0, for A ~ 0, 

Tr {o} = 0, (46) 

where 0 denotes the zero operator in the Hilbert space 
Je'. 

Next we obtain an expression for the partition 
function Q in terms of operators in the extended 
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Hilbert space Je'. From Eqs. (22), (43)-(45) we get 

Q = Tr {Ae-PH}. (47) 

From Eqs. (43)-(45) we can show that 

AH= HA. (48) 

From Eq. (48) it follows that A commutes with any 
function of the operator H, in particular, 

Ae-sH = e-sH A, for s ~ O. (49) 

To complete the relations 'preliminary to proving 
Eq. (40) we define the operators 

H(E) == H' + c(H - H') (50) 

for real values of E in the range 0 ::::;; E ::::;; 1. From the 
Hermiticity of Hand H' it then follows that H(c) is 
Hermitian for all E. The only restriction we put on the 
operator H' introduced in Eq. (38) is that 

fee) == Tr {Ae-PHC€)} (51) 

should exist and possess a continuous second derivative 
with respect to E for 0 ::::;; E ::::;; 1. It follows from the 
reality of f3, the Hermiticity of H(c), and Eq. (51) that 
fee) is real for 0::::;; E ::::;; 1. Equation (50) can be 
rewritten as 

H(E) = H - (1 - E)(H - H'). (52) 

Applying Taylor's theorem to Inf(E) we get 

Inf(1) = Inf(O) + {j'(0)!f(0)} 

+ {(1 - E)[{j"(E)/f(E)} 

- {j'(E)!f(EW] dE, (53) 

where f'(E) and /"(E) denote the first and second 
derivatives, respectively, of f( E) with respect to E. 

From Eqs. (50)-(52) we get 

1'(E) = - f: Tr {Ae-yHCf)(H - H')e-(P-y)Il(€)} dy, 

(54) 

1"(E) = 2 LP 
rTr {Ae-.JHCf)(H - H') 

x e-(y-.J)H(f)(H - H')e-(P-y)H(€)} db dy. (55) 

Combining Eqs. (39), (47), (53), and (54) we get 

In Q = In Q' + l\1 - E)[{j"(E)/f(E)} 

- {j'(E)!f(EW] dE. (56) 

Using Eqs. (51), (54), and (55) we can show that 

[2!f(c)]J: rTr {Ae-.JH(d[H - H' + {j'(E)/f3f(E)}J 

X e-(i'-.J)HC€)[H - H' + {j'(c)/f3f(E)}] 

X e-(P-y)HCf)} db dy 

= {1"(E)!f(E)} - {j'(E)!f(EW. (57) 

We now proceed directly to the proof of Eq. (40). 
First we consider the case AH' = H'A. From Eqs. 
(48) and (50) we get, for AH' = H'A, 

AH(E) = H(c)A. 

It follows from the above that, for f3 ~ y ~ b ~ 0, 

Tr {Ae-.JH(<l[H - H' + {j'(E)/f3f(E)}] 

X e-(y-.J)H(€)[H - H' + {j'(E)/f3f(E)}]e-(P-y)HCf)} 

= Tr {Ae-!(P-YHlH(f)[H - H' + {j'(E)/f3f(c)}] 

X e-(Y-O)H(<l[H - H' + {j'(E)/f3f(E)}] 

X e-!(P-YH)H(f)}. 

Since Hand H' are Hermitian operators, f3 and f( c) 
are real and the operator A satisfies Eq. (36), the 
right-hand side of the above equation can be expressed 
as Tr {AtA}, where 

A == e-i<Y-.J)H«)[H - H' + {j'(E)/f3f(E)} 
X e-!(P-rH)H(f)A. 

From the above results and Eqs. (46), (57) it follows 
that 

{f"(E)if(E)} - {f'(E)if(E)P ~ 0 for AH' = H'A. 

(58) 

Next we consider the case in which H - H' is 
small. For AH' = H'A, Eq. (58) is valid, so we need 
only consider the case in which AH' :;C H'A. We see 
from Eq. (52) that for H - H'small5 

H(E) = H + O([H - H']) = H(l) + O([H - H']). 

It then follows from the above and Eqs. (51), (54), 
and (55) that5 

{f"(E)if(E)} - {f'(E)if(E)}2 

= {f"(l)/f(I)} - {f'(l)if(1)}2 + O([H - H'P)· 

(59) 

We also have from Eqs. (52) and (57) that 

{j"(1)/f(l)} - {f'(I)/f(1W 

= [2IJ(1)]lP lrTr {Ae-.JH[H - H' + {f'(l)/f3f(1)}] 

X e-(y-.J)H[H - H' + {f'(I)/ f3f(l)}Je-(P-y)H} db dy. 

Letting b' = y - b in the integral over b, using Eqs. 
(36) and (49), performing an integration by parts in 
the integral over y, and using the fact that Hand H' 

5 The expression O([H - H']n), n = 1,2,· .. , is not intended to 
necessarily mean that [H - H']n appears in the expression being 
considered. The precise meaning is that if H' = H - AV, with A 
a positive number, then O([H - H']n) means O(An) for small A. 
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are Hermitian operators and (3 andf(€) are real we get If we let K = H - H' in the right-hand side ofEq. 
(64) and use Eqs. (36), (38) and the fact that H is 

{j"(1)!J(l)} - {j'(1)!J(1)}2 Hermitian and!'(€)J{3f(€) is real, then we get 

= [2!J(l)]f:({3 - y) Tr {AtA} dy, (60) {{3-~(€)[{j"(€)!J(€)} - {j'(€)!J(€W]}K=H-H' 

where 

A == e-hH[H - H' + {j'(l)J{3f(l)} ]Ae-i(fI-y)H. 

We note that A = 0 implies H'A = HA + {f'(1)J 
{3f(I)}A. Taking the adjoint of the above equation 
and noting that H, H', and A are Hermitian operators, 
(3 andf(€), defined in Eq. (51), are real, and Eq. (48) 
holds we get 

AH'=H'A. 

Since we are assuming AH' ¥: H' A we must have 
A ¥: O. Then we get from Eqs. (46) and (60) that 

{f"(I)ff(1)} - {f'(l)Jf(1)P > 0, for AH' ¥: H'A. 
(61) 

From Eqs. (51), (52), (54), and (55) we see that5 

{f"(1)f.f(1)} - {f'(1)ff(1)}2 is O([H - H']2). Thus 
we can neglect terms O([H - H']3) in comparison to 
{f"(l)ff(l)} - {f'(1)ff(I)}2 for small H - H'. This 
fact, together with Eqs. (59) and (61) gives us 

{f"(€)I!(€)} - {f'(€)Jf(€)}2 > 0, for AH' ¥: H'A 
(62) 

and H - H' small. 
Next consider the case in which {3 is small. Since 

Eq. (58) is valid for AH' = H'A, we need only con
sider the case AH' ¥: H'A. Letting 15 = s{3, y = t{3 in 
Eq. (57) we get 

(3-~(€)[{j"(E)!J(E)} - {j'(€)!J(€W] 

= 2 fLtTr {Ae-flsH(d[H - H' + {J'(E)/P!(E)}] 

x e-fl(t-s)H(d[H - H' + {j'(€)J{3f(€)}] 
X e-fJ(l-t)H(E)} ds dt. 

If we define the operators 

K({3, s, t, €) == {exp [t{3(1 - s - t)H(€)]}(H - H') 

X exp [-t{3(1 - s - t)H(€)], (63) 
then we have 

(3-:r(E)[{j"(€)!J(€)} - {j'(€)!J(€)}2] 

= 2 L1J:Tr {A(exp [-t{3(1 + s - t)H(€)]) 

X [K + {J'(€)J{3f(€)}] 

X (exp [-(3(t - s)H(€)])[K + {j'(€)J{3f(E)}] 

X exp [-t{3(1 + s - t)H(E)]} ds dt. (64) 

From Eq. (63) we see that 

lim K({3, s, t, E) = H - H'. (65) 
fI~O 

where 

A == (exp [-t{3(t - s)H(€)]) 

x [H - H' + {j'(€)J{3f(€)}] 

x (exp [-tf3(1 + s - t)H(€)])A. 

We see that 

[A]S=O.t=l = 0 => H'A = HA + {f'(€)J{3f(€)}A. 

Using reasoning similar to that following Eq. (60) 
we get 

AH'=H'A. 

Since we are considering the case AH' ¥: H'A, 
[A]S=O.t=l = 0 is impossible, so that [A]S=O.t=l ¥: 0, 
which implies from Eq. (46) that 

[Tr {AtA}]s=O.t=l > O. 

If we assume that Tr {AtA} is a continuous function 
of sand t for 0 ~ s ~ t ~ I, then the above in
equality and Eq. (46) lead to 

so that 

2 ffTr {AtA} ds dt > 0, 
{{3-2f(E)[{j"(€)!J(E)} - {j'(E)!J(€)YUK=H-H' > O. 

(66) 
If we assume that 

(3-:r(€)[{j"(€)!J(€)} - {j'(E)!J(€Wl 

r-." {{3-:r(E)[{j"(€)!f(€)} - {j'(€)!f(€)}2]}K=limK' 
fI~O 

(67) 

then we get, from Eq. (65)-(67) and the fact that 
(3 == IJkT > 0 andf(€) > 0 from Eq. (51), that 

{f"(€)Jf(€)} - {f'(€)/f(E)}2 > 0, for AH' ¥: H'A 

(68) 
and (3 small. 

From Eqs. (58), (62), and (68) we get 

f(1 -€)[{j"(E)!f(€)} - {j'(E)!f(€Wl d€ ~ 0, (69) 

for AH' = H'A, or H - H' small, or {3 small. 
Finally, by combining Eqs. (56) and (69) we obtain 
Eq. (40) for AH' = H'A, or H - H' small, or {3 
small. 
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We now investigate the conditions under which 
Eq. (40) is valid for large p. In order for the partition 
function Q of Eqs. (18) or (23) to exist we see that the 
energy eigenvalues Ei of the physical system must 
have a lowest value Eo with a finite degeneracy. It 
then follows from Eq. (22) that 

limp-lIn Q = -Eo. (70) 
P-oo 

We consider first the case in which the Hermitian 
operator H' of Eq. (38) possesses a complete ortho
normal set I' j) of eigenvectors, where j takes on a set 
of integer values. Then we generalize our result. Thus, 

orthonormal set we get 

('I H - Eo I') 
= Lnl>'" ,no (nl , ... , ngl H(hnl/LI' ... , hng/Lg) 

- Eo Inl' ... ,ng ), (78) 

where 

Inl' ... , ng) == Lp (' p, nl , ... , ng I') IP). (79) 

From Eq. (24) and the fact that Eo is the lowest 
eigenvalue of Ho we see that, for any vector I ) in the 
physical Hilbert space Je, 

(IH(O, ... ,0) - Eol) ~ O. (80) 

H' I' j) = E; I' j), (' k I' j) = ()ki' 

where ()ii = 1, ()kj = 0 for k ¥: j, and 

(71) If we also assume that, for the operators H(YI' ... , 
Yg) in the physical Hilbert space Je, defined after Eq. 
(23), 

Tr {Ae-PH'} = Li (' jl A I' j) e-PE/. (72) 

Assume that there exists a lowest value of E;, E~, 
such that for some j for which E; = E~ A I' j) ¥: O. 
Then, since (' jl A I' j) = <' jl A I A I' j) from Eq. (36), 
we see that (' jl A I' j) ~ 0, with (' jl A I' j) > 0 for 
A I' j) ¥: O. Using Eqs. (39), (70)-(72) we get 

lim p-l[ln Q - In Q'] 
P-ro 

= IiIk (' jl A I' k)(' kl H - Eo I' j)/ 
E,'=Ek'=Eo' 

Ii (' jl A I' j). (73) 

Consider the matrix 
E/=Eo' 

Mik==('jIAI'k), E;=E~, E~=E~. 

Since A is a positive Hermitian operator, Mik is a 
positive Hermitian matrix. We can choose the eigen
vectors of H' corresponding to the eigenvalue E~ so 
that Mik is diagonal, i.e., 

(' jl A I' k) = Ai()ik' (74) 

From the remark following Eq. (72) we see that 

Ai ~ 0, with Ai > 0 for some i. (75) 

Combining Eqs. (73) and (74), we get 

lim p-I[ln Q - In Q'] 

= Ei~/i (' il H - Eo I' i) / Eit'k/i' (76) 

Any vector n in the extended Hilbert space Je' 
can be expanded in terms of the complete orthonormal 
set I' p, nl , ... , ng) of Eq. (30) as follows: 

I') = Lp,nl>'" ,no (P', nl' ... , ng I') I' p, nl , ... , ng). 

(77) 

From Eqs. (31), (32), (77) and the fact that IP) is an 

(IH(YI, ... ,Yg) - Eol) ~ 0, 

V (YI,' .. ,Yg) ¥: (0, ... ,0), (81) 

for any vector I ) in Je, then we get from Eqs. (78), 
(80), and (81) that 

('I Ji - Eo J') ~ 0, for any I'), (82) 

if Eq. (81) holds in the extended Hilbert space Je'. By 
considering smalt variations from a vector I') that 
produces equality in Eq. (82) we can show that 

('I H - Eo I') = 0 only if HI') = Eo I'). (83) 

Combining Eqs. (75), (76), (82), and (83) we see that 

lim p-l[ln Q - In Q'] > 0 (84) 
P-oo 

if Eq. (81) holds and no linear combination of I'j) 
for E; = E~ is an eigenvector of H. Equation (84) 
establishes Eq. (40) for large p. 

Equation (84) can be generalized to the case in 
which the eigenvectors I' j) do not form a complete 
set, but must be augmented by continuum eigen
vectors to obtain a complete set. If all continuum 
eigenvalues are greater than the E~ defined after Eq. 
(72), then Eq. (73) can be shown to hold as before, 
and the remaining steps in the derivation of Eq. (84) 
are the same as before. 

The important point here is that Eq. (81) must be 
assumed. For the case of the electron gas Eq. (81) is 
equivalent to Eq. (11), whose validity we saw had to 
be assumed to use Eq. (12) to compute the ground
state energy of the electron gas. 

H E~ is a nondegenerate eigenvalue of H', with 
I' jo) the corresponding normalized eigenvector, then, 
noting Eq. (70), Eq. (73) reduces to 

lim p-l In Q' = - (' jol H I' jo)/(' jo I' jo)· 
P-oo 
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We also note from the discussion following Eq. (72) 
that we must have A I' jo) -:;!: O. The restriction on 
I' jo) for E;, = E~ of Eq. (84) reduces in this case to 
I' jo) not being an eigenvector of H. Noting the above 
results and Eq. (70) we see that Eq. (84) reduces to 
the following: 

lim p-1 In Q = -Eo> -(' jol H I' jo)/(' jo I ' jo), (85) 
fJ-oo 

if Eq. (81) holds, AI' jo) -:;!: 0, and I' jo) is not an 
eigenvector of H. 

Since Eq. (85) is unaltered when /'jo> is replaced 
by C I' jo), where C is any nonzero complex constant, 
we can remove the restriction that (' jo I 'jo) = 1. The 
inequality of Eq. (85) is just the standard variational 
principle for the lowest eigenvalue of H when I' jo) is 
not an eigenvector of H; this lowest eigenvalue of H 
is equal to Eo, the lowest eigenvalue of Ho when Eq. 
(81) is assumed to be true. This completes our in
vestigation of the validity of the variational principle 
for In Q, Eqs. (39) and (40). 

III. CONCLUDING REMARKS 

Just how useful is the variational principle [Eqs. 
(39) and (40)] that we have derived? This question 
can be divided into two subquestions: (i) Assuming 
we can evaluate In Q' of Eq. (39), how useful is Eq. 
(4O)? (ii) How can we evaluate In Q'? We answer (i) 
first. Equation (40) would be most useful if it held 
for all values of the trial Hamiltonian H'. Then we 
would choose a set of trial Hamiltonians depending 
on certain parameters for which In Q' can be evalu
ated, maximize In Q' with respect to these parameters, 
and obtain the highest lower bound to In Q obtainable 
from the trial Hamiltonians. Our results are not 
inconsistent with Eq. (40) holding for all values of 
H', and it may hold in some applications of the 
auxiliary-variable method, but we cannot rely on Eq. 
(40) being valid for all values of H' in general. Our 
variational principle would be least useful if In Q 
were just a stationary value of In Q' for H' = H. 
Then all we could say was that, for H' a good approxi
mation to H, In Q' would be a very good approxima
tion to In Q with an error that wass O([H - H']2), 
but we could not say whether In Q' was greater than 
or less than In Q. The actual usefulness of Eq. (40) 
lies somewhere between these two extremes. We can 
proceed as if Eq. (40) did hold for all values of H' and 
find that choice of H' that maximizes In Q'. We must 
then examine this choice of H' to see if it appeared to 
be a good approximation to H. If this is the case we 
can not only say that In Q' is a very good approxima
tion to In Q, but could also be reasonably certain 
that In Q' was a lower bound to In Q. 

Now we turn our attention to the evaluation of 
In Q' of Eq. (39). The detailed evaluation of In Q' 
clearly depends on the specific problem to which the 
auxiliary variable method is applied. All we do here 
is sketch one possible method of evaluation, stating 
the assumptions we make but not examining their 
validity, to show that the variational principle, Eqs. 
(39) and (40), is not devoid of computational useful
ness. We begin by substituting Eq. (37) into Eq. (39) 
to obtain 

J
f
Ll 

JfL2 JfL. {[ ( g )] In Q' = In . . . Tr exp ili-1 ~~iYi 
-fLI -fLz -fL. 3=1 

X e-fJH'} d~g' .. d~2 d~1 - ~lln L j 

[l fJJfLI JiLS JfL. {[ ( - Tr exp ili-1 
o -iLl -fL2 -fLo 

X j~/jYj) }-YH'(H _ H')e-(fJ-rlH' 

X d~g ... d~2 d~1 dr/ffLl Jf
L

2 . .. 
-fLl -fLz 

X JfL"Tr{[exp (ili-1i~jYj)Je-fJH'J\ 
-iL. 1=1 

X d~g ... d~2 d~1l (86) 

Next we examine the dependence of the function 

f(~l' ... , ~g) == Tr {[ exp (ili-1 ~1; i Yi ) ] e-fJH'} (87) 

on~l,···,~g. 

This function has the property that 

1/(~1' ... , ~g)1 < If(O, ... ,0)1, for 

(~1" .. , ;g) -:;!: (O,' .. ,0) and (88) 

-iLl ~ ;1 ~ iLl'" . , -tLg ~ ~g ~ iLg. 

This can be seen by evaluating the trace on the right
hand side of Eq. (87) in terms of the complete ortho
normal set I' p, n1, ... , ng) ofEq. (30), using Eq. (33). 

Equation (88) suggests the following method for 
evaluating the integral 

JfLl JiL2 J fL• II == . . . f(~l' ... , ~g) d~g ... d;2 d;1 
-iLl -fLz -iL. 

which appears in Eq. (86): 

1/(;1, ... , ;g)1 assumes its maximum value in the 
range of integration at al"", ;g) = (0, ... ,0) 
and nowhere else. Let us assume that we obtain the 
major contribution to the integral II from values of 
(~l' ... , ;g) near (0, ... ,0), and that for these val
ues we can, to good accuracy, expand lnf(;l' ... , ;g) 
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in a Taylor series about (0,"', 0), keeping only 
the first few terms, i.e., 

g 

Inf(~I" ", ~g) ~ Inf(O,···, 0) + i!aj~j 
j~l 

(89) 

From Eq. (87) and (89) we see that 

a j = 1l-1 Tr {Yje-PH'}/Tr {e-PH'}, (90) 

bjk = 1l-2[Tr {YjYke-PH'}/Tr {e-PH'} - Tr {Yje-PH'} 

From Eqs. (87) and (95) we get 

g(O, ... ,0; 1')/1(0, ... ,0) 

= Tr {(H - H')e-PH'}/Tr Ie-PH'}. (96) 

We assume that the main contribution to the integral 
12(1') comes from the same region considered for II of 
values of aI' ... , ~g) near (0,' .. , 0). We further 
assume that g(;1'···' ~g; y)lf(;1' ... ,~g) is a 
slowly varying function of ~1' ••• , ~g in this region 
so that 

x Tr {Yke-PH'}/(Tr {e-PH'})2J. (91) g(;I"", ;g; Y)Lf(~l' "', ~g) 

From Eq. (91) we see that aj is real for all j, so that 
the effect onf(~g, .•. , ~g) of nonzero values of a j is, 
from Eq. (89), to produce a phase variation in 
f(;I' ... , ~g) with no effect on its magnitude. Such 
a phase variation tends to cause cancellation of the 
contribution to the integral over f(;I, ... , ;g), II' 
from values of (;1' ... , ;g) near (0, ... ,0) and is 
undesirable. We therefore assume that 

at = a2 = ... = ag = 0. (92) 

From Eqs. (90)-(92) we see that the matrix bjlt is real, 
symmetric, and positive-definite, i.e., 

bik = b jk = bk;, matrix b jk > O. (93) 

Combining Eqs. (89), (92), and (93) we get for 
sufficiently large L1 , L2 , ••• , Lg that 

II ~ L: L:·· ·L:I(O,"" 0) 

x exp (- 1. .± bik~j~k) d~g ... d;2 d;1 
2 3,k=1 

= [(27T)g/det {bJk}]!f(O, .. ·,0) 

or, using Eq. (87), 

J!LI J!L. JfLY {[ ( g )] } . . . Tr exp ill-1 ! ~ j Yj e-PH' -fLI -fL. -fLu 3=1 

X d~g' .. d~2 d;l ~ [(27TYfdet {bjk}]f Tr {e-PH'}, 

(94) 
where hilt are given by Eq. (91). 

We now turn our attention to the evaluation of the 
integral which appears in Eq. (86): 

i
lLl ilL. ilL. 

12(1');:::: .•• g(;l"", ;g; 1') 
-!LI -!L. -!Lg 

where ° S y S (3 and 

g(;I"", ;g; 1') 

X d;g'" d~2 d;I' 

;:::: Tr {[exp (ili-lj~/jYj) }-YH'(H - H')e-CP-YlH'}. 

(95) 

~ g(O, ... ,0; y)!f(O, ... ,0). 

From the above and Eq. (96) we get 

12(1') ~ [Tr {(H - H')e-PH'}fTr {e-PH'}]I1 , 

or, using Eq. (87) and (95), 

i fLI ilL. ilL. {[ ( g )] . . . Tr exp ill-1 L;jYj 
-lLl -fL. -!L. j=1 

X e-rH'(H - H')e-<P-ylH' d;g ... d;2 d;l 

~ [Tr {(H - H')e-PH'}fTr Ie-PH')] 

i lLl ifL. ifLy { [ ( X • • • Tr exp i/i-l -fLI -fL. -h,. 

X ~1;jYi) }-PH'} d;g ... d;2 d;I' (97) 

Substituting Eqs. (94) and (97) into Eq. (86) we 
finally obtain the result we set out to achieve: 

In Q' ~ In Tr {e-PH'} - tin det {b ik} 

- iln ([27T]-fLj) 
j~l 

- (3[Tr {(H - H')e-PH'}/Tr {e-PH'}], (98) 

where h jk are given by Eq. (91). 
What we have done in going from Eqs. (39) and 

(40) to the approximate equation (98) is to approxi
mate the effect of the projection operator A in Eq. 
(39). It is the presence of this projection operator 
that makes the trace formulas in Eq. (39) more 
complicated than the trace formulas usually encoun
tered in quantum statistical mechanics. The trace 
formulas in Eq. (98), on the other hand, are of the 
types usually encountered in quantum statistical 
mechanics. Explicitly, Tr {e-iJII'} is the partition 
function for a system with Hamiltonian operator H' 
at temperature T = l/k(3, and hik and 

Tr {(H - H')e-fJH'}/Tr {e-fJH'} 

are expectation values of the operators /i-2 Y j Yk and 
(H - H'), respectively. 
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The first and last terms on the right-hand side of 
Eq. (98) are just the right-hand side of Eq. (39) with 
the replacement A -+ 1, i.e., differences between the 
physical and extended Hilbert spaces are completely 
ignored. The middle terms on the right-hand side of 
Eq. (98) are corrections arising from these differences 
between the physical and extended Hilbert spaces. 
The validity of the assumptions used to derive Eq. 
(98) and the accuracy of this approximate equation 
depends on the specific problem being dealt with, 
and is not considered further 'in this paper. 

The usefulness of a variational principle is enhanced 
if corrections to the variational result can be obtained 
by some nonvariational methods, such as perturba
tion theory. By expanding Inf(E), where feE) is 
defined in Eqs. (50) and (51), as a power series in E 
and setting E = 1 we see from Eqs. (47), (50), and 
(51) that we obtain a perturbation expansion for In Q 
in which H' is the unperturbed Hamiltonian operator 
in the extended Hilbert space and H - H' is the 
perturbation on it. The first two terms on the right
hand side of Eq. (53) are the zero- and first-order 
perturbations. Combining Eqs. (50), (51), and (54) 
we see that these terms are just In Q' of Eq. (39), the 
variational approximation to In Q [see Eq. (40)]. 
Therefore, the second- and higher- order terms in 
the perturbation expansion of In Q are corrections 
to the variational result. 

We can see the relationship of the variational 
principle, Eqs. (39) and (40), to earlier variational 
principles by considering limiting cases of Eq. (40). We 
have already considered the zero-temperature (fJ -+ (0) 
limit in Sec. II, Eqs. (70)-(77). For the case of the elec
tron gas, Eq. (81) is equivalent to Eq. (11) and Eq. 
(85) to Eq. (12) when we take the limit as the auxiliary
variable periods Ll , L 2 , ••• , Lg -+ 00. 

Another limiting case of Eqs. (39) and (40) of 
interest is the "no auxiliary variable" limit. In this 
limit the extended Hilbert space Je' is identical to 
the physical Hilbert space Je, H(YI"", Yg) = 
H(O, ... ,0) = Ho, using Eq. (24), and A = 1, 
using Eq. (35) with 

I' (J, nl, ... ,ng) = I' (J, 0, ... ,0) = IfJ)· 

Thus Eq. (40) holds in all cases, since we always 
have AH' = H'A, and the proof of Eq. (40) reduces 
to the proof of Eq. (58) plus Eq. (56). Equation (39) 
reduces to the following: 

In Q' = In Tr {e-PFI'} 

- fJ Tr {(H - H')e-PH'}/Tr {e-PH'}. 

Combining the above with Eq. (40) we obtain 

In Q 2 In Tr {e-PH'} 

- fJ Tr {(H - H')e-PH'}/Tr {e-flH'} (99) 

as the "no auxiliary-variable'.' limit of the variational 
principle developed in this paper, Eqs. (39) and (40). 
Equation (99) is a modified form of Peierls' varia
tional theorem.6 

The variational principle, Eqs. (39) and (40), can 
be used to compute the logarithm of the partition 
function, In Q, of any physical system containing 
charged particles in which the long-range collective 
effects of the Coulomb interaction are important, 
such as the electron gas, as follows: Let us first 
confine the physical system to a cubical box of volume 
V subject to periodic boundary conditions, just as 
we did for the electron gas in Sec. I. Next, obtain the 
Hamiltonian operators for our system in the presence 
of external electrostatic fields of the form given in 
Eqs. (5) and (6), being sure to include the electrostatic
field energy in the cubical box. These Hamiltonian 
operators will be functions of the complex parameters 
{flk} ofEqs. (5) and (6). Now introduce the parameters 

Solving the above equations for flk we get 

flk = HYk + Y-k + i(Yk - Y-k)]' (101) 

From Eqs. (6) and (100) we can show that the param
eters Yk are real and independent. From Eq. (101) we 
see that the Hamiltonian operators of the physical 
system in the presence of the external electrostatic 
fields of Eq. (5) and (6) are functions of the independ
ent real parameters {Yk}: 

Finally, we identify the parameters Yl' ... ,Yg and 
the Hermitian operators H(Yl" .. ,Yg) of Eq. (24) 
and the discussion preceding Eq. (24) with {Yk} and 
H{Yk}, respectively, i.e., 

The above identification enables us to apply the re
sults of Sec. II to the specific physical system we have 
considered. If we assume (C) is valid for our physical 
system, then Eq. (81) holds and, according to (84), 
the variational principle, Eqs. (39) and (40), are valid 
for low temperatures. 

• H. Palk. Physica 29, 1114 (1963). 
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The application of the variational principle, Eqs. 
(39) and (40), to the electron gas at nonzero tempera
tures is presently being studied by L. Chan and the 
author. An investigation of the zero-temperature 
limit of Eqs. (39) and (40), namely Eq. (85), as 
applied to the electron gas at metallic densities was 
carried out by Bhatia and the author.7 

Note added in proof' A recently completed Ph.D. 
dissertation (Lorenzo C. Chan, "Computational 

7 M. S. Bhatia and G. Speisman, Phys. Rev. 136, A362 (1964). 

Feasibility of a Variational Principle in an Extended 
Hilbert Space," Florida State University, 1968) 
contains results of the study by L. Chan and the author 
mentioned in the previous paragraph. Numerical 
results were obtained for some physically reasonable 
choices of the trial Hamiltonian H'. To obtain a result 
of sufficient accuracy to be useful, however, one would 
have to choose a more optimal H' and then compute 
perturbative corrections to the resulting variational 
bound to the partition function. 
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First-Order Phase Transitions in Quantum-Coulomb Plasmas 
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A simplified model is suggested for the understanding (in principle) of the mechanism of a phase 
transition in a Coulomb system on a uniform neutralizing background. Quantum theory is taken into 
account only in so far as it provides discrete collective energy levels and, possibly, fermion statistics 
for the calculation of the collective modes. Other features stemming from the uncertainty relations are 
supposed to be irrelevant to the mechanism of the phase transition. (This is qualitatively justified 
in the text which goes with Fig. 1.) This procedure provides an "effective quantum Hamiltonian" H qu , 
which incorporates the relevant quantum features and from which one can calculate the (approximate) 
quantum partition function using classical methods: 

Z~;prox = N!\N r . J exp (-fJHqu) d"X1 ... dSpN. 

In the evaluation of this integral we use the same approximation in which the plasma modes are collective, 
viz., the RPA (random phase approximation). Because of the freezing-out of the collective degrees of 
freedom at the relevant temperatures, and because the number of these degrees of freedom changes with 
temperature and density, Hqu describes a system with variable degrees of freedom, which seems to 
provide the mechanism for the phase transition. Preliminary numerical evaluations indicate a phase 
transition at T = 0 for an electron plasma at r. = 7.6, i.e., just below the region of metallic densities. This 
is shown by finding a concave region in the free energy as a function of the density. The ground is then 
prepared for numerical evaluation of the transition at T ~ O. For white dwarfs we find a transition 
temperature of 107", KO. 

1. INTRODUCTION 

Current methods for calculating melting tempera
tures and densities for real metals,l for electron plas
mas on a uniform positive background,2-1o or ion 

plasmas on a uniform negative background8•11.12 are, 
at best, of semiphenomenological nature. 

In order to derive a first-order phase transition 
from first principles, one should start out from the 
calculation of the partition function and the free 
energy; assuming a single homogeneous phase, a 
region of concavity in the free energy as a function of 
the density then indicates an instability towards the 
formation of another phase. In these calculations it 
becomes necessary to work quantum mechanically. 

1 D. Pines, Elementary Excitations in Solids (W. A. Benjamin, 
Inc., New York, 1963), p. 34. 

• E. P. Wigner, Trans. Faraday Soc. 34, 678 (1938). 
8 R. A. Coldwell-Horsfall and A. A. Maradudin, J. Math. Phys. 

1,395 (1960). 
, D. Nozieres and D. Pines, Phys. Rev. 111,442 (1958). 
6 F. W. de Wette, Phys. Rev. 135, A287 (1964). 
• H. M. Van Horn, Phys. Rev. 157, 342 (1967). 
7 S. G. Brush, H. L. Sahlin, and E. Teller, J. Chern. Phys. 45, 

2101 (1966). 
• S. Gartenhaus and G. Stranahan, Phys. Rev. Letters 14, 341 

(1965); 15, 621 (1965). 
• Y. Osaka, J. Phys. Soc. Jap. 22, 1513 (1967). 
10 N. Wiser and M. H. Cohen (private communication). 

Quantum-mechanical calculations for the partition 
function of a Coulomb system have been carried out 

11 H. M. Van Horn, Astrophys. J. lSI, 227 (1968). 
12 L. Mestel and M. A. Ruderman (manuscript in preparation). 
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Inc., New York, 1963), p. 34. 

• E. P. Wigner, Trans. Faraday Soc. 34, 678 (1938). 
8 R. A. Coldwell-Horsfall and A. A. Maradudin, J. Math. Phys. 

1,395 (1960). 
, D. Nozieres and D. Pines, Phys. Rev. 111,442 (1958). 
6 F. W. de Wette, Phys. Rev. 135, A287 (1964). 
• H. M. Van Horn, Phys. Rev. 157, 342 (1967). 
7 S. G. Brush, H. L. Sahlin, and E. Teller, J. Chern. Phys. 45, 

2101 (1966). 
• S. Gartenhaus and G. Stranahan, Phys. Rev. Letters 14, 341 

(1965); 15, 621 (1965). 
• Y. Osaka, J. Phys. Soc. Jap. 22, 1513 (1967). 
10 N. Wiser and M. H. Cohen (private communication). 

Quantum-mechanical calculations for the partition 
function of a Coulomb system have been carried out 

11 H. M. Van Horn, Astrophys. J. lSI, 227 (1968). 
12 L. Mestel and M. A. Ruderman (manuscript in preparation). 
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FIG. 1. Density n divided by 0.16 or r. (interparticle spacing in 
units of the Bohr radius) vs the temperature, for an electron system 
on a uniform positive background, on a logarithmic scale. The 
value I for various dimensionless constants divides the plane into 
regions of different physical character. The arrow on the line x = I 
shows the direction in which x grows. 

by various authors using different methods and 
approximations. l3- 2o The discussion of their work in 
Sec. 3 below will indicate that none of these treatments 
is suitable for investigating the question at hand: 
either the approximations used exclude the region 
where the phase transition is expected to occur or the 
treatment is confined to Boltzmann statistics (see 
Sec. 3 about the sensitivity of the transition to the 
statistics). 

Recently the present author2l has sketched a method 
for calculating the quantum partition function and the 
free energy within certain approximations. In the 
present paper we carry out this method in further 
detail. Within the region of interest in the n, T plane 
(see Fig. 1), the (Fermi) statistics and the discreteness 

13 E. w. Montroll and J. C. Ward, Phys. Fluids 1, 55 (1958). 
1& (a) H. E. De Witt, J. Math. Phys. 3, 1216 (1962); (b) 7,616 

(1966). 
1. W. T. Grandy, Jr., and F. Mohling, Ann. Phys. (N.Y.) 

34, 424 (1965). 
18 A. A. Vedenov and A. L. Larkin, Zh. Eksp. Teor. Fiz. 36, 

1133 (1959) [Sov. Phys.-JETP 9,806 (1959»). 
17 G. Kelbg, Ann. der Phys. (Leipzig) 9, 159, 168 (1962); 12, 219, 

354 (1953); G. Kelbg and H. J. Hoffmann, ibid. 14, 310 (1964); 
H. J. Hoffmann and G. Kelbg, ibid. 17, 356 (1966); 19, 186 (1967). 

18 T. Morita, Pro gr. Theor. Phys. (Kyoto) 22,757 (1959). 
19 H. Hertzheim, Ann. der Phys. (Leipzig) 19, 380 (1967). 
20 T. Dunn and A. A. Broyles, Phys. Rev. 157, 156 (1967). 
21 G. Carmi, Proceedings of the Latin American Summer School 

of Physics 1965 (Gordon and Breach, Science PubJ., New York, 
1967), p. 90. 

of the collective energy levels are the relevant quantum 
features to be taken into account; the so-called 
"diffraction features" (i.e., the interference of particle 
wavefunctions) do not play any role except to 
provide the necessary wavefunction overlap in order 
for the exclusion principle and the collective oscillator 
wavefunctions to come into play. Thus, we borrow 
from quantum theory these two features in order to 
construct an "effective quantum Hamiltonian" Hqu' 
with which we calculate the partition functioJ? 
classically. This latter calculation is further simplified 
by the use of the random phase approximation 
(RPA). The actual calculations are quite cumbersome, 
particularly the determination of the dielectric 
constant f,(k, ro, T) at any temperature and of the 
k range of collectivity of Pk' the Fourier components 
of the density. One of the reasons for the complexity 
is the use of the fermion distribution function in the 
calculation of f,. 

The ultimate goal of these calculations is threefold: 

(a) To suggest a physical mechanism for the role 
of quantum effects (in particular, the discreteness of 
the collective levels and the statistics) in the mech
anism of a phase transition; 

(b) To find the phase transitions of the electron 
plasma (i.e., electrons on a uniform positive back
ground) for the range of metallic densities (r. = 2-6)22 
and beyond (r. = 6-104) and for a range of tempera
ture Tfrom OOK to above the boiling point of ordinary 
metals (T,....., 104 OK); 

(c) To find the phase transitions in ion plasmas as 
expected in white dwarfs (p = 106-1 07grJcm2 , T,...." 
107 OK), in hydrogen plasmas as found in Jupiter 
(p,....., 1.5-15 grJcm3 , T,....., 102_103 OK from the surface 
inwards), and possibly also for prewhite dwarf 
configurations. 

2. SURVEY OF SOME CURRENT RESULTS ON 
THE MELTING AND VAPORIZATION OF METALS 

AND PLASMAS AT CONDITIONS PREVAILING 
ON EARTH, IN WHITE DWARFS, AND 

ON JUPITER 

A. Metals and Plasmas on Earth 

Current theories of melting of metalsl are based on 
Lindemann's semi phenomenological assumption that 
melting occurs when the amplitude of thermal 
vibration of the ions approaches a certain fraction 
d of the interionic distance. d, which is taken from 
experiment, is, e.g., R;t for alkali metals. Thus, 
melting is considered as a case of broken long-range 

22 r. is the interelectronic mean distance in units of the Bohr 
radius, i.e., 41rr:a~/3 = n-" where n is the density (n = 0.16x 
10··r;-3). 
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order in the ions; the electrons for this purpose may 
be approximated by a uniform negative background. 

On the other hand, a model for metals which has 
received ef'tensive attentions over the past fifteen 
years is the electron plasma, i.e., a coIIection of 
electrons on a uniform neutralizing positive back
ground. For low densities, the Coulomb forces rather 
than the exclusion principle dominate the motions, 
and this led Wigner2 to postulate that at T = 0 and 
low density the electrons wiII form a perfect lattice, the 
"electron solid," whereas at high densities they form a 
degenerate electron gas. 

There have recently been several attempts to find 
theoretical estimates for the phase transitions which 
presumably should exist between these solid and 
gaseous extremes of the electron plasma. Coldwell, 
Horsfall, and Maradudin,3 Nozieres and Pines,4 and 
de Wette5 have considered pressure melting at T = 0 
for the electron solid on the basis of Lindemann's or 
similar phenomenological criteria, in which case the 
vibration amplitudes are determined by the zero
point motions rather than by the thermal motions. 
They have arrived at melting density points corre
sponding to rs values ranging from rs = 6 to rs = 104. 
Van Horn6 has improved de Wette's method and 
arrived at rs ~ 27 ± 20. In a later publication ,11 

Van Horn attempted to estimate the temperature 
melting of a plasma. He used Lindemann's and de 
Wette's criteria to obtain lower bounds for the 
melting point of the parameter r = e2Z 2/RkT, 
where R ~ niOt obtaining r melt :2: 32. He also 
obtained an approximate upper bound r melt ~ 126 
from the Monte Carlo calculations of Brush, Sahlin, 
and TeIIer. 7 This is in agreement with an estimate 
r melt ~ 64 by Mestel and Rudermann.12 

During the same period, some authors have been 
reportion a liquid-gas phase transition for the electron 
plasma at rs ~ 6 ± 1. These again are pressure 
transitions at T = 0 and they are called "liquid-gas 
transitions" rather than "solid-liquid transitions" for 
essentiaIIy no better reason than that previous 
estimates for the melting point had come up with 
much larger r. values. Thus, Gartenhaus and Strana
hanS reported a transition in the Hartree-Fock 
approximation at rs ~ 6; Osaka9 reported a transition 
at r. :2: 6.4, and Wiser and Cohen10 reported a trans
ition at r, ~ 5. It is noteworthy that these authors 
associate a higher density with the liquid phase and a 
lower density with the gaseous phase. Our general 
physical picture will support this point of view. 

In order to clear up the situation, replace the semi
empirical ansatz (such as Lindemann's and de Wette's) 
by first principles, drive up the theory from the 

pressure transition at T = 0 into the more general 
temperature transition at T::p 0, and prepare a 
framework in which charged Boson plasmas (such as 
in He or C white dwarfs) can be treated equally well, 
it would seem highly desirable to calculate the first
order phase transitions from first principles. This will 
be done in Sec. 5. 

B. Crystallization of White Dwarfs, Hydrogen 
Plasmas on Jupiter, and Related Phenomena 

At the high densities occurring in a white dwarf 
(p ~ 106_107 g/cm3, nel ~ 1030_1032, r. = 0.01-0.02), 
the electrons make a highly degenerate, uniform elect
ron gas. 23 The ions, on the other hand, form a nearly 
rigid lattice24 or are just about to solidify into one.ll 

There exist scaling relationships6 between the 
electron plasma on a uniform positive background 
and the ion plasma on a uniform negative background 
which enable the results discussed in the previous 
section to be transcribed to the ion plasma. Thus, one 
obtains6 pressure solidification of the ion plasma at 
densities of the order of magnitude of white dwarf 
densities. Order of magnitude considerationsll also 
enable estimating the heat of crystallization which is 
released in the T::p 0 regime, when the thermal and 
Coulomb energies are comparable. The heat of crystal
lization turns out to be of the order of KT (where 
T,....., 107 OK is the temperature of the white dwarf) and 
its release causes11 a decrease in the rate of evolution of 
the white dwarf. This seems to explain ,11 qualitatively 
at least, the existence25 of two distinct sequences in the 
H-R diagrams of white dwarfs. 

Obviously, a more accurate theory for the crystall
ization process and for the calculation of crystalliza
tion temperatures and densities would be highly 
desirable. Furthermore, such a theory should be 
equaIIy applicable to fermions, bosons, and particles 
obeying Boltzmann statistics. 

It may be that the electron plasma will show some 
kind of phase change when Ilw v ,....., E F, where Wv is the 
electron-plasma frequency. This indicates a density 
of nel ,....., 1026. Also, both plasmas may show liquid-gas 
transitions in addition to solidification. All these 
transitions may show up in various stages of evolution 
of stars off the main sequence (e.g., during the 
degenerate core phase of a red giant), and the associ
ated latent heat release may have sizeable effects on 
their history of evolution. 

One of the interesting plasmas to consider is the 
hydrogen plasma on Jupiter. This is a rather warm 

23 E. E. Salpeter, Australian J. Phys. 7, 373 (1954). 
24 E. E. Salpeter, Astrophys. J. 134, 669 (1961). 
25 O. J. Eggen and J. L. Greenstein, Astrophys. J. 141, 83 (1965). 
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(T"-' 100-10000K) fermion plasma at relatively low 
density (p"-' 1.5-15 gjcm3), and the usual plasma 
models, which lean either on a metal on earth (T« T F) 
or on a classical plasma (T» T F), are insufficient, 
since in the case discussed here we have T,,-, T F . 

The preliminary numerical calculations performed 
on the improved model25 were in fact carried out in 
the regime T,,-, T F . 

3. DISCUSSION OF CURRENT CALCULA
TIONS OF THE PARTITION FUNCTION 
OF A QUANTUM-COULOMB SYSTEM 

Various treatments have been given for calculating 
the (grand) partition function and the equation of 
state of a quantum-mechanical Coulomb system at 
nonzero temperatures (see Montroll and Ward,13 De 
Witt,14 Grandy and Mohling,15 Vedenov and Larkin,16 
Kelbg,17 Morita,18 Hertzheim,19 and Dunn and 
Broyles20). 

These treatments differ from each other in the 
approximations used and in the range of validity of 
their results. To obtain a clearer graphical view of the 
situation, we first consider the density-temperature 
plane (n, T) for the electron plasma. In particular, we 
will look for the dimensionless constants which are 
relevant for the electron plasma and find out how 
their values divide up the T, n plane into regions of 
different physical characteristics (Fig. 1). 

The dimensionless constants for a plasma can be 
obtained as ratios of constants of the dimension of 
length. These latter are (m = electron mass, f3 = 
IjKT, w; = 4rre2njm): 

n-! is the mean interparticle distance; 
I = e2f3 (Landau length) is the mean distance of 

mutual approach (at which Ekin = Epot); 

A = hjp = hj(2rrmKT)i is the thermal de Broglie 
wavelength of a particle. 

When the particles are quasi-free, as when the inter
action is strongly inhibited by the exclusion principle, 
their wavefunctions are plane waves to a good 
approximation. When T is high enough for most 
scattering states to be available, the wavefunction 
will be a wave packet of smallest possible extension 
for a given momentum, in order to reduce the (posi
tive) interaction energy. A then gives, on the average, 
the extension of these wave packets. 

AF = (8rrj3n)t is the Fermi length (radius of the 
sphere of screening by exclusion); 

AD = (ijI)ijwp = (KTj4rrne2)i is the Debye screen
ing radius (screening by Coulomb correlation). 

The following ratios of these lengths are physically 
meaningful. 

Classical: (1) l/n-t = e2{Jnt. The Debye-Huckel 
theory (DH), which is the classical limit of a quantum 
plasma in the "ring approximation,13" is a low-n 
limit. Since e2{Jnt is the only classical dimensionless 
parameter which can be constructed from m, e, n, {J, 
the DH theory may be considered as an expansion in 
e2(Jnt. (Although one sums to any order of e2 in the 
ring approximation!) 

(2) A = e2(Jkif = (4rr)~e3f3inl. This parameter is 
proportional to (lnty~ and is therefore not an independ
ent parameter. 

(3) &-1 = 4rrnAbj3, the number of particles within 
the screening sphere. & = 3(4rr)!f3in! = 3A is again 
not an independent parameter. 

Quantum: (4) ft = A/AD = IiWp/KT = 2rr!m-l lief3n!. 
This is our most important parameter. When KT« 
liwp (i.e., ft» 1), the discrete collective plasmon 
levels (n + t)liwp will be unexcited; the collective 
modes will be "frozen out" and the Hamiltonian will 
reduce to its noncollective part, which will serve as an 
effective Hamiltonian H eff , capable of having a phase 
transition (see below). At KT > liwp, the collective 
levels may be considered as a continuum and classical 
considerations apply. KTp = liwp defines the plasma 
temperature Tp. The region above the line ft = 1 
in the (T, n) plane is the region where quantum 
theory shows up through effects stemming from the 
discreteness of the collective levels. 

(5) r; = A/I = Ii (2m)-if3-!e-2. When r; = 1, KT = 
KTd = 2me4 jli2 = 4Ry, gIVIng Td ~ 6.3 X 105 OK. 
When the temperature is very high (T> Td ), A> I, 
i.e., wave packets overlap and the diffraction phenom
ena become prominent, contrary to superficial 
intuition. When T < Td , the minimum extension A of 
the wave packet of the electron is less than the mean 
distance of mutual approach and thus quantum 
diffraction, it seems, need not occur. However, above 
the line I/n-i = 1 the actual interparticle distance 
w t is less than the distance I of dynamical approach. 
Thus, above Ijn-! = 1, the criterion for diffraction is 
Ajn-t > 1. 

(6) Ajn-i = 1.13 X 1O-7ni jT!. Above the line 
Ajn-i = 1 quantum diffraction occurs for any T, and 
to the right of the line T = 6.3 X 105 OK it occurs 
also everywhere below the line A/n-t = 1, because 
particles approach each other dynamically to within 
their de Broglie wavelengths. 

(7) T = KTj&F = 0.8 x 101lTn-! measures the de
generacy (T« 1) of the electron gas. At T = 1, 
T = T F == 1.2 x lO-lln!. In the trapezoidal region 
between the lines Ajn-t = 1 and TjT F = 1, and to the 
left of the line T = 6.3 X 105 OK (which includes the 
region of interest for phase transitions at metallic 
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densities), the wavefunctions would not overlap in the 
mean if they would assume their minimum wave 
packet size given by A = hj(p).1t might thus seem that, 
because of this lack of overlap, the exclusion principle 
would have no chance to come into play. 

However, a degenerate situation is energetically not 
unfavorable above the line TjT F = 1 (i.e., for T < 1), 
because then (a) the temperature is sufficiently low so 
that the thermal motion will not stir up the particles 
from this distribution in which (b) interactions are 
strongly inhibited by the exclusion principle and the 
energy is thus reduced. Furthermore, because of the 
inhibition of interactions, it does not cost the particles 
any potential energy to spread out to plane waves, 
whose overlap enables the exclusion principle to come 
into play. 

We now return to the discussion of current treat
ments of the calculation of the partition function by 
the authors cited. 

Most of these authorsI3-16.18 apply perturbation 
methods of quantum field theory to obtain a diagram
matic expansion of the (grand) partition function. 
In the work of Montroll and Ward,13 this results in a 
generalization to quantum systems of Mayer's classical 
cluster integral theory. In particular, quantum
mechanical "ring diagrams" (characterized by n 
particles interacting n times and exchanging momen
tum q at each interaction) dominate; neglecting the 
remaining diagrams again corresponds to the RP A. 
For a Coulomb system, in particular, they obtain the 
Debye-Huckel results in the classical limit (low 
density n) and the Gell-Mann-Brueckner correlation 
energy at the low temperature limit T = 0 (high n). 

De WittI4 extended these results for the Coulomb 
system to any Tand n, both within the ring approxima
tion143 and beyond.14b However, he confined himself 
to Boltzmann statistics. This is a definite drawback 
from our point of view, since stability and state of 
phase of a Coulomb system depend rather sensitively 
on the statistics. Thus, a system of charged bosons or 
Boltzmann particles at T R:! 0 on a uniform neutraliz
ing background would collapse [as can be read off 
from the equations of state, e.g., Eq. (61),143 and from 
the fact that bosons and boltzons have the same 
ground state]. Fermion statistics would provide the 
necessary positive stabilizing pressure (see Dyson and 
Lenard26). Since the existence of stable phases is 
sensitive to the statistics, it is also evident that the 
question of phase transitions will be sensitive to the 
statistics. 

26 F. J. Dyson and A. Lenard, J. Math. Phys. 9, 698 (1968). 

Grandy and Mohling,15 who work from a master
graph formulation by Mohling,2? take into account 
the (fermion or Bose) statistics, but they work only 
in the high-T-Iow-n range, i.e., in the lower right-hand 
corner of Fig. I, where phase transitions are not 
expected. 

Vedenov and Larkin16 work out the extreme cases 
T« me4 jli2 and T» me4 jli2 , i.e., the regions in the far 
left or right in Fig. I, which are again beyond the 
range of interest. 

Kelbg, in a series of articles,l? finds an "effective 
quantum potential" VqU which is so tailored that a 
classical calculation of the partition function with this 
potential gives the quantum result. However, he too 
neglects the statistics; in addition, his method is valid 
for high T only. 

Similarly, Morita18 and Hertzheim19 work out the 
cases of high T only. 

The work of Dunn and Broyles20 claims to apply to 
any T and n; furthermore, it takes into account the 
statistics. However, they apply an approximation, 
which has no convincing justification in the relevant 
regions of the T, n plane. This is the neglect of coupling 
between diffraction and symmetry effects. Since by 
diffraction effects they mean any effects which result 
from the uncertainty relation, the discreteness of 
collective levels is also included here. It is well known 
that the collective behavior is quite sensitive to the 
statistics; for example, the uppermost kc for the 
collectivity of Pk is w])jv, [v = (2ICTjm)1] for Boltz
mann statistics and ,"",W])jVF for Fermi statistics, 
where vjv F « I for T« T F' Thus, the "diffraction" 
and symmetry phenomena are strongly coupled, and 
the region of occurrence of both in the T, n plane 
nearly coincides (and includes the region of interest). 

In conclusion, none of the treatments discussed 
seems to be suitable for investigating the question of 
phase transitions in an electron plasma; also for 
Boltzmann statistics none except one14 applies to the 
T, n range of interest. Here we give an alternative 
calculation also for the latter case, in order to empha
size the role of the discreteness of the collective levels. 

4. QUALITATIVE PICTURE FOR THE 
MECHANISM OF THE PHASE TRANSmON 

Our picture is based on the "freezing out," at 
ICT« liw]), of the collective modes Pk' Here 

(1) 

is the kth Fourier component of the density p(r) = 
2~1 b(r - r i ) and the ck are the electron annihilation 

.. F. Mohling, Phys. Rev. 122, 1043, 1062 (1961). 
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operators. The canonically conjugate variables are so that 
(k = o· .. k c) Xi = (Xi' H) = (Xi' Hind)' 

f{ik = (1.kPk' Xk = - i{3k ! (k • p;)eik
'
X1

, 
j 

(Xk' f{ik')P.b. = {Ju' (in the RPA), (2) 

(1.k = (41Te2 / k2)! , 13k = (41Te2 k2)-! N-1 
, 

where P.b. indicates Poisson bracket. The Hamiltonian 
of the system is (n = volume) 

P~ 21Te2 1 
H =! -2. + -! "2 (PkP-k - N), (3) 

i 2m n k*0 k 

where the k = 0 term was cancelled by the contribution 
from the uniform positive background. The particle 
variables Xi' Pi can be split25.28-3o into "collective" 
({Jx;, {JPi) and "individual" (Xi' Pi) parts, Xi = Xi + 
{Jxi , Pi = Pi + {JPi' such that Xi' Pi contribute 
identically31 zero to the collective variables f{ik and Xk: 

if3k == (1.k ! e-ik'Xi == 0, 
i 

ik == -i{3k! (k' P;)eik'X , == O. (4) 
j 

Equations (4) hold as identities in the RPA if one 
chooses 

k. 

Pi = Pi - i! (1.~Xke-ik·"'i = Pi - {JPi' 
k=O 

It can easily be seen that H can be written as 

H = [2..!. ~ P~ + 21Tne2! k\ PkP-k] 
m • k>k. 

= Hind + Hcou, 

where we have used the identity (in the RPA) 

(5) 

(6) 

1 2 1 ( . ke -ik'''' )2 w; ke * 
-!Pi =!- Pi - 1!(1.kkXke t + - !XkXk 
2m i 2m 2 

(7) 
and that (using fik = 0 for k ::;; kc andft; == Pi) 

Hind = Ii == H(X;, Pi)' 

Furthermore, in the RPA, 

(Xi' Hcon)P.b. = (Pi' HCOn)P.b. = ({JXo Hind) 

(8) 

= ({JPi' Hind) = (Xk' Hind) = (f{ik' Hind) = 0, 

•• D. Bohm and G. Carmi, Phys. Rev. 133. 318A (1964). 
II G. Carmi and D. Bohm, Phys. Rev. 133, 330A (1964). 
80 G. Carmi, Lectures in Theoretical Physics (Univ. of Colorado 

Press, Boulder, Colo., 1964), Vol. 7c. 
31 Notice that this separation is done without redundant variables 

and subsidiary conditions; Eqs. (4) hold as identities. We here use 
the notations fix" Pi) == [(X" Pi)' 

{JXi = ({Jxi , H) = ({Jxo Heon), (9) 

Xk = (Xk' H) = (Xk' Heon) 

(with corresponding relations for Pi' {JPi' Pk)' which 
shows that Hind and HeoJl serve as the effective 
Hamiltonians for the individual and collective 
variables, respectively. 

Upon quantization, each term in Heoll gives the 
energy levels (nk + !)nwp. When KT« nwp, the 
probability for nk :r!: 0 is very small and one may write 

Heon = stnwp (KT« nwp), (to) 

where s is the number of collective modes, 

s = 41T ~k3. 
3 (21T)3 c 

(11) 

(For KT"" nwp, a treatment in powers of ",-1 = 
KT/nwp will give higher-order results. We shall indeed 
include these effects in our formulation, Sec. 6.) We 
thus are left with an effective Hamiltonian 

(12) 

The number of effective degrees of freedom which 
participate in Heff is 3N - s. In a typical metal at 
room temperatures, siN = 0.15-0.25.32 

The crucial point is now that, since kc in general 
depends on nand T, Heff explicitly depends on tem
perature and density: 

Heff = Heff(x;,p;, T, n). 

Furthermore, the number 3N - s of effective degrees 
offreedom depends on T, n. For example, in the case of 
Boltzmann statistics, kc may be taken to be of the 
order of kD' the plasma Debye wavenumber, i.e., 

kc<v2
)av = w;, or kf = (21Te2n/KT)t. (13) 

Thus, in this case, when T is raised or n is lowered, 
3N - s becomes larger. For Fermi statistics, one may 
take 

or 
kf = 1T-!(81T/3)tem!n! = 1. 145en-1m!n! • (14) 

Again, a decrease in n increases 3N - s . 

32 At T;c 0, there always remains, of course, a (usually very 
small) finite probability for the excitation of higher collective levels. 
We shall indeed take it into account in our calculations [(Eq. (20)], 
but in the region of interest it will give a negligible contribution. 
Physically, the point is that this probability is much smaller than it 
would be if the collective levels made a continuum. 
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v(x) 

--' ____ --I--..,£.---. X FIG. 2. Classical system with "changing" 
number of degrees of freedom. 

For these considerations to hold, it is essential that 
when T is raised, a number of collective modes are 
destroyed before they are excited out of their ground 
state. It can be verified that this is the case in the range 
of interest. 33 

The situation here is much more drastic than with 
classical potentials. The change of dimensionality of 
our system as we change the temperature could be 
simulated classically by a one-particle system in one 
dimension in a potential as shown in Fig. 2. In that 
case, starting from the state in which the particle is 
deep down in the infinitely narrow "pipeline," the 
freedom of motion of the particle changes drastically 
if we give it sufficient potential energy to lift it up to 
the wide opening. 

If the cross section of the narrow part of the poten
tial is of measure zero with respect to the wide part, 
then there would be a change in dimensionality when 
the particle is lifted out of the narrow well. 

In this case, an infinitesimal increase in kinetic 
energy D.Ek cannot be achieved without a finite 
expenditure of potential energy D.Ek , however small 
D.Ek is, if the system starts deep down the pipeline.34 

This corresponds to a first-order phase transition, in 
which a finite amount of "latent heat" Q has to be 
extracted from the surrounding bath (whose tempera
ture was made infinitesimally larger than that of the 
system in order to raise the latter) and used up as work 
against the potential energy of the constraints, before 
one can raise the system to a level where it can have 
more mobility (higher T). In other words, Q is used 
to break the constraints which restrict the system to a 
lower dimensionality, just as the collective modes 
have to be broken. 

To conclude this section we remark that a system 
whose effective potential depends explicitly on T and 

33 The destruction of a mode Pk means that Pk no longer obeys a 
self-determining equation Pk + ro~Pk = 0 and one has to go back to 
the full (exact) equation 

ro' '" k' k" Pre + L (k . vi)'e-ik '. i + ;; 17 k'2 Pk-k Pk' = O. 

The second, "thermal" term, which couples Pk to all particle degrees 
of freedom, shows that this destruction first occurs at highest k's. 

3' It may be assumed that the situation shown in Fig. 2 has been 
arrived at as the limiting case of a finite-width pipeline with a finite
width particle in it, in such a way that, in the limit, the particle had 
no "elbowroom" to exercise any motion at all. 

n (and in which, moreover, the numbers of degrees of 
freedom depends on T and n) may in principle show 
phase transitions even if the system is one-dimensional 
and even if the system is otherwise treated classically. 

5. CALCULATIONS 

Stability of a phase requires ()2F/on 2 ~ 0, where F 
is the free energy per unit volume. If o2F/on2 ~ 0, as 
may occur in a calculation based on the assumption of 
a single homogeneous phase, the phase will be 
unstable towards the formation of another phase; 
and over the region of concavity F(n) has to be re
placed by a straight line (double tangent construction) 
extending from, say, n = n1 to n = n2 ; the two phases 
coexist. We have 

KT 
F = - -lnZ 

n 
and our task is to find Z. 

(15) 

In the spirit of our approximations, we assume that 
the system splits into two mutually independent 
subsystems, the s collective degrees of freedom which 
are to be treated quantum-mechanically, and the 
3N - s individual degrees of freedom, which we 
assume can be treated classically except for the fact 
that their number ~N - s is sensitive to the (Fermi, 
Bose, or Boltzmann) statistics. Correspondingly, Z 
splits into a product: 

(1 - e-pnwp)"' 

(17) 
Zind is a classical integral of 3N - s degrees of 

freedom over exp (-fJH;nd)' where Hind is given by 
(6), or since within the RPA one has for k > k c , 

P == Pk(X;) = Pk(Xi ): 

H I", p2 + 27Te
2 

'" - - (6') 
ind = - £., i ~ £., PkP-k' 

2m :.~ k>kc 

In writing out Zind, one has to introduce factors 
t5(L e-ik ' Xi), t5[L (k . Pi)eik ' Xi] to ensure that the 
XiPi integration is' carried out over the range of 
definition of the X, P, which are 2N35 variables 
fulfilling the 2s identities Pk == Xk == 0, k ~ kG: 

eN
-

s J k, 
Zind = 1'1 V dX1 ' •• dPNe-PH;nd II t5(Pk)t5(Xk)' 

N -Sh' -8 k~kl 

The evaluation can be simplified in the RPA by 
introducing the variables 

rk = (PkP_k}lz, f}k = .lln.f.!E.. 
2i P-k 

(18) 

3. To simplify the notation, we henceforth write 3N = 1'1' and 
drop the prime. 
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and transforming the integration dx~ in (16) to these 
variables, using the approximations which are 
customary in similar cases36 and which are considered 
as being "reasonable" within the context of the RPA. 
These approximations consist of 

(1) neglecting all but the first N rk , 
(2) considering r1 ... rN as independent variables, 
(3) approximating the Jacobian J = o(xi)/o(rk ,Dk ), 

dxN = J IIk rk drk dDk , whose exact form is36 ,37 

J = g: exp [ - inp(X) [In p(x) - 1] d3xJ 

by the approximate form3s 

J = ,; lVexp (- 1.. 2 PkP-k) (co = !i). (19) 
7T Co N kx>O 0 

Secondly, we simplify the integration over the Pi 
by writing39 

dP1 ' .. dPN II O(Xk)e-Pr.P:/2m = f (27Tmh2kT)!LY-S) 

This term contributes zero to the calculation of f" 
(see below). 

36 J, Percus and G, Yevick, Phys, Rev. 110, I (1958), 
37 Here one has to imagine p(x) as expressed in terms of its 

Fourier components Pk and the integration d 3x as carried out. 
38 Although (19) is usually justified (see Ref. 36) by the RPA, it is 

also closely connected with the assumption of a single homogeneous 
phase. This can be shown by expanding 

In p(x) = In n + (P ~ n) - HP ~ T 
I(P - n)3 + :3 -n- +. , . [0 , ' p .. 2nl, 

where n = (I/O)S p d3x. Since Z is, after the change of variables to 
rk' Ok' an integral over all values of rk , this would have been, under 
a change of variables to the function space p(x), equivalent to an 
integration over all possible functions p(x). The functions p(x) are 
either of the type P<' say, for which J(p - n/nJ« I, in which case one 
may neglect third- and higher-order terms in the above series, or of 
the type P> , for which this is not so. If the P> are neglected, one 
easily obtains (19), using Paraseval's identity. There will be some 
range of T and n in which the contributions of the functions p> to 
Zlnd will be negligible. Because of J(p - n)/ni « I, we shall call this 
range the range of existence of a single phase. In this range the use 
of (19) is justified. In the range of which the contribution of the P> 
is not negligible, the use of (19) is not justified. If one nevertheless 
uses (19) there, the mistake made thereby may show up by giving 
an F(n) with a concave portion. It has not been proved that this 
will always show up this way. However, it seems reasonable to 
conjecture that whenever a concave part of F(n) has shown up, it 
is because the P< were not negligible. 

3' In the RPA, one can in principle define 3N - s functions 
7Tr(Xi, Pi) such that 

N 3N-s 2 P; = 2 7T~, dPl ••• dP""i5(Xl)' .• i5(x,) = d7Tl ••• d7T3N_ •• 
i~1 r~1 

This is because the Xk are linear in the Pi and contain phase factors 
e-ki • Xi, in which the Xi are (in the RPA) uncorrelated to the Pi' 

With these approximations, Z becomes 

Z = e-hpnrop (27TmKT)~(N-S) 2N- seN- s 

(1 - e-pltwPy h2 c~-s NN-s 

X f rS+l drS+1 ••• rN drN 

x exp [-pi! (47Te: + 1..) r!nJ . 
"~s+12 Ok" N 

(20). 

We remark in passing that for most cases of 
interest one may approximate the first factor in (20) 
by exp [- isfJll£O p]. This assumes that the collective 
oscillators are all in their ground state, even when the 
temperature is a few thousand degrees. For example, 
taking Na as a typical case, with Co""" 1021 cm-3, one 
has £0; = 47Te2co/m,...., 3 X 1030

, i.e" ll£O p""" 1.7 X 

10-12 erg, which corresponds to a temperature of 
,....,17,000oK. At, say, 6000oK, the relative probability, 
exp [- (1 + i)Il£O p/KT]fexp [-ill£Op/KT], of finding 
the collective oscillator in its first excited state is 
exp [-Il£O p /KT] = 5 x 10-2• Similarly, one finds that 
the total probability of finding the oscillator in any 
excited state is only by a factor 1 + 5 X 10-2 larger 
than the probability for the first level. Thus the 
probability of finding it in the ground state is 95 %. 
As can be verified a posteriori, the mistake made in 
neglecting this deviation from 100 % produces a 
mistake in the curve F(co) which is less than the 
deviation of the concave part from the straight-line 
construction. Thus we are assured that we do not 
affect the question of the existence or nonexistence of 
the phase transition if we assume that the collective 
modes are all in their ground states. 

Denoting by O'k the mean-square deviation of the 
Gaussian integrand by (20), 

(21) 

and using S;:'r exp (-r2/20'2) dr = 0'2, the integration 
in (20) be carried out to give40 

1 1 (N k!)' z = z ' A . -- -- N'\-s 
coil N-s NN-s II k2 k2 ' 

Co n~s+1 ,,+ D 
(22) 

where 

(23) 

40 To avoid confusion, we denote the average density N/O in this 
calculation by co. Note again the connection (II) between sand kc 
and the obvious notation k. = k c • 
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For B = In ITn[k!/(k! + k1)] one obtains 

1 3 2 2 2 
_ B = nN In nN _ nc In nc 
47T 3 n~ + n~ 3 n~ + nt 

- in~(nN - nc) 

+ in~(arc tan nN - arc tan !!.E.), (24) 

where 
nn nn 

Q1 
nr = - kr = integer. (25) 

27T 
For F this gives 

F = - (KT/Q) In Z = - (KT/Q) In Zeoll - (KT/Q) In A 

+ (KT/Q)(N - s) In Co + (KT/Q)B. (26) 

F is a function of Co and T both directly and through 
sand kn . 

A. Boltzmann Statistics 

For Boltzmann statistics kk= ks) = kn [Eq. (13)] 
and we have 

nof 2 1 2 
n2 = _~_,/; ....!!!.E... = _ Qf e Co (27) 
n (27T)2 <v2)av 7T KT' 

(28) 

(29) 

where 

or 

r = co/1.51 x 1056(KT)3 = 2.57 x 1O-9co/T3 (29') 

and 
siN = n~/n~ = y*. (30) 

We introduce the notation 

f = 7T_3 (47T)2 e6(KT)-4F = -y- F, (31) 
3 KTco 

47T 
A. = (2 + In 2 - 7T/2) 3' ~ 5, (32) 

and we obtain (neglecting In A, which evidently does 
not contribute to 02F/oc2) 

KT 1 s S -Pliw ) - - In Zeoli = - - Ilwp + --In (1 - e P , 

Q 2 Q QKT 

feoll = 2.37e-2Ilm-*(KT)*y2 

+ (KT)-2y~ In (1 - e-PliWp) 

= 3.26 X 105(KT)*y2 
+ (KT)-2y~ In (1 - e-PliWp), 

(33) 

~ . KT (N _ s) In Co = (r - yf) In Qy, (34) 
KTco Q 

Y KT 47T 1 47T 3 
- - . - B = - y In (1 + y~) - - y"2" In 2 

KTco Q 3 3 

87T! 87T f 87T l l + 3" r - 3' r - 3' y"2"(arc tan y-. - 7T/4), 

and 

47T t f = - y In (1 + y ) 
3 

+ 87T yt _ yf[A. + 87T arc tan y-t 
3 3 

+ In Qr + (KT)-21n (1 - e-PliW!)] 
+ 3.26 x 105y2(KT)* + yIn Qy, 

This gives 

I of t yt 
f == oy = 4.2 In (1 + y ) + 1.4 1 + yt 

t + 11.2y + 1 + 2.3 Iog1o y + 2.3 IOg10 T 

+ 19.8 - 7.5y* - 12.56yl arc tan y-t 

- 3.45y*[log1o Y + 10glo T] 

- 29.7y* + 7.3 X 1O-3yT-* 

(35) 

(36) 

+ i-Y*(KT)-2 In (1 - e-pliwp), (37) 

and from this we obtain the equation of state: 

of of of 
pv = n - = r - = KTn -

on oy oy 

{ 

-1 1 ar;l -1 = n KT + 11.2ar. + .4 1 + 31n br. 
1 + ar; 

+ 4.2 In (1 + ar;l) 

- [7.5a~r~~ + 12.5air~i arc tan a-tr~ 

+ 3.45afr;f In br;l] + a3r;37.3 X 1O-3Tt 

+ !a f r;f(KT)-2In (1 - e-PI!WP)}, (38) 

where 

From (37) we find that for y ~ 1 (which covers the 
range of interest) the Boltzmann-Coulomb gas is 
unstable (f' < 0) when the temperature is sufficiently 
low. The values of T at which!' becomes negative for 
several values of yare collected in Table I. 

Considering the values y = const as oblique
parallel straight lines in the log n/log T plane (Fig. I), 
it is easy to find the corresponding range of instability 
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TABLE I. Instability of the Boltz
mann-Coulomb system. 

The value of T below 
y! which!, < 0 

(instability) 

1 10. oK 
10 10' oK 

100 10' oK 
1000 10-1 oK 

y < 1 Stability for all T 

in that plane. A further differentiation of (37) gives 

02'f -i 
I" = - = 3.81y-i + 1.86 -y __ + y-1 

oy2 1 + yt 

-i [ + 2.1 Y t - iY-! In Qy 
1 + y-

+ 6.28y-! arc tan y-t + 5.25y-! 

-t ] + 0.767 Y *> + 7.32 x 1O-3Tt 
(1 + y 2 

+ !(KT)-31i 7Te Q! e . (4 2)! -pnrop 

m 1 - e-pnrop 
(39) 

Since 

y! = -;'(4;)i e2{3c! = 0.828e2{3ct, (40) 

the variable yt nearly coincides with the dimensionless 
parameter I/n-t = e2{3ct introduced in Sec. 2, and the 
lines y! = const are parallel to the line In! = 1 of 
Fig. 1. It is convenient to consider y and T as inde
pendent variables in (39), i.e., we take as frame of 
reference the T axis and the lines yt = const (parallel 
to Int = 1) in Fig. 1. Putting In Qy = In y + 3In T + 
19.8 in (39), a straightforward but tedious evaluation 
shows that /" > 0 down to the metallic range and 
somewhat further (e.g., for y = 1, /" > 0 whenever 
T ~ 107). For the white dwarf range, see below. 

B. Fermi Statistics 

For Fermi statistics kc (= ks) = k~, where k~ was 
defined by 

or 

or 

347T5 1i6 
-1 

r:t. = -- 6"3 Co == Q Co; Co = Qr:t. = 0.75 X 1022r:t. 
16 em 

(42) 

so that 

r:t. 
Ieoll = - -In Zeoli 

OCo 

1 r:t. s r:t. s = - -- -liw + -- --In (1 - e-P1!roP ) 

2 KTco 0 2J KTco OKT 

= _1_ (~ . e6m3)! Ii (47Te
2
)! r:t. 

2KT 347T5 1i6 m 

+ _1_ r:t.! In (1 _ e-Pliro.,) 
(KT)2 

r:t. r:t.! 
= 1.69 - + -In (1 - e-PliroP); 

KT KT 

r:t. KT ! 
-- . - (N - s) In Co = (r:t. - r:t. ) In Qr:t., 
KTco 0 

r:t. KT 
---'-B 

KTco 0 

= 47T r:t.ln (1 + 0.6 x lO11 Tr:t.t ) 
3 

- 47T r:t.-!r:t. In (1 + 0.6 x lO11 Tr:t.i ) 
3 

+ 87T r:t. . r:t.-t _ 87T r:t. . r:t.-i 
3 3 

- 87T r:t. . r:t.-i arc tan 3.96 x 1O-6T-i r:t.-1 
3 

+ 87T r:t. . r:t.-i arc tan 3.96 x 10-6T-i r:t.-t . 
3 

Collecting terms, we have (neglecting again ,......In A) 

r:t. 1= 1.69 - + 50.3r:t. + r:t. In r:t. 
KT 

+ 4.19r:t.ln (1 + 0.6 x lO11 Tr:t.t ) 

+ 8.38r:t.i + 8.38r:t.i arc tan 3.96 X 10-6 T-ir:t.-t 
- [50.3r:t.i + 50.3r:t.t In r:t. 

+ 4. 19r:t.i In (1 + 0.6 x lO11 Tr:t.i ) + 8.38r:t.i 

+ 8.38r:t.i arc tan 3.9 x 1O-6T-i r:t.-1] 

r:t.i + 2.3 --loglo (1 - e-Pliwo) (45) 
(KT)2 
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and 

I _ of 1016 

f = -0 = 1.235 - + 50.3 + 2.3 10g10 ~ 
~ T 

+ 1 + 9.65 10glO (1 + 6.6 X 101OT~!) 
1 

+ 0.93 X 1011T~-3 1 + 5.58~-! 
1 + 0.6 X 1011T~3 

+ 4.19 arc tan (3.96 X 1O-6T-!~-!) 

+ 5.45 X 1O-6T-!~-i 1 

1 + 1.52 X 1O-11T-l~-3 

_ [ 1.14 X 1O-5T-!~-i + 25.15~-t 
1 + 1.57 X lO-11T-l~-i 

+ 38.6~-i 10g10 ~ + 50.3~-i 
+ 4.82~-! 10g10 (1 + 0.6 X lO11T~i) 

+ 1.86 X lO11T~-! + 4.19~-! 
1 + 0.6 + 1011T~i 

+ 4.19~-! arc tan 3.9 X 1O-6T-!~-!J 
1 

-lr 

+ 1.15 ~ 10g10 (1 - e-
pnrop

) 
(KT) 

36 ~ e-PIiOJp 

+ 4.15 X 10 -; ph' 
T 1 - e- OJ p 

which gives the equation of state through 

of of of 
pv = n - = ~ - = KTn - (n - co). on o~ o~ 

(46) 

Thus, for example, at ~ = 1 (i.e., at Co = 0.75 X 

1022 cm-3) one has, assuming T ~ 1 (in which case 
terms 8,9, 10, and 17 are negligible), 

f'(~ = 1) = 30.15 + 1.235 10
16 

T 

+ ~ 10 (1 _ e-pnOJp) 
(KT)2 glO 

36 ~ e-pnOJp 

+ 4.15 X 10 3 pn (47) 
T 1 - e- OJp 

This is positive, i.e., we have stability. Here the 
second term comes from the zero-point energy of the 
collective modes, and the last two terms come from 
the higher levels. Actually, (46) is valid only for 
{Jllwp »1 because of our choice (14) of k c • Hence 
the last two terms in (46) and (47) wiII be negligible. 
It is interesting to note that for ~ = 1, we would have 
stability even without the zero-point pressure, but the 
latter is overwhelmingly large within the range 
{Jllw p» 1 [(IlW/K)"""'" 2.104 oK for ~ = 1]. 

I t is easily seen that f' increases with ~ and hence 
the stability holds for all ~ > 1. 

As ~ decreases below 1, the noncollective part 
passes through zero and becomes negative. The 
zero-point pressure term decreases too, but remains 
quite large and positive down to about rx = 10-8• 

At that point, -38.6~-! logio ~ becomes the 
dominant positive term, which is, however, out
weighed, for ~ « 10-8 , by the dominant negative 
term (1.86 x lO11T~-i)/(l + 0.6 X 1011T~i). Thus, at 
(J. « 10-8 (i.e., Co « 1014 cm-3) and T « 1 OK, our 
model becomes unstable. At T S 10 K, relation (46) 
becomes increasingly more difficult to evaluate by 
hand. 

A further differentiation of (46) gives 

'0-'1 9 + 1010T~-t 
f" = - - ~ -1 + ---'-------;-

- 0~2 - 1 + 6.6 X 101OT~! 
+ 2.76 X 1O-I7T-~~-2 

(1 + 1.52 + 1O-11T-1
(J.-i)2 

X 0.95 X 1O-5T-t~-ll + 12.57!x-~ 
1 + 1.57 X 1O-11T-1rx-i 

+ 25.7~-t 10glO ~ + 38.6~--t 
+ 2.41~-i 10g10 (1 + 0.6 X 1011T~i) 
+ 6.2 X 1011T~-i + 0.82 X 1022T2~-i 

1 + 0.6 X 1011T~i (1 + 0.6 x 1011T~i)2 
+ 2.1~-i + 2.1~-~ arc tan 3.9 X 1O-6T-!~-t 
+ 2.73 x 1O-6T-!~--t 

i + 1.5 X lO-11T-l~-! 

_ 0.31 X lO11T~-t 1 + 0.2 X 1022T2~-1 
[1 + 0.6 x 1011T rx3 (1 + 0.6 X 101lT~!)2 

+ 1.86~-! + 2.1rx-i arc tan (3.96 X 1O-6T!rx-!) 
+ 5.54 x 1O-6T-!~-!.l 

1 + 15.7 X 1O-12T-I~-i 
6 1 5 + 3.6 X 10- T-lrrx-' 

1 + 1.52 X lO-11T-I~-! 

+ 1.19 X 1O-16T-i rx-% 

(1 + 1.57 X 1O-l1T-l~-i)2 

+ 16.3~--t + 9.3 X 1010~-iT ] 
1 + 6.6 X 101OT~i 

+ terms from higher collective levels. (48) 

At T= 0, 

f'T~o = ~-1 + 15.87~-~ + 22.3~-t 
5 ~ + 25.71X"3 10glO rx - 1.86rx-3

• (49) 

From (48) one obtains f;~o ~ 0 for ~-1 ~ 
~Ol S 17.03 ± 0.02 and f;~o ~ 0 for ~-I ~ rx~. In 
terms of the density, a phase transition therefore 
begins as one comes down from larger density to 
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TABLE II. Curvature of a fermion-Coulomb plasma free energy 
as a function of the density n = 0.75 X 1022

0(. 

0(-1 ("(0() 0(-1 r(O() 0(-1 r(O() 

10· -1012 17.1 -6.1 15.625 +32 
103 -5 X 10· 17 +2.5 10 315 
102 -4.7 X 104 16.9 +10.81 1 37 
18 -93 16.8 +12.1 10-3 2 X 10-3 

Coo = 0.44 X 1021 cm-s. This corresponds to an 's 

value of 
's = 7.63 ± 0.01. (50) 

Table II gives a few values ofj"(a). We see from this 
table that i" remains negative above 's =7.63, 
indicating that the coexistence region lasts at least 
until Co ~ 1014, i.e., r. ~ 100, which is the limit of 
validity of (48), the model becoming unstable beyond 
that point. 

The value r. = 7.6 fits in with the pressure transi
tions at rs ~ 6 reported by Gartenhaus and Stranahan8 

(in the HF approximation), rs 2 6.4 reported by 
Osaka,9 and rs ~ 5 by Wiser and Cohen,I° all for the 
electron plasma on uniform positive background at 
T = O. Their method, however, is applicable to T = 0 
only, where.as ours applies to any temperature for 
which f3liw p » 1 (i.e., up to ,.....,104 OK for metallic 
densities). If one uses a value of kc which is valid 
also for T"" T F, the method would apply to any 
temperature. This will be the subject of another paper. 

Returning to T¥:O and to (48), we note that when 
T 2 10 K, terms like the second simplify, because over 
nearly the entire range of a one may neglect the 1 in 
the denominator, and terms like the third and the 
fourth are negligible (and so are the higher collective 
terms which f3/iw p» 1). The only temperature 
dependence of j" is through the eighth term which 
contributes 2.41a-~ 10g10 T (where again we neglect 
1 and take T 2 1). Thus, without solving 1" = 0 
explicitly, we may conclude that the transition density 
depends logarithmically on the temperature. 

The detailed solution of j"(a, T) = 0 at T¥:O 
requires a computer and will be reported elsewhere. 

C. Application to White Dwarfs 

A white dwarf may be considered as a relatively hot 
(107 OK) ion plasma (carbon, say), of number density 
!1030- 32 cm-s. At the temperatures considered, the 
ions may be taken as Boltzmann particles and (34) 
and (39) apply. The constants in these equations have 
to be modified, however, by replacing the electron 
charge and mass by that of the C++++ ion. Thus, the 
last term (which stems from !s/iO)p) has to be multi
plied by mtc/(Mtv2) = 1/2368, where v = 4 is the 
degree of ionization. There are no other mass correc
tions, and all other charge corrections are incorporated 
into a change of y by a multiplicative factor of v6 = 
4096. Taking, e.g., Co = !1030 and remembering that 
y is a function of Co and T through (29'), one then 
has to find a value of T such that the corresponding y 
will give f"(y) = 0 at the same initial temperature. 
This temperature will then be the transition tempera
ture. 

This procedure can be carried out by hand, by a 
trial and error method, and gives a transition tempera
ture of 

Ttransit ~ (0.7 X 107 ± 0.2 x 107tK, 

which is of the expected order of magnitude. 
The case of the hydrogen plasma on Jupiter requires 

a k~ which is valid in the temperature range T"" T F, 

and will be reported elsewhere. 
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A first-order differential equation is found for the quasi phase parameter which describes the half-off
shell scattering matrix. The quasiphase is given as D.(<X), whe~e D.~r) obeys an equation involving the 
potential but not the wavef~nction and D.(O) = O. The equatIOn IS u~ed to develop low-momentum 
expansions for D., and to derIve upper and lower bounds for the expansIOn parameters. 

1. INTRODUCTION 

One may solve the problem of potential scattering 
by eliminating direct reference to the wavefunction 
u(r) in calculating the phase shift 0. 1 •2 In effect one 
makes a change of variables 

u(r) = A sin k[€(r) + r], 

where A is independent of r. Physically, her) is the 
phase shift that would exist if the potential Vex) were 
replaced by one equal to Vex) for x < r and equal to 
zero for x > r. One finds a first-order differential 
equation for €(r) in terms of V(r), with u(r) eliminated, 
and the phase shift for the original problem is given 
by h( (0). Several advantages of this approach, 
especially in low-energy scattering, are discussed in 
Ref. 1. 

A treatment similar to that in Ref. 1 can be given 
for the case of the off-energyl.shell matrix elements 
corresponding to the given potential. These matrix 
elements have been the subject of considerable discus
sion in low- and intermediate-energy physics in 
recent years, particularly with reference to the two
nucleon interaction.3 Although a great deal of informa
tion about the two-nucleon interaction has been 
assembled, this is almost entirely based on elastic
scattering experiments and analysis of these in terms 
of phase shifts. More complicated processes involvi~g 
nucleons require knowledge of off-energy-shell matrIX 
elements, or quasiphase parameters,4 which describe 
these elements in the same way that phase shifts 
describe on-shell matrix elements. To extrapolate the 
matrix element off the energy shell it is necessary to 
employ some model, generally a potenti~l model, 
which is fitted to the phase-shift data. In recent years 
the use of these elements has become important in 
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systems such as infinite nuclear matter, 5 finite nuclei,6 
three-body scattering,7 and nucleon-nucleon brems
strahlung.s Thus the properties of these elements and 
the validity of the models must be studied. 

Many models of the interaction are local potentials 
which contain a hard core, a phenomenological 
intermediate region, and a tail given by the one-pi on
exchange potential (OPEP). However it is found 9 that 
different potentials have the same value for r greater 
than a certain r', and differ only for r less than r' 
(although they all fit the scattering data)-and r' is a 
smaller distance than that at which OPEP dominates. 
Thus one may say that scattering experiments have 
probed the potential down to r', but not closer. It is 
therefore of interest to express the off-shell matrix 
element in a form which exhibits the dependence on 
the different regions of r space. This is accomplished 
by the equation we shall describe which gives the 
quasi phase A as A( (0), where A(r) obeys a differential 
equation depending only upon Vex) for x < r. 

The paper closely parallels Ref. 1. In Sec. 2 we 
review the results of that paper, derive the equation 
for A(r), and discuss a low-energy expansion analo
gous to the effective-range expansion. In Sec. 3 we 
discuss upper and lower bounds of varying degrees of 
simplicity for the expansion parameters, and present 
some calculations for elementary potentials. Section 4 
deals with the case of a hard core together with a 
finite exterior potential. 

For simplicity we consider S waves only. 

2. DIFFERENTIAL EQUATION AND LOW
ENERGY EXPANSION 

Let Vex) be the given potential and consider the 
potential Vr(x) given by 

{
Vex), for x ~ r, 

Vr(x) = 0, for x> r. (2.1) 
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If kE(r) is the phase shift due to potential VrCx) , 
thenl 

E'(r) = -k-2V(r)sin2k[E(r) + r). (2.2) 

Here k = E~, where E is the energy.lO From Eq. (2.1) 
it is obvious that E(O) = 0, so that this boundary 
condition with Eq. (2.2) determine E everywhere. 

The quasiphase !l for Vex) is given bt 

!l = _l ["'dx Vex) sin k'x vex), (2.3) 
k' Jo 

where vex) is the solution of 

v"(x) + [k2 - V(x»)v(x) = 0, (2.4) 

subject to v(O) = 0 and v(x),...., sin (kx + (j) as 
x ~ 00. !l describes the S-wave part of the half-off
shell element of the T matrix 

(k'i T(E) Ik), with k2 = E ¢ k,2, 

and 

(k'i T(E) Ik) 

= -(27T2k)-1 L (21 + 1) exp [i(jl(k)]!lIPI(k • k'). 
I 

(2.5) 
As k' --+ k, !ll ~ sin (jl. 

If in Eq. (2.3) we replace the upper limit by r, the 
resulting function would still depend on Vex) for all x, 
because to determine the normalization of vex) one 
would still have to integrate out to x --+ 00 (or 
beyond the range of the potential). Instead we consider 
the quasi phase !l(r) which results from the potential 
Vr(x): 

!l(r) = - - dx Vr{x) sin k'x vr(x) 1 i oo 

k' 0 

= - - dx Vex) sin k'x v,(x). 1 ir 

k' 0 
(2.6) 

To find a first-order equation for !l{r) we must 
differentiate Eq. (2.6) with respect to r, but some care 
must be taken in describing vr(x). Suppose U,.(x) is the 
solution of 

u~{x) + [k2 
- Vr{x)]ur{x) = 0, (2.7) 

subject to urCO) = 0, and u~(O) = some arbitrary 
number (say k). Then ur(x) = u(x) for x ~ r, and 
ur(x) = Ar sin k[E(r) + x); here u(x) means uoo(x). 
Furthermore, according to the definition of !l, 
vr(x) = uT(x)IAr . Thus Eq. (2.7) becomes 

Ar!l(r) = - - dx Vex) sin k'x u(x), 1 lr 
k' 0 

(2.8) 

10 We use units such that Ii = 2m = 1. 

with integrand independent of r. Using Eq. (2.2) we 
find 

dArldr = -ke'(r)u(r)cosk[E(r) + r]{sink[E(r) + rJ}-2 

= k-l V(r)u(r) cos k[E{r) + rJ, (2.9) 

so that Eq. (2.9) becomes 

!l'(r) = - VCr) sin k[E(r) + r]{(l/k') sin k'r 

+ (Ilk) cos k[E(r) + r]!l(r)}. (2.10) 

With boundary condition !leO) = 0, Eqs. (2.10) 
and (2.2) determine !l(r) and E(r) for all r, and clearly 
!l = !l( 00). As k' ~ k we can let !l(r) --+ sin ke(r) 
and find that Eq. (2.10) reduces to Eq. (2.2), as it 
should. 

The advantages of this method relative to the more 
common technique of solving the SchrOdinger 
equation and integrating over the potential are similar 
to the advantagesl which hold for E(r). These first
order equations are particularly well suited to numer
ical calculations: If V does not change sign, then 
le(r)1 is monotonically increasing so that it is easier to 
determine the errors of a numerical calculation. 
Although 1!l(r)1 is not necessarily monotonically 
increasing, it is still a slowly varying function, as 
compared with the wavefunction. Furthermore, the 
fact that Eq. (2.10) is linear leads, as we will see, to 
considerable simplifications. Finally, as stated above, 
!l(r) depends only on Vex) for x < r. Thus if Vex) 
can be regarded as "model-independent" for x > r', 
then, starting with E( O(), one can consider e(x) 
model-independent for r' < x < 00, and likewise for 
!l(x) , i.e., the model-dependent parameter will 
become !l(r') rather than !l( O() and the two regions 
of space (x > r' and x < r') are effectively separated. 

To simplify further discussion we consider the case 
of low energies. From Eq. (2.2) one can derivel an 
expansion for e(r): 

e(r) = -<x(r) - fJ(r)k2 , 

for small k, where 

<x'(r) = V(r)[<x(r) - rl2, <x(0) = 0, 

(2.11) 

(2.12) 

and a similar equation holds for fJ. <x( O() is the 
scattering length and the effective range is given in 
terms of <x( O() and fJ( O(). 

In the case of Eq. (2.10) let us first define 

'fI(r) = !l(r)/[sin ke(r)], (2.13) 

and find that 'fJ obeys 

r/(r) = - V(r) [cos kr + cot ke(r) sin kr) 

X [(Ilk') sin k'r - (Ilk) sin kr1J(r»). (2.14) 
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The boundary value 1](0) is not obvious, but if we 
assumell that VCr) diverges at r = 0 less rapidly than 
r-2 , then we find that ~ and sin h behave in the same 
way as r -+ 0 and 1](0) = 1. 

Now we expand 1](r) independently in powers of 
k and k', using Eq. (2.11) for €(r). The zeroth-order 
term is the constant unity, and the next terms are in 
k 2 and k'2 with equal and opposite coefficients. Thus,I2 

1](r) = 1 + (t)0'(r)(k'2 - k 2) + O(k4) (2.15) 

and 0' obeys 

O"(r) = UaCr)[O'(r) + r2] = V(r)[1 - rla(r)] 

X r[O'(r) + r2], 0'(0) = O. (2.16) 

In Sec. 4 we will find a similar equation for 0' in the 
presence of a hard core, with the boundary condition 
at the core radius rc. It will be of interest then to 
expand 0' in powers of (r - rc). We can see to what 
extent the contribution to 0' for r not far from rc is 
independent of the parameters describing the poten
tial. For comparison we expand, here, O'(r) and a(r) 
in powers of r. Suppose that, with fJ < 2, 

VCr) = r-P(Vo + VIr + ... ), (2.17) 

so that, using Eq. (2.12), 

U,,(r) = r-I[-(3 - fJ) + u1r + ... ]. (2.18) 

Then we find 

O'(r) = r2[-(3 - fJ)/(5 - fJ) 

+ {2/[(6 - fJ)(5 - fJ)]}UIr + ... ]. (2.19) 

One might be interested in choosing from among a 
series of potentials which fit the phase shift (or the 
scattering length) the one that gives an off-shell 
element which has the minimum dependence on the 
potential parameters. Thus, if the potential were 
fixed for r greater than some value r', one would try 
to make O'(r) for small r least dependent on the 
potential. Once fJ is fixed the leading term is independ
ent of Vo. As for the next term, we note that, for 
example, 

for fJ = 0: UI = -(4VO)-I3VI , 

for fJ = 1: UI = -(3 Vo)-I(2 V~ + VI)' (2.20) 

If the potential depends upon a parameter A one 
could choose A such that OUI(A)loA = O. For example, 
suppose a Yukawa potential y(rl'r)/r is to be fitted 
to a positive-scattering length a. This defines a 
relation y = Y(fl). For this case Ul = -H2y - fl), 
so that one could choose fl such that y'(fl) = l 

11 We continue to make this assumption in the rest of the paper. 
12 The low·energy expansion has been previously derived by other 

methods; see A. H. Cromer, Rev. Mod. Phys. 39, 716 (1967). 

Since the function Y(fl) is roughly a positive quadratic, 
there will be a solution for some fl > O. 

3. UPPER AND LOWER BOUNDS 

A major part of Ref. 1 is devoted to providing 
upper and lower bounds for a(r) in terms of integrals 
over VCr). These can in turn be applied to give bounds 
for O'(r), especially since Eq. (2.16) is linear and can 
be solved by quadratures. Because of the zero of a at 
r = 0 it is convenient to change variables and let 
T(r) = O'(r)a(r). It is then easy to show, using Eqs. 
(2.16) and (2.12), that 

T'(r) = UrCr)[T(r) + r3] = V(r)[a(r) - r][T(r) + r3] 

(3.1) 
with T(O) = O. Thus, 

T(r) = fdY y
3 UT(r) exp [fdX UT(X)} (3.2) 

In the low-energy expansion of ~(r), -T16 is the 
coefficient of the term in kk'2. Let us first consider the 
case of the purely repulsive potential. Then from Eq. 
(2.12) we have 

0< a(r) < r. (3.4) 

More precise bounds arel 

a«r) == f:dy y2V(y) exp [ -2 fdX XV(X)] 

< a(r) <I dy lv(Y) == a>(r). (3.5) 

Depending on r, the upper bound may be better in 
Eq. (3.4) or (3.5). It is obvious that -r3 < T(r) < 0, 
but we obtain the following bounds, useful at r -+ CD: 

!o'dy y3VCV)[Y - a>(y)] 

X exp { - f dx V(x)[x - a«x)]} 

< /T{r)1 <fdY y3V(y)[y - aAy)] 

X exp {- fdX V(x)[x - a>(X)l}. (3.6) 

With simple functional forms for VCr), although a(r) 
[and hence T(r)] can be found only numerically, one 
finds that a> and a< can often be found in simple 
analytic forms. Likewise the integrals in Eq. (3.6) may 
be carried out simply. Even when this is not so it is 
found that the integrals can be done by expanding in 
powers of r (and x and y), with results converging so 
rapidly that they are useful even for finding T( CD). 
In contrast, experience shows that if we try to solve 
Eqs. (2.12) and (3.1) by expanding in powers of r the 
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convergence is very slow. Several simpler and weaker 
bounds can be obtained from Eqs. (3.5) and (3.6). 
First we note the simpler lower bound for cx: 

cx(r) > cx«r) > f: dy y2V(y) 

X exp [-2fdX XV(X)] =: a«r) (3.7) 

and, from Eq. (3.6), simpler bounds for T: 

Sordy lV(y)[y - cx>(y)] 

X exp { - f: dx V(x)[x - cx«X)]} 

< \T(r)\ <fdY y3V(y)[y - cx«y)]. (3.8) 

Either Eq. (3.6) or (3.8) can be further simplified by 
replacing a < by a< or ° in various places. To illustrate 
these results we calculate various bounds for T(r) 
for two examples: (a) the spherical barrier, in which 
case the exact solution is given analytically, and (b) 
the Yukawa potential. 

(a) Let 

VCr) = {r12, 
0, 

Then the exact solution for cx is1 

a(r) = r - r1 tanh (rlr1), 

a(r) = cx(ro), 

(3.9) 

(3.10) 

For T the integrals in Eq. (3.2) can be performed to 
yield, with p = rlrl , 

\T(r)\ = -T(r) = rr[p3 + 6p - (3p2 + 6) tanh p]. 

(3.11) 
-

It is understood that this expression and the bounds 
we will describe give T(r) for r < ro, and that for 
r 2 ro, 7(r) = 7(ro)' The very simplest upper and 
lower bounds are given by Eq. (3.8) with ()« taken 
equal to zero. These give 

(p5 _ p7) exp (_ p2) < \T(r) \ < l. (3.12) 
5 21 2 rr 5 

The improved bounds obtained from Eq. (3.6) [with 
use of equation (3.5)] are also calculated in the form 
of a series in p. These curves, together with some 
others given in closed form, are shown in Fig. 1. 
The general conclusion is that the shorter the range 
of the potential the better are the bounds found. 
Furthermore, as we should expect, the approximation 
made in going from Eq. (3.6) to (3.8) is poorer for 
longer-range potentials. 

a 

1.5 
b 

I 'T (r I I 

1·0 
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d 

c 

.5 

9 

h 

.5 1·0 

FIG. I. Upper and lower bounds for the potential of Eq. (3.9). 
Ordinate in units of r~, abscissa in units of rl, rolrl = 1.5. a: Upper 
bound (U.B.), Eq. (3.8), tX< --+ O. b: U.B. Eq. (3.8), tX< ---> ii< of Eq. 
(3.7). c: U.B. Eq. (3.6). d: Exact equation (3.11). e: Lower bound 
(L.B.), Eq. (3.6). f: L.B. Eq. (3.6), tX< ---> O. g: L.B. Eq. (3.8), 
tX< --+ ii<. h: L.B. Eq. (3.8),tX< ---> O. 

(b) As a second example, we calculate the simplest 
bounds for the Yukawa potential 

VCr) = (e-orir)/(rrl)' (3.13) 

These results, from Eq. (3.8) with a< = 0, are 
somewhat lengthy and we write only the values at 
r--+oo: 

6~exp(-~)(1-!~) <Hoo)\<6~. (3.14) 
rl r1 3 r1 rl 

Some curves are shown in Fig. 2. Here, too, it is 
evident that the bounds are closer for a potential of 
shorter range. 

For the case of a purely attractive potential we find 
aCr) < 0, Ur > 0, and so from Eq. (3.2) we have 

7(r) = r dy y3
\ V(y)\ (y + laCy)!) 

X exp [fdX !V(x)L(x + \a(X)I)} (3.15) 

The inequalities in Ref. 1 for a are 

\a(r)\ > f dy y
2

!V(y)\ exp [2 f dx x !V(X)I] 

> f:dY y
2

!V(Y)I. (3.16) 
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FIG. 2. Upper and lower bounds for the potential of Eq. (3.13). 
Ordinate in units of r:frl, abscissa in units of ro . Solid line is upper 
bound, independent of rofr, in these units. Dashed lines are lower 
bounds with rOfrl as indicated. 

Thus from Eq. (3.15) we obtain only lower bounds for 
T. The simplest is found by using IX = 0 in Eq. (3.15), 
the next simplest by using the expression on the right 
of (3.16) for IX, and the next by using the expression 
in the middle of (3.16). In each case, as before, the 
exponential mayor may not be replaced by unity to 
give a simpler result. 

The quantity S~ dy y 2 V(y) is the Born-approxima
tion value for IX (regardless of the sign of V). Further
more, if the Born approximation is valid, then 
IIX(r)1 « r, so that in this case 

T(r) = TBorn(r) = - J: dy lV(y). (3.17) 

In the case of repulsive potentials we have seen that 
I Tnornl is a simple upper bound for -T. Generally if 
the potential is always of one sign, THorn is an algebraic 
lower bound for T. 

It is interesting that the Born-approximation 
expression for fJ [of Eq. (2.11)] is given byl 

-i fdY y4V(y). 

Since fJ( 00) is related to the effective range ro and the 
scattering length a the half-off-shell element is given in 
terms of these on-shell parameters 

0'(00) = T(oo)/a = 3fJ(oo)/a = 3a(iro -ta). (3.18) 

This relation at low energies expresses the well-known 
fact that in the Born approximation any off-shell 
matrix element is the Fourier transform of the 
potential at some momentum transfer and hence 
equals some on-shell element. 

One can derive an expansion for the quasiphase !:::. 
for k small but k' arbitrary. This is the case important 
from the point of view of double-scattering processes 
at low energies. I3 One must carry out integrals of 
half-off-shell t matrices over all values of the inter
mediate momentum k' with the energy k 2 of the 
T operator fixed at some (possibly small) value. Let us 
start with Eq. (2.14) and let 

1J(r) = 1Jo(r) + k21J2(r) + . . . . (3.19) 

Then 1Jo(r) obeys 

1J~(r) = V(r)[1 - _r_]r (1J0 - sin k'r) , 1J0(0) = 1. 
lX(r) k'r 

(3.20) 

Again we introduce the change of variables, ~o(r) = 
1Jo(r )1X(r) and find 

~~(r) = V(r)[IX(r) - r][~(r) - (11k') sin k'r], 

~0(0) = O. (3.21) 

So we find the solution, with U(r) = V(r)[lX(r) - r], 

1Jo(r) = - _,_1_ rdy U(y) sin k'y exp [rdX U(X)]. 
k lX(r) Jo JII 

(3.22) 

One can obtain from this a simple upper bound for 1J. 
In the case of repulsive potentials, 

1 r 
l1Jo(r)I < k'lX(r) Jo dy yV(y) (3.23) 

and 

1Jo(OO) < - dy yV(y). 1 100 

k'a 0 
(3.24) 

As before, more stringent bounds can be placed on 1J 
for this case and for the case of a purely attractive 
potential. The equation for 1J2(r) is more complicated, 
but one obtains a bound of the form 

1 roo 
1J2(OO) < k'a Jo dy V(y)g(y), (3.25) 

where g(y) is independent of k'. Bounds such as these 
would be useful in approximating the high-momentum 
part of double-scattering integrals, as mentioned above. 

Finally in this section we note that one may study 

13 M. I. Sobel, Phys. Rev. 152, 1385 (1966). 
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the dependence of the off-shell element on a param
eter A appearing in the potential. For example, there 
might be a range of values such that for A in this 
range the on-shell parameters are fit, but the off-shell 
elements vary with A. In this case, going back to Eq. 
(3.1) for T, 

(
aT)' = aUT (T + r3) + U aT (3.26) 
OA OA T OA ' 

and so 

- (r) = dy _T (Y)[T(Y) + y3] exp dx Ur(x) . aT Jt au [it J 
OA 0 OA y 

(3.27) 

In the case of a repulsive potential, UT < 0, ° < 
(X(r) < r, and -r3 < T(r) < 0, so we have 

<fdY l ~: (y) exp [ - fdx XV(X)] 

r oV <Jo dy l OA (y). 

4. HARD CORE 

If the potential is specified as 

VCr) = {+oo, r < re, 
V(r) , r> re, 

\ 

(3.28) 

(4.1) 

the differential equation for .:1(r) is found to be 
identical to Eq. (2.10) for r > re. The boundary 
condition is now at r e and it is 

.:1(rJ = .:1c = -(k/k') sin k're. (4.2) 

The equations for E(r), (X(r), 1](r), O"(r) , and T(r) are 
the same as in Secs. 2 and 3, for r > re , with boundary 
conditions 

E(re) = -re' 

(X(re) = r c' 

(r) = = (sin k're)/k' 
'f/ e 'f/e (sinkre)/k 

O"(re) = -r~, 

T(re) = -r~. 

Now if we assume VCr) can be expanded as 

VCr) = Vo + VIer - re) + ... 
and 

(4.3) 

(4.4) 

O"(r) = -r~ + O"l(r - re) + 0"2(r - re)2 + ... , 
(4.5) 

we find that 0"1 = 0"2 = 0, and the leading terms are 

O"(r) = -r~[1 + !(Vor~)(r ~e re)3 + .. -} (4.6) 

In fact a similar expansion can be found for the com
plete quasiphase or, in terms of 1](r), 

1](r) = 1]c[1 + tVo(k' cot k're - k cot kre) 

X (r - re)3 + ... J. (4.7) 

Thus the variation of the quasiphase outside the hard 
core is slower than one might have expected. If VCr) 
is only uncertain in some region r e < r < r' and if 
r' - re is small enough so that only the two terms in 
Eq. (4.7) need be used, then .:1( (0) may be considered 
a measure of Vo = V(rc) , i.e., from .:1(00) or 1](00), 
which might be determined experimentally, 14 one can 
integrate backwards to find 1](r'), and then determine 
Vo. For the two-nucleon interaction9 in T = 1, J = ° 
states, (r' - re)/re"'; 0.5. Of course it should be 
remembered that r e is not precisely fixed by phenom
enological analysis. 

The bounds considered in the previous section can 
also be applied in the case of the hard core. Let us 
suppose that outside the repulsive core the potential 
is attractive. The analog of the bound in Eq. (3.16) is 

(X(r) < rc + fdY yV(y)(y - 2rJ 

x exp [ -2 fdX XV(X)} (4.8) 

The integral may be positive or negative. In the former 
case this equation is not useful since we always have 
(X(r) < rc. Equation (3.2) for T becomes 

T(r) = -r~ +fr dy (i - r~) I U'(y)1 
To 

X exp [fdx I UT(X)I} (4.9) 

Now 1(X(r) - rl = 1(X(r) - rei + Ir - rei. Thus we 
always have a lower bound 1(X(r) - rl > Ir - rei and, 
depending on the sign of the integral in equation (4.8), 
we may obtain an improved bound. In either case we 
obtain a lower bound for Tusing Eq. (4.9). The sim
plest case, if the exponential is replaced by unity, is 

T> -r: + r dy(i - r~)(y - re) lV(y)l. (4.10) Jr, 
14 Recently there have been attempts to use experimental results on 

proton-proton bremsstrahlung to determine quasiphases; see A. H. 
Cromer and M. I. Sobel, Rev. Mod. Phys. 39, 717 (1967). 
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The Eckart-Wigner theorem is generalized to include nonunitary groups. The proof is based on the 
connection between corepresentations of a non unitary group and the representations of its unitary part. 
All possible cases of the corepresentations have been considered, and general expressions for matrix ele
ments of operators with given symmetry have been obtained. It has been shown that the anti unitary 
symmetry leads, in general, to additional connections between different matrix elements. 

I. INTRODUCTION 

Eckartl and Wigner2 have shown that, when taking 
into account the symmetry properties of the system 
{j.e., the symmetry properties of the wavefunctions 
and the physical operator) with the help of the 
representation theory, one can write simple relations 
between matrix elements of operators which have 
certain similar properties. Their work on this subject 
culminated in the Eckart-Wigner theorem. Both 
Eckart and Wigner dealt with physical systems of 
spherical symmetry. Koster3 generalized this theorem 
in order to make it applicable to other groups. The 
generalization of the Eckart-Wigner theorem given by 
Koster is as foIIows: 

(cp!/ P! /cp$) = A1Uu(aP) + A2 U u+nk ,(aP) + ... , 
where i,j, and k denote irreducible representations of 
the symmetry group of the system G, AI' A 2 , ••• are 
constants called "reduced matrix elements," and U 
is the matrix which transforms the direct product 
~i· ® ~i into a special reduced form (~i denotes the 
ith irreducible representation of G). The number of 
terms on the right-hand side of the above equation is 
equal to the number of times the irreducible repre
sentation ~k· appears in the reduced form of the 
direct product. 

Koster's work generalized the theorem for all 
symmetry groups connected with spatial geometry. 
An additional important symmetry of physical systems 
is time inversion; the symmetry associated with time 
cannot be expressed by geometric symmetry groups. 
For this reason it was necessary to develop the concept 
of a new type of group, the nonunitary group. 

Nonunitary groups and their corepresentations are 
of great importance in magnetic materials. In such 

• Present address: Department of Physics and Francis Bitter 
National Magnet Laboratory, M.I.T., Cambridge, Massachusetts. 

1 C. Eckart, Rev. Mod. Phys. 2, 305 (1930). 
2 E. P. Wigner, Group Theory and Its Application to the Quantum 

Mechanics of Atomic Spectra (Academic Press Inc., New York, 
1959). 

3 G. F. Koster, Phys. Rev. 109, 227 (1958). 

materials' the antiunitarity element is a product of 
time inversion and an element of the space group, 
which together leave the spin system unchanged. In 
nonmagnetic materials time inversion is itself a sym
metry element. In every case where an antiunitary 
element is added to the ordinary space group there is 
a need to deal with corepresentations, and therefore 
also with the Eckart-Wigner theorem for them. 

In Sec. II we generalize the Eckart-Wigner theorem 
for nonunitary groups; the derivation is parallel to 
Koster's. Since corepresentations are constructed in 
three possible ways (according to Wigner's classi
fication) out of the irreducible representations of the 
unitary subgroup of the nonunitary group, three 
different cases appear in the generalization. 

Relations between matrix elements, due to the 
addition of the anti unitary element to the symmetry 
group of the system are derived in Sec. III. Examples 
are given in Sec. IV. 

II. ECKART-WIGNER THEOREM FOR NON
UNITARY GROUPS 

Consider a nonunitary group G of order N, con
sisting of unitary and antiunitary operators. These 
operators are generally denoted by 0, while the 
unitary operators are denoted by u, and the anti
unitary ones by a. The irreducible corepresentations 
of G are denoted by Di, Di, Die, ... , and their dimen
sions are ni , nj , nk , ••• , respectively. 

The basis functions cp~ of the lth irreducible corep
resentation (ex = 1, ... , n l ) satisfy the equation 

(1) 

where Dl( O)oa are matrix elements in the lth irreducible 
corepresentation. Without loss of generality, we can 
assume these matrices to be unitary.4 

Weare interested in matrix elements of operators 
with certain transformation properties between the 
states IP! and IP~' 

4 J. O. Dimmock, J. Math. Phys. 4, 1307 (1963). 
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Let P: be an operator which transforms according 
to the kth irreducible corepresentation of G: 

nk 
Op:O-l = I Dk(O)perP~. (2) 

p~l 

Consider the matrix element (<p!1 P: l<p~), denoted 
from now on by P~:~. Using Eqs. (1) and (2), we can 
write for the unitary operators u: 

P!~~ = (<p!1 P~ I<pJ) = (u<p!1 uP:u-1Iu<PJ) 

= I Di(u)t~Dk(u)perDi(u)Ep(<p~1 P~ l<p~). 
b,p,E 

By summing the last equation over u and dividing it 
by N12, we obtain 

P!~~ = 2 I I D\u)t~Di(u)EpDk(u)perP~~~. (3) 
N u b,p,E 

Performance of the parallel procedure for antiunitary 
operators, use of their property2 

(tp, ¢» = (atp, a¢»*, 

and Eqs. (1) and (2) yield 

ikj 2 '" '" i i * k * iki* P~erp = - £... £... D (a)b~D (a)EpD (a)perPbpE' (4) 
N a b,p,E 

In Eqs. (3) and (4) we have products Di(U):~Dj(U)EP 
and Di(a)baDi(a):f3 ' which are matrix elements of the 
direct product D'(O) = Di(O)* @ Di(O). In Eq. (3) 
elements of D'(O) appear: 

D'(U)(bE)(aP) = D\u)taDi(u)EP; (5) 

while in Eq. (4) elements of D'(O)* appear: 

D'(a)(~E)(aP) = Di(a)baDi(a):p. (6) 

In general, D' (0) is reducible. Let us bring it to its re
duced form D(O), using a unitary transformation u. 

For the unitary part of the group we can write 

UD'(u)Ut = D(u), UtD(u)U = D'(u), (7) 

and for the antiunitary part of the group4 we have 

UD'(a)Ut* = D(a), UtD(a)U* = D'(a). (8) 

The reduced form we are interested in is 

o 

o 

Dk(O)* 

Dh(O) 

i.e., the first mk corepresentations are Dk( 0)*, where mk 

is the number of times the irreducible corepresentation 
Dk(O)* appears in the direct product Di(O)* @ Di(O). 
All the other corepresentations are not equivalent to 
Dk(O)* (mle is given by Karavaev5). 

The above form can be written as 

Di(O)* @ Di(O)* = D'(O) ~ mkDk(O)* + other ir

reducible corepresentations. 

D(O) has been chosen in this particular form because 
Dk(O) characterizes the given operator P~. 

The elements of D( 0) in the first mlenk rows are 

D(O)~v = Dk(O)~v; 'fj,r = 1, ... ,nk , 

D(O)~v = D\O):-nkov-nk; 'fj,v = nk + 1, ... ,2nk , 

D(O)~v = Dk(O)~-(mk-l)nk,v-(mk-l)nk; 
'fj,v = (mk - l)nk + 1, ... ,mknk . (9) 

All the others vanish. 
Using Eqs. (5) and (7), we obtain 

I U:(bE)D(u)~v Uv(~P) = D'(U)(bE)(~fJ) = Di(U):~Di(U)EP' 
~,v 

(10) 
and, similarly, from Eqs. (6) and (8) we get 

I U~(bE)D(a):pv(~fJ) = D'(a)(~E)(~P) = Di(a)b.Di(a):p. 
~,v 

(11) 

Substitution of Eqs. (10) and (11) in Eqs. (3) and (4), 
respectively, yields 

Piki 2 '" '" U* D() U Dk() piki aer/1 = - £.., £... ~(bE) U ~v v(~P) U per bpE' 
N It b,p,E,~,v 

Pik; _ 2", '" U D()* U Dk()* pi"i* aerp - £.., £... ~(bE) a ~v v(~P) a per ~pE • 
N a b,p,E,~,v 

(12) 

(13) 

The sums appearing in Eqs. (12) and (13) vanish for 
'Yj, v > mkn" because of the orthogonality relations 
existing for inequivalent irreducible corepresentations 
(see Ref. 4). Therefore we need consider only the 
sums with 'fj, v = 1,"', mknk . Equations (12) and (13) 
do not enable us to use orthogonality relations for an 
irreducible corepresentation,4 and we have to exploit 
the fact that irreducible corepresentations are con
structed out of irreducible representations of the 
unitary subgroup [which will be denoted by .:l(u)] , 

• G. F. Karavaev, Fiz. Tverd. Tela 6, 3676 (1964) [SOY. Phys.
Solid State 6, 2943 (1965)]. 
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according to Wigner's classification.2 For them we 
have the well-known orthogonality relations. 6 

Case A: Dk(O) is a corepresentation of the first 
type2; 

Dk(U) = ~\u); 

Dk(a) = ~k(aaol)fJ = ~k(uaoaol)fJ = ~\u)fJ. 
Equation (12) [by using Eq. (9)] then has the form 

iki 2 * k ikJ Pa<1(J = - Z Z Uq(~.)D(u)q.U.(a(J)f!.: (u)P<1P~P' 
N u ~,P,.,q>. 

= - 2 p~P' 2 Uq(o<P.(a:(J) 2~ (U)q.~ (U)P<1 2 iki [nk * k * k 
N ~,P,' q,.~1 u 

2nk 
+ Z U:(~.)U.(a:(J) 2 ~k(u):_nk,._nk~(U)p<1 

",v=nk+1 tt 

mknk 

+ ... + 2 U:(~.)U.(a(J) 
q,.~(mk-l)nk+1 

X ~ ~k(U):-(mk-l)nkoV-(mk-l)nk~k(U)p<1J. (14) 

The known orthogonality relations for matrix elements 
of an irreducible representation of a unitary group 

2 ~k(U)p<1~\u)~, = .K bpqb<1" (15) 
u nk 

where g is the order of the group (in our case g = NI2), 
enable us to write Eq. (14) in the form 

piki 
a,,(J 

= - 2 P~p: 2 Uq(~.)U.(a:(J)bpqb<1' + ... 1 ik"[ nk * 
nk ~,P.E q, .~I 

(16) 

q = 0, ... , mk - 1, 

(16') 
in Eq. (16) yields 

P!!~ = AIU,,(a(J) + A2U,,+nk.(a(J) 

+ ... + Am,U<1+(mk-l)nk.(a:(J)· (17) 
Let us now perform similar calculations for the anti-

6 M. Hamermesh, Group Theory and its Application to Physical 
Problems (Addison-Wesley Publishing Co., Inc., Reading, Mass., 
1962). 

unitary part. The relation Dk(a) = ~k(U)fJ defines the 
matrices of the antiunitary elements; fJ [or Dk(ao)] is 
a unitary matrix; 

2 fJ;"fJ .. = 2 (fJt
)<1TfJ .. = 15".. (18) 

Using orthogonality relations (15) and the definition 
of Aq+1 [Eq. (16')], one gets the following result from 
Eq. (13); 

iki _ * * Pa,,(J - Al U,,(a:(J) + A2 U<1+nk,(a(J) 

+ ... + A:;'kU,,+(mk-l)nk,(a:(J)' (19) 

Comparison of Eq. (17) and Eq. (19) (remembering 
the linear independence of the rows of U, which is a 
unitary matrix) immediately gives 

Ap = A!. 

The Eckart-Wigner theorem for this case is therefore 

p!!~ = A IU<1(a(J) + A2U<1+nk,(a(J) 

+ ... + Amk U <1+( mk-I) nk, (a(J) , 
where the A's are real constants. 

This property of the A's is a consequence of the 
transformation property of the operator (in this case, 
transformation according to a corepresentation of the 
first type). 

Case B: Dk(O) is a corepresentation of the second 
type; 

Dk(a) = ( 0 ~k(aaol)fJ) 
-~k(aaol)fJ 0 

= (0 ~k(U)fJ). 
_~k(U)fJ 0 

The dimension of Dk( 0) is nk , and therefore the 
dimension of Dk(U) is nkl2. The elements of the first 
mlilk rows of the matrix D(u) are 

D(u)q. = ~k(U)~.; 'Yj, V = 1, ... ,nkI2, 

D(u)q. = ~k(u)~_nk/2,._nk/2; 'Yj, V = nkl2 + 1,' .. ,nk, 

D( U )q. = ~ k( U )~_( mk-l)nk-nk/2, ._( mk-l)nk-nk/2; 

'Yj, V = (mk - l)nk + nkl2 + 1,"', mknk . (20) 

All the others vanish. 
The elements of Dk(U) are 

Dk(u)a/l = ~k(u)a(J; IX, fJ = 1, ... , nkl2, 
Dk(u)a(J = ~k(u)a-nk/2,(J-nk/2; 

IX, fJ = nkl2 + 1,"', nk . (21) 
All the others vanish. 
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(i) For (] = 1, ... ,nk /2, Eq. (12) has the form 

nk 
+ L U:w ) U v(ap) 

~,v=(nk/2)+1 

X ~ 6,k(u):_nk/2•v_nk/26,k(u)pa + .. -] 

after using Eqs. (20) and (21). 
Substitution of the orthogonality relations Eq. (15), 

where instead of nk we put nk /2, gives 

2 nk/2 [ nk/2 N 
p~% = N t 1:/;~: ~'~lU:(~.)Uv(a/l) '2 

x 2 <5 <5 + ... J 
P~ av nk 

2 nk/2 
= - L LP~~nU;(6<)Ua(a/l) 

nk 0,< p=l 

+ U;+nk/2,(/jE) U a+nk/2,(a/l) + .. ']. (22) 
Defining 

2 nk/2 
~ ~ • ik" 

BHl = - k k Up+a(nk/2),(6<)P/jp~, 
nk 0,' p=l 

q = 0, ... , 2mk - 1, (22') 

we can write Eq. (22) in the form 

P~~~ = Bl U cr(a/l) + B 2U a+(nk/2),(a/l) + BaU cr+nk,(a/l) 

+ ... + B 2mkU a+mknk-(nk/2),(a/!)' (23) 

(ii) For (j = nk /2 + 1, ... , nk , Eq. (12) becomes 
[after a procedure parallel to that performed in (i)] 

(24) 
where 

, _ 2 nk • ikj 
Bq+l - - L L U p- nk/2+Q(nk/2),(!j£)P/jp., 

nk /j,< p=nk/2+1 
q = 0, ... , 2mk - 1. (24') 

A comparison between Eq. (23) and Eq. (25), and 
between Eq. (24) and Eq. (26) leads to the following 
results: 

B~ = -8:, B~ = Bi, B~ = -Bt, B~ = Bt, ... , 

or, in another form, 

B~ = (- WB:-{-1)P' 

As a consequence of the above, the Eckart-Wigner 
theorem generalized for this case is 

p~~ = Bl U a(a/!) + B 2U a+nk/2,(a/!) + BaU a+nk,(a/!) 

+ . , , + B2mkUa+mknk-nk/2,(a/!l> 

for 
(j = 1, ' .. , nk /2; 

P!~~ = -BiUa- nk/2,(a/!) + BiUa(a/!) - BtUa+nk/2,(a/!) 

+ BtUa+nk,(a/l) - ' , , , 

for 

Case C: Dk(O) is a corepresentation of the third type: 

Dk(U) = (6,k(U) 0) ° 6,k'(U) ' 

Dk(a) = (0 6,k(ua~»), 
6,k'(U) ° 

[6,k(U) and 6,k' (u) are inequivalent irreducible repre
sentations. ] 

The elements of the first mknk rows of D(u) are 

D(u)~v = 6,k(u):v; 'fj, v = 1, ' .. , nk/2, 

D( U )~v = 6, k' (u ):-nk/2, v-nk/2; 

'fj, V = nk /2 + 1, ' , . , nk , 

D(u)~v = 6,k(u):_nk,v_nk; 

'fj, v = nk + 1, ... , nk + nk/2, 

Similarly, for the antiunitary part, Eq. (13), one 
has the following: D(u)~v = 6,k'(U):-(mk-1)nk-nk/2,v-(mk-l)nk-nk/2; 

(i') for (j = 1, ... ,nk/2 'fj, v = (mk - l)nk + nk/2 + 1 ... mknk' (27) 

pikj B'.U B'·U + B'·U aa/! = 2 a(a(J) - 1 a+nk/2,(a/!) 4 a+nk,(a/!) 

- B~*U a+nk+ nk/2,(a/l) + ... ; (25) 

(ii') for (j = nk /2 + 1, ... ,nk 

P~~ = -BiUa- nk/2,(a/l) + BiUa(afJ) - BtUcr+nk/2,(a/!) 

+ BtU cr+nk,(a/!) - .. " (26) 

where BQ and B~ are defined by Eqs. (22') and (24'). 

All the others vanish, 
The elements of the matrix Dk(U) are 

Dk(u)a/l = 6,k(u)a/!; IX, f3 = 1, ... , nkl2, 
k 6,k' D (u)a/! = (u)a-nk/2,/!-nk/2; 

IX, f3 = nk l2 + 1,"', nk • (28) 

All the others vanish. 
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nk 

+ L U:(O£) U v(aPl 
~, v=( nk/2l+ 1 

X ~Llk'(U):_nk!2'V_nk/~k(U)pa + ... J 
after using Eqs. (27) and (28). 

Use of the orthogonality relations Eq. (15) and the 
orthogonality relations existing for two inequivalent 
irreducible representations will bring the last equation 
to the form 

'k ' 2 nk/
2 * 'ki 

P!aP = Ua(aP) - L L U p (oE)P1pE 
nk 0,' p=l 

2 nk/2 
+ U a+n.,(ap) - L L U:+nk,(Of)P~~{ + .... 

nk 0,' p=l 

If we define 

(29) 

2 nk/2 

Cq+l = - L L U;tqn .. (il£lP~~~; q = 0,"', mk - 1, 
nk o,E p=l 

(29') 
Eq. (29) can be written as 

p!~~ = C1Ua(aPl + C 2 U a+nk ,(aPl 

+ ... + C mk U a+(mk-1 )nk,(aP)' 

fJ. For a = nk/2 + 1, ... ,/'lk' after a procedure 
parallel to that performed in oc, Eq. (12) becomes 

P~~~ = C;U a(ap) + C~U a+nk,(aPl 

+ ... + C;,. U a+(mk-1lnko(apl, 
where, by definition, 

q = 0, ... , mk - 1. 

Again, by carrying out similar calculations for the 
antiunitary part, one finds 

C~ = C~. 
The Eckart-Wigner theorem generalized for this case 
is hence 

iki _ 
P a<1P - C1Ua(aPl + C 2U<1+nk,(aPI 

+ ... + C mk U a+(mk-l)nk,("PI 

for a = 1, ... , nk /2 
and 

p!~~ = C 1*U a(apl + Ci'U .. +nk.("pl 

+ ... + C!kUa+(mk-llnk,(ap) 

for a=nk /2+1,···,nk • 

Let us summarize this section by writing the general
ized Eckart-Wigner theorem for all cases: 

(A) Dk is a corepresentation of the first type: 

P~~ = A1Ua(aPl + A 2U a+nko(aPl + ... ; 
(B) Dk is a corepresentation of the second type: 

P!!~ = B1U .. (aPl + B2Ua+nk/2,(aPI + ... , 
a = 1, ... , nk /2, 

piki B*U B*U 
a .. p = - 2 a-nk/2,(aPl + 1 a(ap) 

- Btua+nk/2 ,(a!3l + ... , 
a = nk /2 + 1, ... , nk ; 

(C) Dk is a corepresentation of the third type: 

p~!~ = C1Ua (af3) + C2Ua+nk,(aPl + ... , 
a = 1, ... , nk/2, 

p iki - C*U + C*U + .. . aO'!3 - 1 a(ap) 2 a+nk,(ap) , 

a = nk /2 + 1, ... , nk , 

where Ap, Bp, and Cp are defined in Eqs. (16'), (22'), 
and (29'), respectively. 

It is to be mentioned that the Eckart-Wigner 
theorem is very simple in form when mk = 1. In such 
a case for unitary groups, there exists a simple pro
portionality between matrix elements of the given 
operator, which simplifies very much actual calcu
lations (e.g., the applications of the original theorem). 
When dealing with nonunitary groups, the case is the 
same if the given operator transforms according to a 
corepresentation of the first or the third type. 

If the operator transforms according to a corepre
sentation of the second type, then the matrix element 
is a sum of two terms: 

p!~~ = B 1 U a(a!3l + B2Ua+nk/2,(a!3l, 

and one does not get the simple proportionality 
existing for unitary groups. 

III. CONNECTIONS BETWEEN MATRIX 
ELEMENTS 

Time inversion or an antiunitary operation con
nected with it can, in general, influence the number of 
independent constants necessary to determine matrix 
elements of symmetric operators. 

The investigation of the problem of nonunitary 
groups, with the help of the corepresentation theory, 
as observed in the generalization of the Eckart
Wigner theorem in the previous section, enables us to 
obtain in simple form the connections that arise 
between matrix elements of operators in the presence 
of an antiunitary element. It is worth noting here that 
the bases of corepresentation are built from bases of 
representations, and therefore we can look upon the 
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matrix elements p~:~ as matrix elements calculated for 
functions belonging to bases of representations. 

Substituting D(a) = D(u)D(ao) in Eq. (4) gives 

iki ~ i( j * .... k * iki* P""fJ = £.. D uao)6"D (uao).plr(uao)paP/jPE 
I),P,' 

= 2 2 Di(u)/j,\D\aoh.Di(u):/l 
D,P,' '\,/l,V 

~ Di() Di()* Dk( )* piki* X £.. U /j,\ U €/l U pv /jP€ ' (30) 
~*p,E 

With the help of Eq. (3), Eq. (30) will have the form 

Piki _ ~ DiC ) DiC )* Dk( )* piki* (31) aafJ - £.. ao AIX a o /lP ao Wf AV/l ' 
A,,",,l' 

which gives the desired connections. 
. It is clear that the final form depends on the types of 
the corepresentations i, j, and k. For example, if the 
three corepresentations are of the first type: 

Di(ao) = (Ji, Di(ao) = (Ji, Dk(ao) = (Jk, 

then Eq. (31) has the form 

Piki ~ (Ji (J i*(Jk*pikj* aap = £.. A" /lP va AV/l' 
A,p-,V 

(32) 

As another example, let two of the corepresenta
tions be of the first type and the third of the third type: 

Di(ao) = (Ji; Di(ao) = (Ji; Dk(ao) = e Llk~~»). 
Formula (31) then becomes 

0'=1 .. · nl2 , 'k' 

0', V = 1, ... , nk l2. 

All other possible cases are discussed by Aviran. 7 

IV. EXAMPLES 

A. The Three-Dimensional Rotation Group with 
Time Inversion (0) 

All the corepresentations of this nonunitary group 
are of the first type (see Ref. 2, p. 345), and for this 
reason we shall use here Eq. (32). In this case we 
always have mk = I, and therefore we have p~=~ = 
Al Ua(afJ)' Substituting this in Eq. (32), we obtain 
(remembering that Al is real) 

~ . .* k* * * A1Ua(ap) = £.. (J~a(J~p(JvaAI UvCA./1) 
A,/1,V 

_ ~ i i*flk* * 
- Al £.. (J;,,,(J/lPf'w,Uv(A/l)' 

A.,,u,v 

7 A. Aviran, M.Sc. thesis, Technion - Israel Institute of Techno 1-
ogy, 1967. 

As a result we have the condition imposed on U by 
time inversion: 

(33) 

As an example of using formula (33), let us prove that 
matrix elements of the scalar operator p, which anti
commutes with time inversion, between eigenfunctions 
of a defined angular-momentum state are purely 
imaginary (Ref. 2, p. 346). 

To calculate (1p~ I p I (#) it is necessary to know the 
corresponding U. The connection between U and the 
matrix S used in Ref. 2 is as follows: 

or 

where i, j, and k were replaced by J, J, and 0, 
respectively. 0 and € can have the value ° only, and 
we get 

__ 1_ S(JOIS(JO) - U* U 
2J + 1 JvO JaO - O(v,v) O(a,a) ' 

and UO(M) = ° if {t ¥= v. 
As Sy'~) = 1, we receive 

* 1 UO(vv)UO(vv) = ---. 
2J + 1 

As a result, for the nonvanishing elements of the first 
row of U we get 

eia 
UO(vv) = !' v = -J, ... ,+J. (35) 

(2J + 1) 

We know that upu-1 = p = DO(u)p, DO(u) = 1; 

()p()-l = -p = DO«()p; DOC() = (J0 = -1. 

Substitution of the last expression for UO(vv) and 
(Jgo = -1 in (33) gives 

-ia 
e _ U* - ~ (JJ*(JJ (J0 U 

(2J + l)t - OW,) - f:;, '1',1. pA. 00 O('I'P) 

= -2 (J;:(J;i.UO('I''I') = - 2 «(JJ)l'1'(J;i.Uo(tp'l'l 
tp 'I' 

eia 
t eia 

= - (2J l)!2«(JJ);''I'(J;A = - !' . + 'I' (2J + 1) 

Hence eia = ±i, and therefore 

±i 
U O(vv) = (2J + l)t . 
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TABLE I. Representations of the unitary group Ca •• 

E Ca c: a. a' a" . . 
6 1 1 
6. -I -I -I 

6 3 (~ ~) (~ ~2) (~O ~) (~ ~) e ~) e ~) 
6, (~ ~) (~€ ~) (~2 ~) (~ ~) (0. "Oi) ,,/ ° (0 "i) 

"oi ° 
6. -I 
6. -I 

The generalized Eckart-Wigner theorem in this case 
will have the form 

( J IffiJ ±i ;: 1J'1'1 p 'Vv ) = AlUO(!'v) = Al ! u!'v, 
(2J + 1) 

where Al is real; and this proves that the discussed 
matrix element is purely imaginary. 

B. C31! with Time Inversion 

Let us calculate matrix elements, by considering 
first the corresponding representations and then the 
corresponding corepresentations, and see the effect 
of the antiunitary element on them. 

The representations of the unitary subgroup C3v are 
given in Table r. 

Using the criteria of Ref. 4, we get the corepresenta
tions given in Table II. 

Let us calculate some matrix elements, using the 
representations of C3v : 

ifJ 

U(M x ~s)ut =~: -+ U = (eo _~ifJ)' 
Hence we get 

(fP~1 P~ IfPD = AUl(ll) = AeifJ
, 

(fP~1 ~ IfP~)=AU2(21) = _AeifJ
, 

Where {J is an arbitrary phase and A is a constant (not 
necessarily real). 

-i -i -i 
E = e211'i/3 

Using the corepresentations, we get 

U(D: x Ds)Ut = Dt + D: (for the unitary 
elements), 

£l(D: X Ds)Ut* = Dt + Dt (for the antiunitary 
elements). 

From the unitary part 

o 

o 
o 

As for this case mk = 2, the general form of U is (see 
Appendix and Ref. 3) 

Ci' bl2ei4 0 

b'~") 0 -blle
i6 

U= 
b2le

iO b22ei4 o ' 0 

0 0 -b21eiO b22ei .1. 

en b
12

) is a unitary matrix. where 
b2l b22 

By demanding 

U(D3(()* @ Ds(())Ut* = D4(()* + D4(()*' 

TABLE II. Corepresentations of the unitary subgroup C3 • and (J. 

E C3 
Co 

, 
a" (J a a. a. . 

Dl 1 1 eiq> 
D. 1 -I -I -I ei/J 

D. (~ ~) (~ ~o) (~2 ~) (~ ~) e ~2) e ~) ei~ e;) 

D, (~ ~) (~" ~.,.) (~. ~) (~ ~) e ~i) (0 "i) 
,,2j ° L~i« ~«) 

D. (~ ~) (~I ~I) (~ ~) e 0) ° -i (~ ~i) eO) ° -i (~ ~I) 
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we get 

eifi _ei(tp-fi-~) 0 

U =2-t ( 0 
0 _eifi _ei(tp-fi-~) o ) 

± iei(tp-fi-«) 

± iei~-fi-«) , 
±~eifi 0 

0 =Fieifi 

where f3 is an arbitrary phase, and hence 

(<pil P~ I<pD = 2-l(eifiAI ± ieifiA 2) = 2-l eifi(AI ± iA2), 

( 31 p 41 5) 2-t( ifiA::r:::· ifiA ) <P2 2 <PI = -e I -. Ie· 2 = 
-2-l eifi(AI ± iA2), 

where Al and Az are real constants. 
It might seem that there is no difference between the 

results obtained by the two different methods. How
ever, we must observe that if we calculated the same 
matrix elements in representation theory replacing 
<p~ by <p~, we would again get an arbitrary phase and 
a constant A' without any connection with A. On 
the other hand working with corepresentations, one 
gets 

(<pil p~ l<p~) = -2-tei (tp-fi-a)A
1 

± 2-liei(tp-fi-~)A2 

= 2-tei (tp-fi-a)( -AI ± iA2), 

( 31 n41 5) - 2-l i(tp-fi-a) A ± 2-1. i(tp-fi-~)A <P2 r:i <P2 - - e 1 Ie 2 

- 2-1 i(tp-fi-«)( A ± ·A ) - e - 1 1 2 , 

where the definition <p~ = <p~ was used. Now there is 
a connection between A and A'. We see therefore that 
the use of corepresentations leads to a smaller number 
of independent constants. 

APPENDIX 

In order to use the generalized Eckart-Wigner 
theorem, one has to know the matrix U. Since 
corepresentations are constructed out of representa
tion, Koster's method can be used for finding U. One 
can use relations (7) together with the conditions 
imposed by relations (8). 

If, for example, Dk is a corepresentation of the first 
type and mk = 1, Koster's method gives U with an 
undefined phase factor. Equation (8) turns the phase 
factor ambiguity into a sign ambiguity only. When 
Koster's method gives U to within a certain unitary 
matrix [see Eq. (27) in Ref. 3], Eq. (8) limits the 
number of different possibilities of this matrix. 

The matrix U can be calculated in two ways: 

1. By considering the structure of D(O) and Dk(O) 
it is possible to write equations similar to those 
written by Koster for the representations of unitary 
groups. 

2. After finding U by Koster's method, one writes 
the equation 

UD'(ao)Ut* = mkDk(ao)* + ... 
and finds the U which satisfies it. It is sufficient that U 
satisfies the last equation for Eq. (8) to be satisfied 
because one can always write D(a) = D(u)D(ao) and 
hence 

D' (u)D' (ao) = D' (a) = ut D(a) u* = ut D(u)D(ao)U* 

= UtD(u)UUtD(ao)U*, 

which means that any U satisfying Eq. (8) for the 
element ao will satisfy it for every element a. 
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A self-contained exposition is given of the theory of infinite-component fields with special emphasis on 
fields transforming under the Majorana representations of the Lorentz group, for which the scalar vertex 
function is written down explicitly for particles with arbitrary momenta and spins. The problem of spin 
and statistics for such fields is analyzed. A class of coupled representations of SL(2, C) is studied, con
taining unitary as well as nonunitary representations (including the Dirac 4-component spinors), for 
which invariant first-order equations can be written down for the free field. Most of the results are known 
(either from old or from recent publications), but are presented here in a unified way, their derivation 
sometimes being simplified. Among the few new points we mention: (1) The location of singularities of 
the matrix elements of some infinite-dimensional representations of SL(2, C) for complex values of the 
group parameters. (2) The construction of an infinite-component local Fermi field transforming under a 
unitary representation of SL(2, C). (3) the discussion of the quantization of Majorana fields with a 
proper account of the Fourier components with spacelike momenta. 

1. INTRODUCTION 

A. Problems of Infinite-Component Quantized Fields 

In conventional relativistic quantum field theory, 
in both the axiomatic and Lagrangian approach, it is 
assumed that a unitary representation U(a, A) of the 
covering of the Poincare group 

ISL(2, e) == SL(2, e) . T4 

[A E SL(2, e), i.e., det A = 1; a = (aO, a) E T4] is 
realized in the Hilbert space of states Je and that the 
field operators 1prJ.(x) transform covariantly under 
U(a, A): 

U(a, A) 1p(j.(x) U-1(a, A) = V(A-1)p 1pP(Ax + a). (Ll) 

Here A = A(A) is the proper Lorentz transformation 
defined by 

AavA* = a"A~ or A~ = 1 Tr (a"AavA*); 

fl, Y = 0, 1, 2, 3 (1.2) 

(ao is the 2 X 2 unit matrix, ai' j = 1, 2, 3, are the 
Pauli matrices) and YeA) is a finite-dimensional 
representation of SL(2, e). 

It seems at first glance that this last assumption, 
which asserts that the field has a finite number of 
components (and hence that V is a finite matrix), is 
purely technical and has no important physical idea 
behind it. From a physical point of view the choice of 

• Present address: Institute for Advanced Study, Princeton, N.J. 
On leave of absence from Joint Institute for Nuclear Research, 
Dubna, USSR and from the Physical Institute of the Bulgarian 
Academy of Sciences, Sofia, Bulgaria. 

the representation V which occurs in (1.1) is restricted 
by the existence of discrete symmetries and of co
variant forms (Lagrangian, currents). 

In a TeP-invariant theory we have to introduce, 
together with each field 1p(x), its Hermitian conjugate 
1p*(x). Usually, it is assumed that a nondegenerate 
invariant Hermitian form 

1p*(x) fJ1p(x), fJ = fJ* (1.3) 

can be written down which implies that the repre
sentation V is equivalent to its adjoint: 

V*-l(A) = fJ YeA) fJ-1 , (1.4) 

where V* is defined in some fixed basis by V* = VT 

[i.e., (V*H = V;J. If we assume in addition that a 
space-reflection operation exists in the theory (if a 
parity has to be assigned to the one-particle states), 
then we have to require that YeA) is equivalent to its 
parity conjugate V(A *-1), 

V(A*-l) = SV(A)S-l. (1.5) 

[We mention that in general V(A *) ¥- V*(A) so that 
(1.5) is not a consequence of (1.4).] 

None of these restrictions eliminates the infinite
dimensional representations of SL(2, e). 

A dropping of the requirement of finite dimension
ality of YeA) looks quite attractive from the point of 
view of interpretation of the present-day experimental 
data on elementary-particle resonances. The number 
of resonances, which differ only with respect to spin 
and parity (having the same internal quantum 

2146 
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numbers such as charge, hypercharge, and isospin),is 
so large that it seems more advisable to consider them 
as a part of an infinite multiplet than to ascribe an 
independent field to each. There is of course a different 
and more common possibility, namely, describing all 
hadrons as bound states of a few underlying fields 
(say of the quark fields) just as well as, in the case of 
the hydrogen atom, where one is able to obtain the 
infinity of spectral lines starting essentially with the 
two-component electron field. It seems plausible, 
however, that both descriptions are possible (as 
suggested recently for the case of the nonrelativistic 
hydrogen atom). In that case a free infinite-component 
wave equation for hadrons corresponds to the approxi
mation in which the interaction between quarks 
(giving rise to the spectrum of hadrons) is taken into 
account, while the interaction between hadrons is 
neglected. There is a hope based on some first-order 
calculations of form factors that a perturbation theory 
in terms of infinite-component fields might be more 
practical than the conventional perturbation theory 
of strong interactions. 

It turns out, however, that many important state
ments of relativistic quantum field theory such as 
rep, and spin and statistics theorems and usual cross
ing symmetry crucially depend on the assumption that 
we are using finite-dimensional representations of 
SL(2, e) for the field's transfqrmation law. 

B. Historical Remarks and References 

The development of the idea of infinite muItiplets 
seems to be rather typical in that it is a case of how 
a work of the thirties, completely overlooked in its 
time, is rediscovered step by step, first by mathe
maticians, next by physicists (always independently!). 
Hence we find it instructive to make a brief digression 
into the history of the problem. 

Infinite-component fields were first studied by 
Majorana1 (1932) who introduced the (only) two 
irreducible representations of SL(2, e) for which an 
invariant (linear) first-order differential equation can 
be written. Majorana found the discrete spectrum of 
this equation and realized that it also possesses a 
continuous set of solutions with spacelike momenta. 
This remarkable work of Majorana remained prac
tically unknown until 1966 when Fradkin2 revived it 
(on the suggestion of Amaldi),actuaIIy translating it 
into English and placing it in the context of later 
research. In 1948 GeI'fand and Yaglom3 (see also the 

1 E. Majorana, Nuovo Cimento 9, 335 (1932). 
2 D. M. Fradkin, Am. J. Phys. 34, 314 (1966). 
3 I. M. Gel'fand and A. M. Yaglom, Zh~Eksp. Teor. Fiz.18, 703, 

1096, 11 05 (1948). 

exhaustive reviews in Refs. 4 and 5) rediscovered 
Majorana's results in the more general framework of 
the description of all irreducible representations of 
SL(2, e), but they apparently overlooked the existence 
of the continuous spectrum of solutions corresponding 
to spacelike momenta of the infinite system of wave 
equations. These spacelike solutions have been 
pointed out by Bargmann.6 In Ref. 3 it was first 
observed (though in a different terminology) that the 
connection between spin and statistics is lost for 
infinite-component fields. 

The present-day interest in infinite multiplets arose 
mostly in connection with the search for a relativistic 
generalization of SU(6) (see Refs. 7-11 and further 
references quoted therein). The breakdown of the 
spin and statistics theorem has been reemphasized by 
several authors (see Zumino's contribution in Ref. 9 as 
well as Refs. 12 and 13). It has been argued in partic
ular12 that if a free local field transforms under a 
unitary representation of SL(2, e) then, at least for 
the case of an index-invariant theory (which is 
incompatible with a Dirac-type equation), we are 
forced to use a canonical commutation relation (i.e., 
Bose statistics) both for integer and half-integer spin. 
It was noted in Ref. 14 that one can consider, instead, 
the "big" unitary field as a nonlocal collection of 
conventional finite-component free local fields for 
which, as we know, the spin and statistics theorem is 
guaranteed. Examples of fields satisfying Majorana
type equations which can be consistently quantized 
with anticommutators have been considered in Ref. 15. 
However, the discussion of this problem was not com
plete since the rules of quantization of the space like 

• I. M. Gel'Cand, R. A. Minlos, and Z. Ya. Shapiro, Representa
tions of the Rotation and Lorentz Groups and Their Applications 
(Pergamon Press Ltd., London, 1963) (in Russian: Fizmatgiz, 
Moscow, 1958). 

• M. A. Naimark, Linear Representations of the Lorentz Group 
(Pergamon Press Ltd., London, 1964) (in Russian: Fizmatgiz, 
Moscow, 1958). 

6 V. Bargmann, Math. Rev. 10, 583, 584 (1949). 
7 L. Michel, Proceedings of the Second Coral Gables Conference 

on Symmetry Principles at High Energy (W. H. Freeman and Co., 
San Francisco, 1965), pp. 331-352. 

8 P. Budini and C. Fronsdal, Phys. Rev. Letters 14, 968 (1965). 
• C. Fronsdal and B. Zumino, Proceedings of the Seminar on 

High-Energy Physics and Elementary Particles, Trieste, 1965 (Inter
national Atomic Energy Agency, Vienna, 1965), pp. 657-664 and 
665-678. 

10 C. Fronsdal, P. T. Matthews, V. H. Nguyen, and 1. T. Todorov, 
Lectures at the International School of Theoretical Physics, Yalta, 
1966 (Naukova Dumka, Kiev, 1967). 

11 H. Ruegg, W. Ruhl, and T. S. Santhanam, Helv. Phys. Acta 40, 
9 (1967). 

12 G. Feldman and P. T. Matthews, Ann. Phys. (N.Y.) 40, 19 
(1966); Phys. Rev. 151, 1176 (1966); 154,1241 (1967). 

13 R. F. Streater, Commun. Math. Phys. 5, 88 (1967). 
14 V. H. Nguyen, Bucharest Preprint F.T. 62 (1966); c. Fronsdal, 

Phys. Rev. 156, 1653 (1967); V. D. Dao and V. H. Nguyen, Yad. 
Fiz. 6. 1861 (1967). 

1. E. Abers, I. T. Grodsky, and R. E. Norton, Phys. Rev. 159, 
1222 (1967). 
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components of the field were not given. Infinite 
multiplets have been considered also from different 
points of view.16 

A physical understanding of infinite-component 
fields in terms of composite models has been attempted, 
particularly looking at the example of the nonrela
tivistic hydrogen atomP-20 As stressed by Budini,21 
this example corresponds to a non local (actually 
bilocal) infinite-component field except in the case of 
an infinitely heavy nucleon when all the poles of the 
Green function are going to infinity. 

C. Content of the Present Paper 

The main object of the present paper is the study of 
the peculiar properties of quantized infinite-component 
fields. Most of these properties are illustrated on the 
simplest examples of fields transforming according to 
the Majorana representations of SL(2, C) (but not 
necessarily satisfying the first-order Majorana equa
tions). The general treatment in Sec. 2C however 
applies to both finite- and infinite-component fields. 

Section 2 is devoted to some mathematical pre
liminaries about coupled and self-coupled representa
tions of the Lorentz group. It is shown that the 
self-coupled representations of SL(2, C) are actually 
representations of the to-parameter group of real 
symplectic transformations in four dimension, 
Sp(4, R). The Lie algebra of the two self-coupled 
representations [0, !] and [t, 0] (the Majorana repre
sentations) as well as the canonical basis are described 
in terms of Bose creation and annihilation operators. 
The well-known results about the classification and 
description of the irreducible representations of 
SL(2, C) are summarized in Appendix A. The only 
nonstandard point in Appendix A is the expression 
of different 4-vectors as differential operators in the 
space of function of two complex variables. It is used 
in Sec. 2C in the analysis of pairs of coupled mutually 
adjoint as well as irreducible self-adjoint representa
tions of SL(2, C). The content of Appendix B is also 
related to Sec. 2. The creation and annihilation 
operators are expressed there as linear functions of z, 
t, a/az, and a/ai, where z is a complex variable. In 
this realization the scalar product in the representation 

18 See, e.g., H. Kleinert, Ph.D. thesis, University of Colorado, 
1967, where a complete account of recent work of A. O. Barut and 
the author is given. Nonquantized infinite-component fields are 
considered in A. Biihm, Syracuse University Preprint SU-1206-125, 
1967. 

17 Y. Nambu, Progr. Theoret. Phys. (Kyoto) Suppl. 37 and 38, 
368 (1966); Phys. Rev. 160, 1171 (1967). 

18 C. Fronsdal, Phys. Rev. 156, 1665 (1967). 
It A. O. Barut and H. Kleinert, Phys. Rev. 157, 1180 (1967). 
20 A. O. Barut and H. Kleinert, Phys. Rev. 160, 1149 (1967). 
Jl P. Budini (private communication). See also P. Budini, ICTP 

Trieste Preprints IC/67/18 and IC/67/80 (1967). 

space is defined in terms of an integral over the complex 
z plane. 

In Sec. 3A infinite-component free Bose fields are 
considered satisfying the Klein-Gordon equation and 
transforming under an irreducible unitary representa
tion of SL(2, C). We rederive the result of Ref. 12 
showing that even in the case when the one-particle 
states created by such a field have half-integer spin, 
the field is quantized consistently in terms of local 
canonical commutation (instead of anticommutation) 
relations. In Sec. 3B we construct an example of a 
free Fermi field transforming under any of the (unitary) 
Majorana representations of SL(2, C) and satisfying 
the Klein-Gordon equation, and discuss the reason 
of the breakdown of the axiomatic proof of spin and 
statistics for infinite-component fields. The matrix 
elements of the Majorana representations for finite 
Lorentz transformations are evaluated in Sec. 3C 
and applied in Sec. 3D to first-order calculation for 
the vertex function between two infinite multiplets and 
one scalar field. 

The complete set of solutions of the Majorana 
equation (both for the discrete and for the continuous 
spectrum) is described in a unified way in Sec. 4. 
The canonical quantization of the free Majorana 
field is considered in Sec. 4C. 

In Appendix C the ladder representations of the 
conformal group are described in terms of the same 
two complex variables which are used in Appendix A 
for the realization of an arbitrary representation of 
SL(2, C). It is also shown that the analytic continua
tion of the matrix elements of the ladder representa
tion for complex values of the Lorentz parameters 
has singularities in the same points as the matrix 
elements of the irreducible representations of SL(2, C). 
These are the points corresponding to time reflection. 

2. SELF-COUPLED REPRESENTATIONS OF 
SL(2, C) 

A. Self-Coupled Representations of SL(2, C) as 
Representations of Sp(4, R) 

We use the notation [10, 11] of Ref. 4 for the irre
ducible representations of SL(2, C) (see Appendix A 
where all necessary definitions are reproduced). 
A general (not necessarily irreducible) representation 
of the Lorentz group is denoted by 'T. 

A representation YeA) of SL(2, C) (irreducible or 
not) is called self-coupled if one can write a non
degenerate invariant Hermitian form of the type 
itp*{3UiJl'tp for a field tp transforming according to 
(Ll) (with the given V).22 It is clear that a representa
tion 'T of SL(2, C) is self-coupled if and only if it is 
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contained in the direct product of T with the four
vector representation [0, 2]. 

There exist only two irreducible self-coupled rep
resentations3- 5 : [0, t] and [t,O]. These are exactly 
the Majorana representations (see Refs. 1 and 2). Both 
of them are infinite-dimensional and unitary (see Sec. 
2B and Appendix A). In the representation space X 
of any of them a 4-vector of operators £It can be de
fined which, in addition to the transformation law 

V(A)L!"V-\A) = A-\A)~L", (2.1) 

or in infinitesimal form [writing YeA) = exp {-i X 

1:IL < VSILVWILV}] : 

[S),IL, L"] = i(gILVL), - g),vL!"), (2.2) 

satisfies the commutation relations 

ilL!", L"] = SILV. (2.3) 

Here SILV are the generators of the homogeneous 
Lorentz group and gILV is the metric tensor in Minkow
ski space (goo = _gkk = 1, k = 1,2,3). 

Equations (2.2) and (2.3) coincide with the com
mutation relations of the Lie algebra of the group of 
real symplectic transformations in four dimensions 
Sp(4, R). Indeed, the lowest faithful representation 
of the commutation relations (2.2) and (2.3) is four
dimensional and may be written in terms of the Dirac 
matrices 

L!" ----+ tylL == S4IL, SILV ----+ (i/4)[yIL, yV] == SILV (2.4) 

[(2.2) and (2.3) are simple consequences of the anti
commutation rule 

[yIL, yV]+ = 2gILV (2.5) 

which defines the Dirac matrices]. It is known that 
each of the matrices (2.4) satisfies the condition 

CSabC-1 = _(sab)T, a, b = 0, 1, 2, 3,4, (2.6) 

where the superscript T stands for transposition and 
C is the anti symmetric charge-conjugation matrix 
defined by 

CyILC-1 = _(yIL)T, C-1 = CT = C* = -c. 
For the group elements of Sp(4, R) (2.6) gives 
CVC-l = (V-l)T which implies the conservation of 
the anti symmetric bilinear form ~C'tJ. Furthermore, 
in the Majorana basis (in which all ylL and SILV are 

•• One could be tempted to say that a field is transforming under a 
self-coupled representation of SL(2, C) if a first-order invariant 
equation can be written down for it. This definition, however, is not 
equivalent to the above because one can write invariant first-order 
equations for a lot of irreducible representations (for instance, 
for the four-vector representation [0, 2], one can write the 
equation o"A" = 0), while an invariant Lagrangian of the type C = 
tp*{J(iL"o" - K)tp exists only for the two Majorana representations. 
Such a Lagrangian implies actually the existence of a complete 
irreducible set of invariant first-order equations. 

pure imaginary) all group elements V are real matrices, 
which completes the justification of our terminology. 

Sp( 4, R) is a covering group of the de Sitter 
group SO(3, 2), the two groups having the same Lie 
algebra, defined by the commutation rules: 

[sab, sed] = i(gbesad _ gaeSbd _ gbdsae + gaaSbe), 

(2.7) 
gab being the metric tensor in five dimensions: 

goo=g44=_gkk=1, k=1,2,3, 

gab = 0, for a -:;6 b. (2.8) 

Majorana representations are defined as such 
irreducible representations of the real symplectic 
group Sp(4, R), which are irreducible also with respect 
to its subgroup SL(2, C). 

We mention that (2.3) is just one of the many 
different ways to close the Lie algebra containing in 
addition to the Lorentz generators SILV, a 4-vector 
U. Some other possibilities, which can be relevant 
in the investigation of reducible self-coupled repre
sentations of SL(2, C), have been considered in 
Ref. 23. 

B. Description of Majorana Representations in 
Terms of Creation and Annihilation Operators 

We assume here the Pauli representation of y 
matrices in which yO is diagonal 

yO = (0'0 0), yi = (0 O'j), (2.9) 
o -0'0 -O'j 0 

€) . (0 1) -1 0' € = 10'2 = -1 0 = -€ • 

(2.10) 
To describe the Majorana representations of 

Sp(4, R) we introduce the operators aa and a:, 
ex. = 1, 2, satisfying the Bose-type commutation 
relations 

[aa, ap] = [a:, ap] = 0, 

[aa,ap] = (Ja(J' ex.,{3=1,2. (2.11) 

Define a pair of four-component operator-valued 
spinors q; and tj5: 

(2.12) 

•• L. Castell, Nuovo Cimento 50, 945 (1967). 
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Because of, (2.11) they satisfy the commutation rules 

[q,.'\ <PBJ = oZ:, [<pA, <pBJ = CAB, A, B = 1, ... , 4. 

(2.13) 

The generators of the ladder-type representations of 
Sp(4, R) are given by24 

(2.14) 

where sab are the four-dimensional matrices (2.4). 
It is easily checked [making use of (2.13) and (2.6)J 
that sab fulfill the same commutation relations as sab 

(2.15) 

It is immediately seen that the operators (2.14) are 
Hermitian because of the identity 

(2.16) 

so that the corresponding representation of Sp(4, R) 
is unitary. 

The explicit expressions for the generators sab in 
terms of the creation and annihilation operators a(*) 
read as follows: 

Mi = 1. "" E. Skl- 1.a*O'.a - 2 £.. Jkl - 2 3' 
k,l 

. o· i 1 NJ ;: S J = - (a*O'jE- a* - aEO'ja) 
4 

(
3 i( **) N = 2 a1a2 - a1 a2 , 

N+;: N 1 + iN2 = Haj2 + aD); 
JJ ;: S40 = Ha*a + 1), 

If ;: S4; = t(a*O'jE-1a* + aEO'ja) 

(L3 = -Haiai + a1a2), 

L+ ;: Ll + iL2 = Hai2 - a~». 

(2.17) 

(2.18) 

2. The technique of creation and annihilation operators was first 
applied for the realization of the representations of SU(2) by P. 
Jordan, Z. Physik 94, 531 (1935) (see a modern exposition in L. C. 
Biedenharn, ICTP Trieste Preprint IC/67/52, 1967). For the 
description of unitary representations of the Lorentz group such a 
technique was used in P. A. M. Dirac, Proc. Roy. Soc. (London) 
A180, 1 (1942); 183, 284 (1945). It has been applied in B. Kur
sunoglu [Modern Quantum Theory (W. H. Freeman and Co., San 
Francisco, 1962), p. 257] for the ladder representations of U(2, 2) 
(see Appendix C). In the same form as here [for the description of 
the Majorana representations of SL (2, C)] they have been used in 
P.A.M. Dirac, J. Math. Phys. 4, 901 (1963) and in F. Giirsey, 
Relativity, Groups and Topology, C. De Witt and B. De Witt, Ed. 
(Gordon and Breach Science Pub!', Inc., New York, 1964), and more 
recently in A. O. Barut and H. Kleinert, Phys. Rev. 156, 1546 (1967) 
and C. Itzykson, Commun. Math. Phys. 4. 92 (1967). 

The operators a~ *)(= aa or a:) should not be confused with particle 
creation and annihilation operators. They do not depend on coordi
nates (or momentum) and act only in the space of indices, which in 
our case is infinite-dimensional. To avoid confusion we use different 
notations for the vectors in the auxiliary space X and in the Fock 
space Je of physical states [e.g., 10) E X, 10) E Xl. 

The representation space X may be spanned by 
polynomials of a* acting on an SU(2)-invariant 
vector 10) defined by aa 10) = 0, IX = I, 2. We shall 
use here the Fock variables 

a a: = ~a, a" = -, IX = 1,2 (/0) = 1). (2.19) 
a~a 

In these variables X is a space of entire analytic func
tions f (~1' ~2) with scalar product 

(j, g) = [1 (~: ' ~: ) g(~l' ~2)J . (2.20) 
U!>l U!>2 h=sz=O 

[Another realization of X (corresponding to the 
SchrOdinger picture of quantum mechanics) is given 
in Appendix B. The scalar product in it is defined by 
an integral.] One can introduce in X a canonical 
orthonormal basis of monomials: 

(2.21) 

The generators (2.17) and (2.18) act on this basis in 
the following way: 

M3Is~) = ~ Is~), 

M,JsO ;: (M! ± iM2) IsO 
1 

= [(s =r= O(s ± ~ + 1)Jl!" Is~ ± 1), 

N31s0 = ~ {(S2 - ~2)! Is - 1 0 
2 

- [(s + 1)2 - ~2J!} Is + 10}, 

N± Is~) = ± !. {[(s =r= ')(s =r= ~ - 1)]! Is - 1 ~ ± 1) 
2 

+ [(s ± ~ + 1)(s ± ~ + 2)]1 Is + 1 ~ ± I)}; 

(2.22) 

JJ IsO = (s + t) Is~), 
2/J IsO = _{(S2 - ~2)! Is - 1 ~), 

+ [(s + 1)2 - ~2]! Is + 1 ~)}, 
2L± IsO = ±([(s ± ~ + 1)(s ± ~ + 2)]! Is + H ± 1) 

- [(s =r= n(s =r= ~ - 1)]t Is - 1 ~ ± 1)}. 

(2.23) 

We see from (2.22) that the basis (2.2l) corresponds 
to the reduction of the ladder representation with 
respect to SU(2). The vectors (2.21) have definite spin 
s and spin projection ~: 

The basis with these properties is called canonical 
basis. A consequence of (2.22) and (2.23) is that spin 
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s may be transformed through multiple application of 
the generators into s + n, where n is an integer. 
Hence, starting with s = , = ° we obtain an invariant 
subspace Xo of X which contains vectors with integer 
spin only, and starting with s = , = ! we obtain 
another invariant subspace Xi' containing only half
integer spins. Moreover, it is easily checked that X 
is the direct sum of these two spaces 

(2.25) 

It can be verified that (2.22) is a special case of the 
general formulas (AI3) and (A7) (see Appendix A) 
corresponding to loll = 0, I~ + Ii = t, so we see that 
our representation splits into the two Majorana 
representations ([0, t] acting in Xo and [t, 0] acting in 
Xi). This can also be seen by the calculation of the 
Casimir operators. In general, the Casimir operators 
of the Lorentz group are connected with the numbers 
10 and II by 

M2 - N2 = l~ + Ii - 1, iMN = loll (2.26) 

(see Appendix A). On the other hand, a direct calcu
lation using (2.17) gives for the ladder representation 

MN=O, 

M2 = a*a (a*a + 1) 
22' 

(2.27) 

implying M2 - N2 = -1. So we again find the 
solutions [10 = 0, II = ±t] and [/0 = ±!, II = 0]. 
[We remark that the equivalence relation [10' ttl ,....., 
[-/0' -Ill holds for any two irreducible representa
tions of SL(2, C) (cf. Appendix A), so that equivalent 
representations are contained in each of the above 
brackets.] 

We mention finally that the Lorentz scalar D'L/l is 
also a constant in the ladder representation of Sp(4, R) 

IfL/l == (LO)2 - e 
= H(a*a + 1)2 - (a*a + 1)2 - 2} = -to 

C. Pairs of Coupled Adjoint Representations and 
Irreducible Self-adjoint Representations of SL(2, C) 

The Majorana representations studied in the pre
vious section are of a very special type. We would like 
to consider here a wider class of admissible representa
tions (in accordance with the general principles stated 
in Sec. IB) which includes, among other things, the 
currently used finite-component tensor fields and the 

4-component Dirac field as well as some infinite
component fields. 

We shall restrict ourselves to the simplest case when 
the representation YeA) is either irreducible or a 
direct sum of two irreducible representations of 
SL(2, C). Of course, much more complicated reduc
ible representations of SL(2, C) might be of interest 
as well, for instance representations of some higher 
group in whose decomposition with respect to SL(2, C) 
a direct integral of irreducible representations is 
involved. One such example [namely, the ladder 
representations of U(2, 2)] is considered in Appen
dix C. 

We start with the case of a single irreducible repre
sentation [10' II] satisfying conditions (1.4) and (1.5) 
of Sec. 1. 

Assumption (1.4), i.e., the assumption of existence 
of a nondegenerate invariant Hermitian form, leads to 

(2.28) 

i.e., either II = -4 (/1 pure imaginary), or 10 = 0, 
11 = i1 (It real) (see Ref. 4 part II). As it should be, all 
unitary representations [corresponding to positive
definite p] as well as all finite-dimensional tensor 
representations [0, n] (n = 1, 2, ... ) are included in 
this class which contains moreover a family of 
infinite-dimensional real nonunitary representations 
[0, Id with 11 > 1 (/1 noninteger). 

The assumption of self-adjointness [(1.5)] necessary 
in any theory allowing space reflection [or, alter
natively, in any CP-invariant theory of a field, 
transforming under a real representation of SL(2, C)], 
gives4 

[/0,/1] = ±[/o, -11]' or loll = 0. (2.29) 

Conditions (2.28) and (2.29) are fulfilled simultane
ously in two cases 

11 = 0, 10 arbitrary, or 11 = ±i1, 10 = 0. 

(2.30) 

If we require in addition the reality of the repre
sentation YeA) [in other words the existence of a basis 
in which all matrix elements of YeA) are real; in such 
a basis one can introduce an invariant notion of 
Hermitian conjugation] we have to restrict ourselves 
to integer 10 in the first case. 

Further we proceed to the case of a reducible 
representation of the type 

[10' Id ED [l~, In· (2.31) 

We shall be interested in the case when the irreducible 
parts of (2.31) do not fulfil separately (2.30) so that 
they have to be conjugate to each other. In that case 
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(1.4) gives 

[l~, In = ±[lo, -id (2.32) 

(see Ref. 4, part II Sec. 2.9), while (1.5) leads to 

(2.33) 

(see Ref. 4 part II Sec. 2.6). Conditions (2.32) and 
(2.33) can be fulfilled simultaneously in two cases 

11 = il (i.e., 11 real) 10 arbitrary, } 
(2.34) 

11 = -it (i.e., 11 pure imaginary), 10 = 0 . 

If we impose in addition the requirement that the 
two representations are coupled, i.e., that (AI7) (see 
below, Appendix A) takes place, then we find the 
following sets of admissible pairs: 

[t, 'I] + [-!, 11], 11 real, (2.35) 

[/0' t] + [/0' -!], 10 = 0, t, 1, .. '. (2.36) 

Expressions (2.35) and (2.36) define the simplest repre
sentations appropriate to describe fields satisfying 
first-order equations in a theory of parity-conserving 
interactions. The Dirac field is contained in the class 
(2.35) for It = ±t. The Majorana fields are also 
included in (2.35) and (2.36), being the only admissible 
pairs of equivalent representations and the only 
unitary representations of this class. Actually, they 
represent the intersection of (2.35) and (2.36) with 
(2.30). The infinite-dimensional nonunitary repre
sentations used recently in25 are included in (2.36) for 
10 half-integer. 

Using the results of Appendix A, one can construct 
free field Lagrangians for fields transforming under 
(2.35) and (2.36) leading to first-order equations 

(2.37) 

where tp and rll have different meaning in the two 
cases. For tp transforming under (2.35) we write 

gllllza E~) 
Il oz 

, 
o 

(2.38) 

where CP1 and Xl transform under [t,/d and [-t, II], 
respectively, and the continuous spin or-variable 
z = (ZI' Z2) substitutes the index of the field com
ponents (see Appendix A). For tp transforming under 

25 C. Fronsdal and R. White, Phys. Rev. 163, 1835 (1967). 

(2.36) we have26 

"P2 = (CP2(X; Z»), 
X2(X; z) 

r ll _ ( 0::l::l (1101 + Dgllllzallz) 
2 - _ 1 ~a ~ 0 ' 

1/01 + ! oz Il oz 
(2.39) 

where CP2 and X2 transform according to [/0' t] and 
[/0' - t], respectively. The matrix fJ in both cases has 
the form 

(2.40) 

/ being the unit operator in the corresponding space. 
The generators of each of the reducible representa
tions (2.35) and (2.36) are given by 

N' = - za· - + - a·z . i ( 0 0 ) (1 
2 ' oz oz' 0 

(2.41) 

[see (AI2)]. We mention that because the representa
tions for cP and X are adjoint, the corresponding 
matrix elements of Mi and Ni in the canonical basis 
are related by 

(~')Mi(CP~'') = C~)MiC~)' 
(~,,) Ni (CP~'') = - (:.) N i C~). (2.42) 

We introduce for each of the cases (2.35) and (2.36) a 
parity operator by 

CO' (I) = (0 ViIs») ex = 1 2 (2.43) 
«s ViI.) 0' , , 

where the operators V1,2 are given by (AI9)-(A22). 
Using the results of Appendix A we see that r~ 
behave like vectors under the corresponding reflection 
CO'«: 

CO'«(IsW~'U;V.) = gllllr:, ex = 1,2, (2.44) 

whereas the quantities obtained from r; by changing 
the relative sign of the nonvanishing (off-diagonal) 
elements are axial vectors. It is easily seen that the 
form tp*fJ"P is a scalar, while tp*a2 @ /tp is a pseudo
scalar. 

•• The expressions for r~ are simpler in a basis in which A!ol, in 
(A7) is replaced by rns + 1 - I,){r(s + 1 + I,»)t; in such a basis 
the factors 1101 + ! in (2.39) do not appear. (The basis used in the 
paper has the advantage to be defined also for the finite-dimensional 
representations.) 
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There is only one common pair of representations 
of the two classes (2.35) and (2.36), namely the pair 

[t, t] E8 [-t, t] '"" [t, t] E8 [t, -t] (2.45) 

considered in Ref. 25. 

3. LOCAL FIELDS WITH AN INFINITELY 
DEGENERATE MASS LEVEL 

A. Quantization of an Irreducible Free Bose Field 

It is well known that while the quantization of a free 
scalar field is obtained by a straightforward applica
tion of the canonical Lagrangian formalism, the theory 
of the higher-rank tensor fields is much more subtle, 
because of the necessity of introducing supplementary 
conditions.27 We shall show here that the quantization 
of a (free) field, transforming under a real unitary 
representation of SL(2, C) is just as straightforward 
"and simple as the quantization of a scalar field (which 
is, by the way, the only finite-component field trans
forming under an unitary representation of the 
Lorentz group). 

Let V(A) be an irreducible unitary representation 
of SL(2, C) acting in the Hilbert space X. A field 
fP(x;f) is defined as an operator-valued distribution 
in x depending linearly on the vectol IE X (and 
weakly continuous with respect to I). Choosing for I 
a vector lin) of the canonical basis we obtain, in 
particular, the field component fPlq(X) == rp(x; In). 

A free complex field rp of mass m will be defined by 
the Lagrangian 

C(x) = :iY'rp*(x)ollrp(x): _m2 :rp*(x)rp(x):, (3.1) 

where: : stands for the normal product and 

rp*(xirp(y) = ! rpiq(X)rp,q(y) 
Iq 

is invariant with respect to pure index transformations. 
The variational principle with Lagrangian (3.1) leads 
to the Klein-Gordon equation for each component 
of the field. Its solution can be decomposed in a sum 
of nonlocal fields of definite spin: 

1 
rp(x) = [2(27T)3]! 

where 

X Lo=w .~o ,~}a.,(p)e-i1>'" + b~(p)ei1>"'] 
d3p 

X u.,(p) 0 ' (3.2) 
p 

w = w(p) = (m2 + p2)! (3.3) 

.7 The formulation of the theory of particles with arbitrary spin 
given in S. Weinberg [phys. Rev. 133, 81318 (1964)]. though con
venient in a number of cases seems not to be completely satisfactory, 
e.g., when a minimal electromagnetic interaction for such particles 
has to be considered. 

and u.,(p) = {u~~(p)}isan infinite-component "spinor" 
corresponding to spin s and spin projection ,. Let 
W be the Pauli-Lubanski-Bargmann 4-vector 

(3.4) 

(E is the completely anti symmetric unit tensor, 
E0l23 = 1.) The physical spin operator for a particle 
of mass m and momentum p is given by 

1 { WOPi } Sj=- wj +---. 
m w+m 

(3.5) 

In terms of S, the "spinor" u.,(p) is defined by the 
equations 

S2U~(P) = s(s + l)u~(P), S3U.,(P) = 'u.,(p) (3.6) 

and the normalization condition 

u~(O) = Is0. 
(We have suppressed here for brevity the label [10' It] 
of the representation under consideration which is 
kept fixed). u~2(p) is given by the matrix elements 
of the so-called "boost" transformation (cf. Ref. 27). 
Let B1> be the positive-definite two-by-two matrix 
corresponding according to (1.2) to the pure Lorentz 
transformation A1> defined by A1>(m, 0) = p. We have 

pO + m + pia. 
B1> = [2m(pO + m)l ' (3.7) 

and 
Si = V(B1»M;V-l(Bf»' 

so that the normalized solution of (3.6) is given by 

u~(p) = V(Bf» Is'), 
or in components 

(3.8) 

u~e(p) = (In I V(Bf» Is0 = V(Bf»~2. (3.9) 

Because of the unitarity of V the spinors (3.9) are 
orthonormalized for all p: 

C<ll--

(u~(p), u •. ,.(p» =! ! u!2(p)u!',.(p) = 15 ••. 15" .. 
1=10 q=-I 

(3.10) 

Proceeding to the quantization of rp(x) we mention 
that the energy-momentum operator corresponding to 
the Lagrangian (3.1) is 

pil = r {: ~ Ollrp: + :OllfP* ~ : _ gOIlC}d3x 
) ",o=t o(oorp) o(oorp*) 

= ! :a~(p)a.,(p) + bip)b.t(p): pll-! i d3 

~ ~w P 
(3.11) 

[to obtain the expression in the right-hand side we 
have made use of (3.10)]. The energy is positive if we 
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require the canonical commutation relations 

[as~(p), a:'~.(q)] = [bs~(p), b:.~,(q)] 
= w(p)t5ss,t5~~,t5(p - q), (3.12) 

all other commutators vanishing identicaIly. 
The same result could be obtained without reference 

to the positiveness of the energy if we had postulated 
that a and a*, and band b* satisfy either commuta
tion or anticommutation relations of the type (3.12) 
and that qJ(x) and qJ*(y) are local (cf. Refs. 12 and 
27). To do this we should use once more (3.9) to 
obtain the completeness relation 

00 s __ 

I 1 u!Z(p)u!~q'(p) = t5 11 ,t5qq" (3.13) 
8=10 ~=-8 

which implies the local commutation relations 

1 
[qJ(x;f), qJ(Y; g)*] = (g,f) -:- Dm(x - y) (3.14) 

I 

(Dm is the Pauli-Jordan function). Thus we are led 
to canonical commutation (rather than anticommuta
tion) relations independently of the value of 10 , i.e., 
independently of whether the spin is integer or half
integer. 

B. Local Fermi Fields Transforming under the 
Majorana Representations 

The discussion in Sec. 3A may give the wrong 
impression that the unitarity of the representation of 
the index group implies by itself Bose statistics for the 
corresponding (local) field (see Ref. 12). We show 
that this is not true by constructing an explicit example 
of a free local Fermi field, transforming under any of 
the Majorana representations. 

To do this we define the field 1p by a decomposition 
of the type (3.2): 

1 00 

'/I(x) - '" (s + 1)t 
T - [2(21r)3]! 8=Z0 2 

r 8 . • ~ 
x JpO=w '~8 [a 8,(p)e-'PX + b:_,(p)e"'X]u8,(p) P;' 

(3.15) 

and assume that the operators a<*) and b<*) satisfy 
canonical anticommutation relations instead of (3.12). 
It is clear that the presence of any s-dependent factor 
[instead of (s + t)!] in (3.15) does not affect the 
Poincare invariance of the theory. With our particular 
choice of this factor we obtain the following local 
anticommutation relations for the field: 

[1p(X), 1p(y)]+ = 0, 

1 (] 
[1p(x), 1p*(y)]+ = - LI';- Dm(x - y), (3.16) 

m uXI' 

LI' being the Majorana matrices (2.23). To check the 
second formula (3.16) one has to use (3.8) and the 
identity 

00 8 

1 1 (s + t)V(Bp) Iss)(ssl V(Bp)* 
8=10,=-8 

= V(B;)LoV(Bp)* = 1. Ll'pl'. 
m 

The Hamiltonian corresponding to the field (3.15) is 
positive 

H = pO = 1 f(a~(p)as'(p) + b~(p)bs~(p)d3p. 
s~ 

Thus, we have examples of a local Fermi field which 
exhibits the right connection between spin and statis
tics for the representation [t,O] and violates this 
connection for the representation [0, H 

From the examples of this and the previous sub
sections we see that the type of statistics for local 
infinite-component fields is not determined by the 
spin content of the field. To see the reason why the 
axiomatic proof of the spin and statistics theorem28 is 
not valid for infinite-component fields we recall one 
of the main steps in this proof. Due to spectrum 
conditions and locality the two-point function 

can be continued analyticaIly in the extended tube 

'(; = {z E C4 i Z2 ¥= b ~ O} 

(this is a consequence of the Bogoliubov-Vladimirov 
theorem29

). Moreover, in the case of finite-component 
fields it is proved that F"pCz) is covariant under the 
proper complex Lorentz transformations. In partic
ular, for the proper complex transformation A = 
-I, one obtains 

(3.17) 

We observe that for all known examples of local 
infinite-component fields the two-point function 
F"pCz) is also covariant under complex Lorentz 
transformations [though V~(A) may have singularities 
for some complex A as we shaIl see in Sec. 3C]. 
Equation (3.17), however, is not automatic for infinite
component fields. We have seen, in particular, that for 

28 See for instance, R. F. Streater and A. S. Wightman, peT, 
Spin and Statistics and All That (W. A. Benjamin Inc., New York, 
1964) or R. Jost, The General Theory of Quantized Fields (American 
Mathematical Society, Providence, R.I., 1965). 

2' N. N. Bogoliubov and V. S. Vladimirov, Nauchn. Ook!. Vyschei 
Shkoly No.3, 26 (1958); No.2, 179 (1959). A generalization of this 
theorem to functions of several vectors is given in J. Bros, H. Epstein, 
and V. Glaser, Commun. Math. Phys. 6, 77 (1967). 
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a field transforming according to any of the Majorana 
representations, examples exist of free field theories 
with both even and odd two-point functions. It is 
exactly at this point where the general proof of the 
spin and statistics theorem (as well as the proof of 
rep) does not work in a theory involving infinite
component fields. We remark also that all examples of 
local fields satisfying spectrum conditions and having 
the wrong connection between spin and statistics 
correspond to infinite mass degeneracy with respect to 
spin. It is worthwhile mentioning that for the case of 
no mass degeneracy of the one-particle states 
Epstein30 has proved rep invariance of the S-matrix 
in a theory of local observables without any assump
tion about finite-componentness of the underlying 
field (if any). 

C. Matrix Elements of Majorana Representations 
for Finite Lorentz Transformations 

We have seen that the spinors usr, appearing in the 
canonical decomposition (3.2) [or (3.15)] of an 
infinite-component field are expressed in terms of the 
matrix elements of some special Lorentz transforma
tions [see (3.9)]. Matrix elements of more general 
Lorentz transformations are involved in first-order 
calculation of the vertex function (see subsection 3.4). 
General formulas for the matrix elements of V(A) in 
the canonical basis have been given in Refs. 31 and 
32. We reproduce them here for the special case of the 
Majorana representations for which they are con
siderably simplified. 

First of all we remark that the calculation of V(A);~ 
for an arbitrary A of SL(2, e) is reduced to the 
calculation of these matrix elements for the special 
Lorentz transformation along the z axis corresponding 
to the positive-definite diagonal 2 x 2 matrix 

(
eA./2 

DA.= o 
(3.18) 

Indeed, every matrix A of SL(2, e) can be represented 
in the form 

(3.19) 

where 
2 cosh A = Tr AA*, 

and U1 , U2 E SU(2) (see, e.g., Ref. 5 Sec. 11.5). 
Using the fact that the representation of SU(2) con
tained in a given representation of SL(2, e) is reduced 

30 H. Epstein, J. Math. Phys. 8, 750 (1967). 
31 S. Strom, Lectures in Theoretical Physics (The Univ. of Colo

rado Press, Boulder, Colorado, 1964), Vol. VIlA, p. 70-78. 
32 V. D. Dao and V. H. Nguyen, Ann. Inst. H. Poincare 6, 17 

(1967). 

in the canonical basis and that V(DA.) is diagonal with 
respect to the pair of indices 'YJ~ we obtain 

r 

V(A)!~ = ! D(Ul)~~!V(DA.)!fD(U2)f~l, 
r,'=-r 

r = min (l, s), (3.20) 

where D(UYs) is the well-known representation of 
SU(2) (for the explicit expression of D(s) see for 
instance Ref. 33). 

We sketch the derivation of the explicit expression 
of V(DA.)~~ for the Majorana representations. 

We use the realization (2.21) of the canonical basis 
in terms of the variables ;1, ;2 and look for the 
function 

(3.21) 

Differentiation with respect to A together with (2.17) 
leads to the following partial differential equation 
for F: 

The solution of (3.22) satisfying the initial condition 

Fsr,(O; ;) = [(s + O! (s - OW!;~+r,;~-r" (3.23) 

is given by 
1 

FsP; ;) = [(s + ~)! (s - ') !]~ 

x s~ll (tanh ~)k (COSh ~)2(k-S)-1 
k=ok! 2 2 

;~+H ;~-H 
X --~----- -~~----

(s + , - k)! (s - , - k)! 

x exp { -;1;2 tanh ~}. (3.24) 

As it should be, for fixed real A, Fsr, is an entire analytic 
function of;. Now, the matrix elements of V(DA.) are 
obtained by using the orthonormality of the basis 
(2.21): 

V(D )l~ - (l IF) - o~[(s - IW! (l + IW!]! 
A. sr, - 'YJ sr, - r, (s + IW! (l-IW! 

x (-tanh !A)t-s p(l-s,2IW (_1_) (3.25) 
(cosh !A)21r,I+l s-Ir,1 cosh A. 

where p~a,P)(x) are the Jacobi polynomials 

3. H. Joos, Fortschr, Physik 10, 65 (1962). 
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From (3.9) and (3.25) we find the projection operator 
II .(p) to a given spin sand p = (0, 0, IpD: 

lls(O, 0, IpD:'~' 
• 

= 1 u!,(O, 0, IpDu!{(O, 0, Ipl) ,=-. 
= b~, (S - I1JD![(I + 11J1)! (I' + 11JI)!J! 

~ (S + 11J1)! (I - 11J1)! (I' - 11J1)! 
(2m)21~I+l( _lpI)IH'-2S 

x -'-----<---'-~~-
(pO + m)I+I'+2I~I+l-28 

X p(I-.,21~1l (m) p(j'-.,21~1) (m) (3.26) 
'-I~I ° '-I~I ° . P P 

Actually, (3.26) gives ll.(p) for any p if 1J and 1J' 
correspond to given helicity (rather than to the third 
projection of the spin). The helicity basis h,,(p) is 
defined by 

• 
h.,(p) = L D~~)(U) IS1j), 

~=-. 

where U is the 2 x 2 unitary matrix defined by 

Bp = U*DpU, 
with 

D _ 1 (pO + m + Ipi 
p - [2m(pO + m)]! ° 

If we put 

pO = m cosh A., p = m sinh A. • n, 

n1 + in2 = sin Oei'P, n3 = cos 0, 

then Dp = DA and 

( 

0 
cos-

U = U(O, cp) = 2 
. 0 im -sm- e T 

2 

From the definition of V(DA) we have for any 
unitary representation 

V(D,,)!~ = V(D_,,):t. (3.27) 

In the Majorana representation, for our choice of the 
basis, the matrix elements of V(D_ .. ) are real so that 
the bar in (3.27) can be dropped. 

It is interesting to mention that the expressions 
(3.25) for the matrix elements of V(D .. ) can be con
tinued analytically for complex values of A. and have 
pole-type singularities at A. = hr(2n + 1), n = 0, 
± 1, . .. (these are the points corresponding to the 
reflection of the axes XO and r). This is not a pecu
liarity of the Majoranarepresentationsonly. It is shown 
in Appendix C, that a pole-type singularity appears at 

the same point for some reducible unitary representa
tions of SL(2, C). 

D. First-Order Calculation for the Vertex Function 

We shall consider here as an example the vertex 
function corresponding to the local interaction 
Lagrangian 

C1(x) = g :cp*(x)cp(x)A(x):, (3.28) 

where cp is either the Bose field (3.2) or the Fermi 
field (3.15) and A is a Hermitian scalar field. In first 
order with respect to g the vertex function 

(01 a.",(p>[J Cix) d4x, A(p - q)]a.t(q) 10) 

is proportional to the scalar product 

(u.",(p), u.,( q» = L u!",(p)u!,( q). (3.29) 
IC 

We shall evaluate (3.29) for the Majorana representa
tions using (3.9) and (3.25). 

We first remark that because of the unitarity of V 
we have 

-1 .'C' () (u.'c.(p), u.c(q» = V(Bp Bq).c ' 3.30 

where Bp is given by (3.7) and B(;,\,p) = B(po,_p), so 
that the problem of evaluation of (3.29) is reduced to 
the calculation of a matrix element of V. Choosing the 
z axis along p and the y axis orthogonal to q we can 
write 

p = m(cosh lX, 0, 0, sinh lX), 

q = m(cosh p, sinh p sin cp, 0, sinh p cos cp). (3.31) 

We calculate B;1Bq in terms of lX, p, and cp: 

A == B;1Bq = cosh ~ cosh f!. - sinh ~ sinh f!. cos cp 
2 2 2 2 

+ cosh ~ sinh f!. sin cpa1 - i sinh ~ sinh f!. sin CPa2 
2 2 2 2 

+ (COSh ~ sinh f!. cos cp - cosh f!. sinh ~) a3 • 
2 2 2 2 

(3.32) 
Introducing the (real) parameter A. by 

cosh A. = cosh lX cosh P - sinh lX sinh p cos cp = ~ pq, 
m 

we can decompose A in the form 

A = U1 D"U:, 

where D" is given by (3.18) and 

_ (cos to, - sin to i) 
U,- , 

sin it} i cos iO i 

(3.33) 

(3.34) 

j = 1, 2. (3.35) 
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The angles ()j are expressed in terms of ot, (3, and q; by 

tan ()1 - ()2 = sinh tot sinh t(3 sin q; 
2 cosh tot cosh t(3 - sinh tot sinh t(3 cos q; 

Ip x ql 
(pO + m)(qO + m) _ pq' 

()1 + ()2 cosh tot sinh t(3 sin q; tan --- = ----~~-.:..:...-~~=-.!.----
2 cosh tot sinh t(3 cos q; - sinh tot cosh t(3 

= __ --!.!Ip'---x~q!.._I __ 
pq _ (po _ m)( qO + m) , 

(3.36) 

wherep x qisthevectorproductofpandq: (p x q)j = 
Ejk1hPI' We mention that for our choice of the 
coordinate system in the three-dimensional space the 
matrix A as well as the matrices Uj and D;. in (3.34) 
are real. 

Now, for the evaluation of (3.30) it is sufficient to 
apply (3.20) to the matrix (3.34). The matrix elements 
of V(D;.) for the Majorana representations are given 
by (3.25) while the D(U)~~) for a real orthogonal U 
is expressed by33 

D( cos t() sin t())(S) = [(S + n! (s - n!Jl 
-sin to cos t() ~~ (s + 1])! (s - 1])! 

x (cos t()Y;+Q(sin t()HP~~~'~+~)( cos (). (3.37) 

In particular, for s = 0 and t we have34 : 

(3.38) 

x ([2m2 - tt + m(pO + qO)]O'o - ip x qO'h-~.i-~' 

(3.39) 

If Formula (3.38) coincides with the result of Ref. 25, see also 
A. O. Barut and H. Kleinert [phys. Rev. Letters 18, 754 (1967)], 
where the scalar product (UI.(O), u,,(O, Olql» is calculated for all 
unitary representations of SL(2, C) of the type [t, ia]. We mention 
that our formulas ~re valid for (P,/~("', p,.C(q» for any '( -s ~ 
, ~ s) and for arbItrary (not necessarily collinear) 3-momenta p 
and q. We remark that the matrix multiplying the invariant form 
factor [4m'/4m' - 1]1 coincides with the scalar product of two 
positive-energy Dirac spinors u~(P)uC(q) == u;(P)yOuC(q). 

4. QUANTIZATION OF MAJORANA FIELDS 

A. Introductory Remarks 

The only examples of fields transforming under an 
irreducible unitary representation of SL(2, C), which 
can be quantized in terms of anticommutators without 
getting into contradiction with locality are the two 
Majorana fields. Each of them is defined as a field 
transforming under .one of the irreducible self-coupled 
representations and satisfying the Majorana equation 

(io,.!!' - K}lp(X) = 0, (4.1) 

which corresponds to the free-field Lagrangian 

C(x) = tp*(x)(io,.li - K)tp(X). (4.2) 

We shall see in the next subsection that the Major
ana equation has a discrete spectrum of timelike 
solutions with masses decreasing with the spin and a 
continuous spectrum of solutions with spacelike 
momenta. These unrealistic features of the spectrum 
are not peculiarities of the Majorana equation only, 
but have a rather general character.35 

The quantization of the Majorana field will be 
performed in Sec. 4C. We shall see that the Majorana 
field can be regarded as a superposition of annihilation 
operators only and can be quantized by both com
mutators and anticommutators without being in 
contradiction with the locality of the field. 

B. Complete Set of Solutions of the Majorana 
Equation 

We first review the classical solutions of the 
Majorana equation in momentum space 

(lip,. - K)U(p) = O. (4.3) 

We consider (4.3) as an eigenvalue problem for the 
energy pO for fixed p. We mention that the operator 

is Hermitian with respect to the scalar product 

(U, V)H = (u, LOv), (4.5) 

where (u, v) is the (positive-definite) scalar product in 
the space X, where the unitary Majorana representa
tion acts. We recall that LO is a positive operator 
because of (2.23) and hence it has a positive inverse. 
It follows that the eigenvectors of H [or otherwise the 
solutions of (4.3)] corresponding to different eigen
values of pO are orthogonal with respect to the product 
(4.5). 

36 W. Riihl, Commun. Math. Phys. 6, 312 (1967). 
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The simplest way to obtain the spectrum of Eq. 
(4.3) is to multiply both sides by D'p" + K and to use 

(4.6) 

where w is the Pauli-Lubanski-Bargmann 4-vector 
(3.4). [One way to check (4.6) is to use the explicit 
expressions (2.17) and (2.18) of D' and S"V in terms of 
creation and annihilation operators.] Substituting 
(4.6) in the equation thus obtained we find 

It is sufficient to consider the case when the momen
tum p is directed along the third axis, the general case 
being obtained from this through a three-dimensional 
rotation. 

We treat the discrete and the continuous spectrum 
simultaneously diagonalizing the Hamiltonian (4.4) 
for a fixed Ipi ":/= 0; we put 

p = 2 ~ (fJ, 0, 0, 1). (4.13) 

(4.7) Substituting (2.18), (2.19), and (4.13) in (4.3) we 
obtain 

We have to consider essentially two different cases 
depending on the eigenvalue of pO: the case of timelike 
and the case of spacelike momentum p. The inter
mediate case of lightlike momentum can be obtained 
by going to the limit from either side. 

In the case of timelike momenta, where p2 > 0, the 
little group generated by w" is SU(2) and 

(4.8) 

with 

s= {
O, 1, ... , for [10, 11] = [0, l], 
l, t, ... , for [10,1 1] = fl,O]. 

(4.9) 

This immediately leads to the decreasing mass 
spectrum (for K > 0): 

2 
2 K 

P = (s + W (4.10) 

Because of the positive-definiteness of LO only positive 
eigenvalues of pO appear in this case. It follows in 
particular that His semibounded (from above): 

(4.11) 

For p spacelike, the little group conserving p is 
SU(l, 1) ,...., SL(2, R) and we have the same formula 
(4.8) for w2 , but with s in the range 

s = -l + i ~, - 00 < (] < 00. 
2 

(4.12) 

These are exactly the values of s involved in the 
Sommerfeld-Watson integral in Regge theory of 
complex angular momentum. 

The limiting cases s ---+ 00 «(] ---+ r:fJ) correspond to 
solutions with lightlike momenta. 

Proceeding to the determination of the eigenvectors, 
we shall discuss here only the case K > ° in terms of 
the variables ;" (2.19). Both this case and the case 
K = ° are treated in terms of "Schrodinger variables" 
z and z in Appendix B. 

[a;~;;2 + ;1;2 + fJ(;" a~a + 1) - A] 

X up (0, 0, ~ ;;) = o. (4.14) 

To get rid of the degeneracy we require, in addition, 
that up be an eigenvector of the third spin component 

up = up" [H;l a~l - ;2 a~J -']up, = o. (4.15) 

Further, we make the change of variables 

;1 = (lY)i-ei(q>/2), ;2 = (lY)!e-;(q>/2), (4.16) 

and putting 

up, (0,0, 2 ~ ; ;) = jPI'I(A, y)ei,q>, (4.17) 

we find the following equation for jPI'I: 

{2~(Y~) + lY - 2r + fJ(2Y~ + 1) - A} 
dy dy y dy 

x jpi'I(A, y) = o. (4.18) 

The solution of (4.18), regular for y = 0, is 

jPI'I(A, y) = C;,pi'lyl'i exp {U<fJ2 
- I)! - Ply} 

X <D (l + I" - /' ! ' 2(fJ - 1) 

1 + 21'1, _(P2 -l)!Y), (4.19) 

where <D(a, e, z) is the confluent hypergeometric 
function defined by the Kummer series 

a z a(a + 1) Z2 
<D(a, e, z) = 1 + - - + - + . .. (4.20) 

e 1! e(e + 1) 2! 

and C;'IlI'1 is a normalization constant. 
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The discrete timelike solutions are obtained from 
(4.19) for 

[ 
,12 J! 

f3 = f3s = 1 + (2s + 1)2 ' 

i.e., 

(f32 _ 1)!- = _,1_. 
s 2s + 1 

(4.21) 

We find 

fsl~I(A, y) = C Asl~lyl'l exp {H2S ~ 1 - f3s) y} 

X <1>(1'1 - s, 1 + 21'1, - ~) 
2s + 1 

_ (s - 1m! (21m! c I~I 
- (s + 1m! Asl'IY 

X exp {l(_A - f3 )Y} 
2 2s + 1 s 

X L 21'1 (-~) (4.22) 
s-I~I 2s + 1 ' 

where L~(x) are the Laguerre polynomials (B9). 

(s + O! (s - ')! (l + 1])! (l-1])!]-!-u;~(p) 

Requiring the normalization 

(us~(p), LOus"'(p» = ws: t5ss,t5,~, 
ms 

(4.23) 

with 

m =_K_ ws=(m~+p2)!(=f3s~), (4.24) 
S s+t' IL 

we obtain for the constants C 

1 [(S + Im!J!-(2S + I)S-I~1 1 
CAsl~1 = ~2 (s -1m! -,1- (21m! 

X 1 . (4.25) 
(1 + {I + [(2s + l)A-l]2}!)'+!-

With this normalization 

us,(O) = lim us~(O, 0, 2~) = IsO 
A-+ co A 

(4.26) 

[IsO belongs to the canonical basis (2.21)]. 
A tedious but straightforward calculation leads to the 

following formula for the components of the eigen
vectors of the discrete spectrum in the canonical 
basis: 

(_It+ib~n+s-!(1 _ b;)I-n+!-q1i+kH-qq~i+kqi(n-i-j-k)+s-H+q 

=i~/j! k! (i+j)! (i+k+'-1])! (n+s-l-j-k)! (l-n+'+k-j)! (l-n-'-k+j)! (n-2i-j-k-'+1])! ' 

(4.27) 

where 

b = I pi 1 (1 ± . 2) p3 
s Ws + m

s
' q± = 2 Ipi p lP, q3 = !Pi ' 

the range of summation being spread over all integers 
i, j, k, n for which the factorials in the denominator 
of the right-hand side are finite. 

We mention that in general the spinor us,(m, p) 
corresponding to spin s, mass m, and three-momen
tum p is a function of p/m only so that the spinors 
(4.27) are connected to (3.12) by 

us,(m., p) = us,( m, =s p). 

For the continuous spectrum we have to substi
tute (4.12) in (4.21) thus obtaining 

( 
A2)! A 

{J == f3u = E 1 - a2 ' E = ± 1, ({J2 - 1)!- = i ~ . 

( 4.28) 

We need both signs of f3 because for spacelike p the 
sign of the energy is not invariant under proper 
Lorentz transformations. 

To obtain the limit of lightlike momenta (a -+ 00, 

f3 -+ I) we use the known result that for k = tc -
a -+ 00 and Ikxl bounded 

<I>(a, c, x) = r(c)(kx)!--!CeX/2Jc_l(2Vkx) + O(lkl-1), 

where I n is the Bessel function (see, for instance, 
Ref. 36). Applying this to c = 1 + 2 1'1, k = 
-A/2(f32 - I)!, kx = -Ay/2, we find 

. ( 2)1'1 -!u ! Itmjpl'I(A, y) = CA1 '1(2IW! - - e J 21 '1[( -2AY) ] 
P-+l A 

(4.29) 
with 

We shall normalize the eigenfunctions of the con
tinuous spectrum by 

° Wu ~ ~ , (uEU,(p), L UE'u".(p» = - UEE'U",o( a - a), (4.30) 
K 

where E is the sign of the energy [see (4.28)] and 

[ 
K2J! 

Wu = I p~1 = p2 - ~ . ( 4.31) 

36 The Bateman Manuscript Project: Higher Transcendental 
Functions Vol. J, A. ErcteJyi, Ed. (McGraw-Hill Book Co., Inc., New 
York, 1953), Sec. 6.13.2, Eq. (15). 
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The possibility for such a normalization (with a 
finite C) is checked directly (cf. Ref. 15 Appendix B). 
It proves that u<,,~ actually belongs to the continuous 
spectrum of H. We see from (4.31) that for a given p 
only those a of the range (4.12) appear for which 

(4.32) 

The completeness relation for the eigenvectors of 
the self-adjoint operator H (4.4) may be written in the 
canonical basis 1/1]) as follows: 

2 

! ~ u!Z(P)(U8,(P)L?)I'~' 
s~ KWs 

+ ! r .!!... u!:~(p)(u<,,~(P)L?)I'~' da = r51,r5~,. 
<~ ) 1"12K/IIII W" 

(4.33) 

C. Quantization of the Majorana Field 

The results of the preceding section allow us to 
write down the general solution of Eq. (4.1) in the 
form 

( ) 1 {'" ms 1 () () -i1'''' d
3

p 1p X = --I ""! a8~ P us~ P e Ii 
(27T) s~ K 1'0="" P 

+ K! ! fda r b<,,~(p)u<,,~(p)e-i1'''' d
3!}. 

<~ )1'2=_K2/,,2 Ip I 
(4.34) 

The normalization factors are chosen in such a way 
that 

r 01: 01p 3 

pll = ) ",0= t 0(01p) aXil d x 

oxO 

""1 Il *( d
3

p = "" p as~ p)as~(p) -0 
"~ 1'0="" P 

+ ! fda r pllb:,,~(p)b<,,~(p) d3~. (4.35) 
<~. ) 11'°1="'<1 Ip I 

The energy [given by (4.35) for p. = 0] is not positive
definite because of the second term in the right-hand 
side. It has been argued in Ref. 37 that in general one 
cannot introduce a covariant 4-momentum operator 
pll with positive po and p2 < O. 

We are evidently free to postulate either canonical 
commutations or canonical anticommutations for a 
and b: 

[as~(p), a:,~,(q)]± = ws(p)r5(p - q)r5ss,r5~~" 

[b<,,~(p), b;':",{,(q)]± = w,,(p)r5(p - q)r5(a - a')r5~~,r5«,. 

(4.36) 

• , M. E. Arons and E. C. G. Sudarshan, Syracuse l'niversity pre
print, 1967 (unpublished). 

For both signs these relations imply the canonical 
equal-time local (anti)commutation relations for the 
field 1p(x) and its conjugate momentum 

01: . *TO ---=I1pL. 

0(01p) 
oxo 

Namely, (4.36) together with the completeness rela
tion (4.33) gives 

[1p!~(t, x), (1p*(t, y)L?)!,~,]± = r5:,r5~,r5(x - y). (4.37) 

This proves in particular the locality of Majorana 
fields. 

Let us mention an important difference between the 
scalar "tachyon" field satisfying the equation 

(P2 + m2)f[;(p) = 0 

(see Ref. 38) and the infinite-component Majorana 
field. In the case treated in Ref. 38 one does not have 
a complete set of plane-wave solutions because of the 
condition 

(4.38) 

for m fixed. It implies the non local character of the 
"tachyon" field. In our case, instead of (4.38) we have 

p2 ~ K2/a2 

[see (4.32)], but a varies up to infinity so that all plane 
waves are admitted. This is a consequence of the fact 
that we can define a self-adjoint Hamiltonian H [see 
(4.4)] for any choice of the space momentum p. That 
is the reason why it is possible to construct a local 
Majorana field. 

We mention that the field (4.34) supplies an ex
ample of a local field which annihilates the vacuum. 
This is not in contradiction with the well-known 
theorem, asserting that if a local field fulfills Wight
man axioms and annihilates the vacuum it vanishes 
identically ,28 because the spectral conditions are 
violated in our case. 

The Majorana equation (4.1) implies the conserva
tion of the current 

(4.39) 

The corresponding conserved charge is positive and 
gives the particle number (including the number of 
"particles" with spacelike momentum). 

A characteristic feature of the irreducible Majorana 
field is that it describes (Fermi) particles without 
antiparticles, so it clearly violates the rcp theorem . 

3. G. Feinberg, Phys. Rev. 159, 1089 (1967). 
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We can also construct infinite-component Fermi 
fields which include both particles and antiparticles 
by using the pairs of coupled representations discussed 
in Sec. 2C. 

5. CONCLUDING REMARKS 

Let us try to summarize the situation with infinite
component fields. 

These fields supply a description of an infinite set 
of particles with increasing spin values (either all 
integers or all half-integers). The spin and statistics 
theorem as well as the crossing properties connected 
with it are not a consequence of the general require
ments (such as Lorentz invariance with spectral 
properties of pfl and locality) as they are in the 
conventional theory of finite-dimensional fields. How
ever, TCP and spin and statistics contradict neither 
the infinite dimensionality of the field nor the unitarity 
of the representation of SL(2, C) under which the 
field transforms. Examples can be constructed both 
for integer and half-integer spin infinite-component 
fields which satisfy TCP and have the right connection 
between spin and statistics. All known examples of 
local infinite-component fields (with a nondegenerate 
mass spectrum) have some of the peculiar properties 
of the Majorana field considered in Sec. 4: They 
satisfy an equation which has spacelike solutions in 
momentum space and for which the point p2 = 0 is an 
accumulation point for the timelike spectrum. The 
existence of spacelike components is a natural and 
even unavoidable feature of interacting fields,39 but 
if it appears for free (asymptotic) fields it violates the 
spectral properties of the representation of the Poincare 
group leading to the existence of faster-than-light 
particles. It is not clear to us whether or not one can 
construct a relativistic interacting infinite component 
field (with a non-C-number commutator) which 
satisfies a linear (free-type) differential equation. 

On the other hand, to get a reasonable spin depend
ence of the mass in the free-field equation, avoiding 
the spacelike solutions, it seems necessary to introduce 
a non local term of the type 

_w2/ p2 = s(s + 1). 

Such a term may not contradict the locality of the 
projected finite-component fields with definite spinI4 
and, as suggested by composite models, one has 
actually to expect some nonlocal properties of the 
infinite-component fields. 

88 It has been proved that if the Fourier transform of a local field 
vanishes in a domain of spacelike vectors in momentum space, 
then the field is a generalized free field. See G. F. Dell'Antonio, J. 
Math. Phys. 2, 759 (1961); O. W. Greenberg, J. Math. Phys. 3, 
859 (1962). 

It is clear also that conventional local Lagrangian 
formalism may well not be the best way to introduce 
infinite-dimensional representations of SL(2, C) in 
the theory. It might appear more appropriate to start 
with a current algebra and try to saturate current 
commutation relations or superconvergent sum rules 
with an infinite multiplet (cf. Ref. 40) and the sug
gestion of de Alfaro et al. in Ref. 41). The relation 
between the two approaches is not yet clarified. 

In any case, the study of the general framework in 
which V(A) in (1.1) is not supposed to be finite
dimensional has thrown some new light on the logical 
structure of quantum field theory and we are persuaded 
that the infinite-component fields deserve further 
investigation from both theoretical and practical 
point of view. 
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APPENDIX A: DESCRIPTION OF THE IRRE
DUCmLE REPRESENTATIONS OF SL(2, C) IN 

TERMS OF HOMOGENEOUS FUNCTIONS 

This appendix gives a summary of known results 
used throughout the paper. 

Consider the space X of one-valued homogeneous 
"'1"'2 

functions of two complex variables 

The condition of one-valuedness implies that the 
difference VI - V2 has to be an integer. The group 
SL(2 C) acts in X as a transformation group in the , Vl"'2 

40 G. Cocho, C. Fronsdal, I. T. Grodsky, and R. White, Phys. 
Rev. 162, 1662 (1967); R. Delbourgo, M. A. Rashid, Abdus Salam, 
and J. Strathdee, Phys. Letters 258, 475 (1967); C. Fronsdal, 
ICTP Trieste Preprint IC/67/70 (1967). 

41 V. De Alfaro, S. Fubini, G. Furlan, and C. Rossetti, Torino 
University preprint 1966. 
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space of (spinorial) variables z = (ZI' Z2): 

[V(A)f](z) = J(zA) = J(ATz). (A2) 

The representation (A2) of SL(2, C) turns out to be 
irreducible in Xv,v •. Its number [/0' 11] is related to the 
degree of homogeneity (VI' '1'2) by 

10 = teVI - '1'2), 11 = teVl + '1'2) + 1, 

VI = 11 + 10 - 1, '1'2 = 11 - 10 - 1. (A3) 

We see that 10 is always integer or half-integer while 
11 is, in general, an arbitrary complex number. Two 
representations, [10,/1] and [/~, i~] are equivalent if 
and only if42 

(i.e., either v~ = Va or v~ = -Va - 2, IX = 1, 2). (A4) 

The representation (A2) is finite-dimensional when 
VI and '1'2 are both integers of the same sign [its 
dimensionality being (VI + 1)('1'2 + 1) = I: - I~]. In 
this case 10 and 11 are simultaneously integer or half
integer and 1/11 ~ 1/01 + 1. The spin content of the 
finite-dimensional representations is given by 

s = 1/01, 1/01 + I, ... , 1/11 - 1. (A5) 

with 
1 

Aloll = [res - 11 + l)r(llol + 11 + 1)J" 
S r(s + 11 + l)r(llol - 11 + 1) 

= [(s - 11) ... (1101 + 1 - 11)J!' 
(s + 11) ... (1101 + 1 + 11) 

where the range of summation over k is defined by 
the condition that all powers in the sum are non
negative: 

max (0, -/0 - 0 ~ k ~ min (s - 10 , s - n· 
For 11 = iO' (0' real), the functions (A7) are ortho
normalized with respect to the scalar product, 

(j, g) = ;. II J(x + iy, l)g(x + iy, 1) dx dy. 

R. 

In this basis the unitarity of the representations of 

4. A complication arises for ±/, = 1/01 + n, n = I, 2, .... See 
I. M. Gel'fand, M, I. Graev, and N. Ya. ViJenkin, Generalized 
Functions, Integral Geometry and Representation Theory (Academic 
Press Inc., New York, 1966), Vol. 5, Chap. III, Sec. 3. To avoid it we 
define in these cases Xv,v. to be the set of homogeneous polynomials 
of z and z of degree of homogeneity Il, + 101 - I, II, - 101 - I. 

If the above condition is not fulfilled, the representa
tion [/0 , Itl is infinite-dimensional, the sequence (A5) 
in that case not being limited from above. 

To calculate the Casimir operators in terms of 10 
and 11 we use the formulas 

t(M + iN)2 = ~ (~ + 1), 

t(M - iN)2 = ~(~ + 1), (A6) 

which are well known for the finite-dimensional 
representations of SL(2, C) (they correspond to the 
labeling of the finite-dimensional representations III 

terms of two (half-) integers ja = va/2). This gives 

M2 - N 2 = I~ + I~ - 1, iMN = loll' 

which coincides with (2.26). 
The representation [10' 11] is unitary if either 

11 = i( 0'/2) (a-real) principal series or 10 = 0, 0 < 
11 ~ 1 "complementary series." 

The canonical basis IsO in the space Xv 'v. can be 
written in the following form, which is equally suited 
for the unitary and finite-dimensional representations 
of SL(2, C): 

(A7) 

both the principle and the supplementary series is 
manifest, whereas for the finite-dimensional repre
sentations the generators Ni are anti-Hermitian. The 
basis (A7), however, does not exhibit the reality of 
the representations [0, Id for real 11 > 1. For these 
representations it is convenient to use instead of the 
complex spinor variables z and z the real lightlike 
4-vector ~ with components 

~Jl = zO'llz, (e == (~0)2 - ;2 = 0). (AS) 

The condition ~2 = 0 is a simple consequence of the 
identity 

3 

~ gllll(O'Il)ap(O'/l)Y~ = 2(bapby~ - baA'ly) = 2Eah6' 
Jl~O 

(A9) 

In the variables ~Jl the basis (A 7) assumes the form 

1[0, 11 ]sO = A~lI[(2s + 1)(s + ')! (s - ')!]! 
[s-{j2J I:~+V(_ I: )S-~-2V(_ I: )V 

X ~~'-S-1 ~ "+ "3 ,,-
v~~_ a + v)! (s - , - 2v)! V! 

(A10) 
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where ~± = HI~I ± ~), [xl is the integer part of x, 
and 

i.e., 
~+ = ZIZ2' ~_ = ZIZ2' 

To obtain a basis in which the reality properties are 
explicit we have to take the absolute value of the 
expression under the square root. For the finite
dimensional representations (i.e., for 11 positive 
integer) the two bases are connected by 

1[0, 11]sOF = (-i)sf~N~)· 
To prove the identity between (A7) and (AlO), i.e., to 
check the equality 

.~+ zl+kz~-'-k( - ZI)kZ~-k 
s! ,C., 
k~(_ a + k)! (s - ~ - k)! k! (s - k)! 

= [812] (ZlZ2)(+V(Z2Z2 - ZIZly-(-2V( - Z1Z2Y , 

v~(_ a+v)!(s-~-2v)!v! 

one has to use the sum rule 
s-(-k 1 

/l~0 (s - k - ,u)!,u! (2k +,u + ~ - s)! 

s! 

(~ + k)! (s - ~ - k)! k! (s - k)! 

If we put 

1.. e = cos 0 1.. ~ = 1 sin oe±i'P 
~o '~o± 2 

we can rewrite (4.10) in the form 

[0, Ids, 0 
= AOll 12s + l[(s - IW!]i(~O)ll-lei('PPi(i(COS 0) 

s '-I (s + IW! S' 

, (AlO') 
where pl(i(cos 0) are the Legendre functions: 

pl(l(cos 0) 

= (_1)8+1(1 -- -- (1 - cos2 0)8. sl'nl(1 0 ( d )8+1(1 
2Ss! d cos 0 

The basis vectors for the self-coupled representation 
[t, 0] are also related to these functions: 

i.o( ) _ (s + Oi fo .-! (I:) 
8( Z - s-!(-! " ZI 

s 

(s - O! ° i + f s.:..1(+!Wz2' (All) 
s 

We parametrize an arbitrary proper Lorentz trans
formation A in the neighborhood of the identity by 

A = A(w) = exp {- ~ M/lVWpv} 

where wpv = -WV/l are real numbers (only 6 of them 
being independent) and 

(M/lV)l = i(g/lKOX - gVKoi). 

This parametrization induces a local parametrization 
A(w) of SL(2, C), and, consequently, a local param
etrization of each representation YeA) of this 
group. We define (in accordance with Sec. 2) the 
generators of an arbitrary representation V of 
SL(2, C) to be 

S/lV = i[OV(A(W»] _ . 
oW/lV "'/lV-o 

Using (A2) we find the explicit expression for the 
generators of the representations under consideration 

M; = ~(z(], ~ - ~ (].z) 
2 3 0Z oz 3 ' 

N 3 = - z(]· - + - (]·z . . i( 0 0 ) 
2 3 0Z OZ 3 

(AI2) 

In terms of ~; or ~o, 0, T we have correspondingly 

N; = il:o ~ (A12a) 
" o~;' 

M = e±i'P(± ~ + icot o~) 
± 00 OT ' 

(AI2b) 

N 3 = i(COS o~o -; - sin o~), 
o~ 00 

N± = e±i'P(i sin o~o ~ + i cos 0 ~ =t= _1_~). 
o~o 00 sin 0 oT 

From (A 7) and (AI2) we find the explicit expressions 
for the action of the generators on the canonical 
basis of each irreducible representation of SL(2, C). 
The action of the generators M; of the three-dimen
sional rotations coincides with that given by (2.22) 
for the case of the Majorana representations, while 
the generators N; of the pure Lorentz transformations 
act as follows: 

N± 1[10, IdsO 

= ±Cs[(s =t= O(s =t= ~ - I)]! 1[10' Il]S - 1 ~ ± 1) 
'I I S(: ~11) [(s =t= O(s ± ~ + l)]i Is ~ ± 1) 

± C8+1[(s ± ~ + 1)(s ± S + 2)]! 

x 1[10' Ids + 1 ~ ± 1), 

N 3 1[10, IdsD 

= C.[(s - D(s + O1! 1[10' Ids - 1 D 
iloll~ 

- s(s + 1) I [1oldsO 

- Cs+l[(s + ~ + l)(s - S + I)]! 1[10' 11]s + 10, 
(A13) 
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where Cs is given by 

C
s 

= ~[(S2 - I~)(s2 - IDJf. 
S 4s2 

- I 

As we shall see in Appendix C, formulas (AI2) for the 
generators are closely related to the expression for the 
generators in the ladder representation of SU(2, 2). 
This relation helps us to find in the general case four 
different Hermitian 4-vector operators: 

2AI' = gl'l'za Z :r: i a ~ 
1,2 I' -. OZ I' OZ ' 

2BI' = ZE-1a i + g""za E i 
"oz " OZ' 

(AI4) 

each of them satisfying (2.3): 

i[A:, A;] = i[B", W] = i[C", C] = SIlV. (AIS) 

One can also introduce 4-vectors with commuting 
(Hermitian) components. We have already used the 
vector ~,,= za"z (A8); the same transformation 
properties are exhibited by 

Two irreducible representations of SL(2, C) are 
called coupled if by acting with some of our vector
operators Z" in the space Xv,v. of one of them we 
obtain vectors from the second one Xi',i'.' i.e., 

(AI6) 

where Zil = A:, BIl, Cil. It is easily seen that two 
representations [10' 11] and [l~, l~] are coupled if and 
only if either 

(AI7) 
or 

(AI8) 

The first possibility is realized when we act in Xv,v. 
with A~, the second when we act with B" or C". 

On the other hand, because of (A4) there are 
essentially only two cases in which the two coupled 
representations are equivalent: 

l~ = 10 - I = -10, 

1{ = 11 = -11 => [10' 11] = [t, 0]. 

Thus, we rediscover the Majorana representations 
which, as we have seen in Sec. 2, are at the same 
time irreducible representations of Sp(4, R). 

Finally, we shall consider the space-reflection 
operation V(Is) in the algebra generated by z, z, 
oloz and aloz. There exist two different possibilities of 
defining V(I.) consistent with the known transforma
tion properties of the generators of the Lorentz group. 
The first one is 

VlIs) = exp {i7T(ZE-1 i + ZE O_)}, (AI9) 
2 OZ OZ 

with properties 

VlIs)z
aV1\!s) = iZp(E-1)pa, 

V1(I.)zaVl\I.) = iZPEpa' 

V1(Is) ~ V11(Is) = -iEap ~, 
oza oZIl 

V1(I.)~ V1\!s) = _i(E-1)ap-;. 
oZa OZ 

The second is defined by 

V2(I.) = exp {i!!.( 0
2

_ - zaZa)} 
2 ozaza 

and has the properties 

(A20) 

(A21) 

V2(IsbV2-\!s) = i ~ , 
oza 

V2(Is) ~ V;l(I.) = iZa' 
oZa 

(A22) 

Both definitions lead to the right transformation law 
of the generators M; and N;: 

TJ' M;V-1 M; TJ' N;V-1 N; 
~1.2 1,2 = '~1,2 1,2 = - . (A23) 

The fundamental properties (A20) and (A22) are 
deduced from (AI9) and (A21), respectively, by using 
the operator-calculus formula: 

with 

e-AB~ = i 1.. Bn , 
n=O n! 

Using (A20) and (A22) one easily checks that 

(A24) 

(A25) 

The transformation properties of the 4-vectors (A14) 
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under the two possible space reflections are given by 

VIA~,2Vll = g"" At2' V1B"V11 = g""B", (A26) 

V1C"V11 = _g"IlO', 

V2At2V;-1 = ±g""At2, 

V2BIlV21 = g""8", V2CIlV;-1 = gll"C". (A27) 

So we see that for each of these reflections three of 
the quantities A"" E, and C are vectors and one is an 
axial vector. 

APPENDIX B: "SCHRODINGER PICTURE" FOR 
THE SELF-COUPLED REPRESENTATIONS 

Instead of ~" used in (2.19) we introduce here one 
complex variable z setting 

or, conversely, 

z = J2 (at + a2), 

Z = J2(a 1 + an, 

a2 = 1...(z +~) J2 oz ' 

ai = J2(z -!), (B1) 

(B2) 

With the change of variables 

( 

t i 
z = ~) ei

(<P/
2

), Z = (~) e-i
(<p/

2
) (p > 0), (B6) 

we reduce the eigenvalue problem to the set of equa
tions 

-i oOcp us,(p, cp) = ~Us{(p, cp), 

[~ (p Oop) + ~ O~2 - ip + s + t ]US{(p, cp) = O. 

(B7) 
The normalized solution of (B7) is given by 

Is~) == u yep cp) = [(s - 1m!]! ei{"'e-(p/2)pl{IL21{1 (p) 
s, ' (s + 1m! s-I{I ' 

(B8) 

where L~(p) are the Laguerre polynomials 

L~(p) = i (n + IX) (_p)k , (B9) 
k~O n - k k! 

with normalization 

In the original variables z and z we have 

IsO = [(S - 1m !Ji 21{le-zizl{l+'zI{HL 21{1 (2zz). 
(s + IW! a-I{I 

(B11) 

In order to be consistent with the requirement that Complete set of solutions of the Majorana equation 
a: is the Hermitian conjugate of a", we need to assume for K > 0: Putting 
that 

z* = z (~)* = - .£.. 
'oz o-Z 

(B3) 

This means that the scalar product in the space X 
offunctions of z (and z) in which the Majorana repre
sentations act is given (within the accuracy of a 
positive constant factor) by 

1 J- (idZdZ) (j, g) = -; fez, z)g(z, z) -2- . (B4) 

(The real and imaginary parts of z play the role of the 
coordinates in the SchrOdinger picture, i/2 dz dz = 
dRezdImz = d2z.) 

Canonical basis: The canonical basis can be defined 
as the set of normalized eigenvectors of LO and M3 
[see (2.22) and (2.23)]. These generators assume the 
foJIowing form in terms of z: 

2Lo = zz - ~ M3 = l (z ~ - z~). (B5) 
OZOZ' 2 OZ OZ 

(B12) 

and taking into account the equality 

2I! = -zz - L = - f!. - 2[~(P~) + 1 ~J 
ozoz 2 op op P Ocp2 ' 

(B13) 

we obtain the foJIowing "radial" Majorana equation: 

{(1 - P)[:p (p :J - ~2J 
1 + P A} + -4- p - 2" Rpl{l(P) = O. (B14) 

The solution of this equation is given by 

Rpl'l(P) = C;'PI'I<P(t + I" - 2 Ai' 
2(P - 1) 

1 + 21~1, (~ ~ ~)i p) pl{l e-i(fl+l/P-l)iP • (Bl5) 
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We again find the eigenvectors of the discrete and the 
continuous spectra by substituting for {J (4.21) and 
(4.28), respectively. 

Solutions for the case K = 0: For K = ° Eqs. (4.8) 
and (4.9) give 

(2s + 1)2p2u(p) = 0, (BI6) 

which implies that either s = -i or p2 = 0. No dis
crete spectrum appears in either of these cases. 

In the first one (s = -i) we again put p = (0,0, p3) 
and 

(BI7) 

Substituting 

ux~(o, 0, p3; z) = Rxl,,(p)ei~'I' (BI8) 

in the Majorana equation we find 

[:p (p ~) - ~ + (~rp JRI~I(P) = 0. (BI9) 

The solution of (BI9) is 

R1,,(p) . 

= xl~1 2·) __ P <D(I~I + 1.,2"1 + 1, -i ) C exp {1.i Xp 'l. (-X )I~I 
rml + 1) 4 2 XP 

= Cxl~IJI~I{ -txp}· (B20) 

For p2 = (pop - (p3p = ° the little group is the 
Euclidean group in two dimensions generated by 

M 3 = .! (z ~ - z~), 
2 OZ oz 

Ml + N2 = i(Z2 + Z2), M2 - Nl = ii(z~ - Z2). 

(B21) 

Its Casimir operator is again expressed by the square 
of the operator in the left-hand side of the Majorana 
equation 

(Ml + N2)2 + (M2 - Nl)2 = (ZZ)2 = tp2 = HLo - L3)2. 

(B22) 
The Majorana equation itself reduces to 

(B23) 

its solution being 

u~(p, cp) = ()i~'I'r5(p). (B24) 

It can again be obtained as a limiting case (for X ---+ ° 
or (0) from the spacelike solutions and need not be 
taken into account separately in the completeness 
relation 

(Here ~ varies over the range of all integers when we 
deal with the representation [0, i] and it takes all 
possible half-odd-integer values for the representation 
[i, 0], while Nx is a normalization factor.) 

APPENDIX C: THE LADDER REPRESENTATION 
OF U(2, 2) AND REDUCIBLE INFINITE

COMPONENT FIELDS 

It seems physically interesting to consider also 
fields transforming under an infinite-dimensional 
representation of a larger group containing SL(2, C) 
as a subgroup. The "conformal" group U(2, 2) 
generated by the set of all products of Y matrices 
satisfying 

Y~l = yOYR (CI) 
gives a simple example of such a higher group. We 
first recall the definition and the main properties of 
the ladder representation of U(2, 2) which is closely 
connected with the description of the representations 
of the Lorentz group given in Appendix A as well as 
with that of Sec. 2B (for the case of the self-coupled 
Majorana representations). 

We start with the special realization (2.9) of the 
y-matrices and introduce the two Dirac-conjugate 
4-component operator-valued spinors 

cp = (:~), ip = cp*yO = (~t), (C2) 

b2 -b2 

where a<*>, b<*> satisfy the commutation rules (2.11) 
for Bose creation and annihilation operators. As far 
as [a, b*] = ° we have, instead of (2.13), 

[cpA, ipB] = r5li, [cpA, cpB] = [ipA' ipB] = 0. (C3) 

Using (C3) it is easily verified that 

r R = ipYRCP (C4) 

satisfy the same commutation rules as YR and, 
because of (CI), form a Hermitian representation of 
the Lie algebra of U(2, 2). 

This is the ladder representation of U(2, 2) which 
contains a denumerable infinity of irreducible repre
sentations all labeled by the values of the first-order 
Casimir operator 

C1 = ipcp = a*a - b*b - 2. (C5) 

This is the most degenerate discrete series of irreduc
ible representations of U(2, 2) (see Ref. 43). 

Besides the well-known Fock realization of this 
representation, one can also introduce the "Schro
dinger picture" in analogy with the case of the Major
ana representations of Sp(4, R) treated in Appendix 

4' I. T. Todorov ICTP Trieste Preprint IC/66/71, 1966. 
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B. For this purpose we put [in analogy with (BI)]44: 

a = ~(z +~) btl = -L.(z" + ~) " J2 " oz'" J2 oZa ' 

a*" = ~(Z" -~) b* = -L.(z - ~). (C6) J2 OZa'" J2 a oz" 
The substitutions (C6) are naturally obtained if one 

goes to a basis with y5 diagonal and puts in it 
IJ!1.2 = oloz,1.2 IJ!3.4 = z3.4 and uses (B3). The Z 

variables are suited to the study of the decomposition 
of the ladder representation of V(2, 2) with respect to 
SL(2, C). In terms of these variables the Lorentz 
generators determined from (C4) and (C6) are 
identical with (AI2). In the z variables the first-order 
Casimir operator is given by 

C1 = z,,~ - Z ~ - 2, (C7) 
oz" a OZa 

while rl' coincide with 2A't of (Al3): 

a a rl' = gl'l'za Z - - a -. (C8) 
II OZ II OZ 

The V(2) x V(2) singlet which is contained in the 
[C1 = -2] representation is given by 

10) = (2j1T)e-zz . (C9) 

This vector is normalized with respect to the scalar 
product 

(f, g) = f f f(zl' Z2)g(ZI, z2)d2z1d
2
z2. (ClO) 

The canonical basis in the ladder representation is 
labeled with four numbers (including the Casimir 
operator C1): 

(Cll) 

defined as eigenvalues of a complete set of commuting 
operators of the maximal compact subgroup V(2) x 
V(2): 

(rO - n) IC1ns') = 0, 

[M2 - s(s + l)]IClnss) = 0, (M3 
- s) IClnsS) = 0, 

n = IC1 + 21 + 2, IC1 + 21 + 4, ... ; (Cl2) 

s = in - 1, in - 2,' .. ~ 0; 
, = -s, -s + 1, ... , s. 

•• Analogous formulas. using a higher number of complex 
variables, have been introduced in R. L. Anderson, J. Fisher, and 
R. Raczka, ICTP Trieste Preprint IC/66/102, 1966. 

A field transforming under an irreducible ladder 
representation of V(2, 2) can be decomposed in terms 
of ordinary finite-dimensional fields (cf. Ref. 14) 
which depend not only on the spin s, but also on the 
additional quantum number n, reflecting a (possibly 
broken) dynamical symmetry. In the case when 
C1 = -2 (i.e., for a*a - b*b = 0) we have a 
representation with the SO(4) content of the possible 
states of the nonrelativistic hydrogen atom. nl2 is in 
this case the principal quantum number which deter
mines the energy levels. 

Finally, we shall evaluate the "boost" V(B,,) of the 
V(2) X V(2)-invariant vector 10) = 1-2, 0, 0, 0) and 
show that it has a pole-type singularity when analyti
cally continued in oc at the same point as the matrix 
elements of the Majorana representation evaluated in 
Sec. 3D. 

Let p2 = m2 > 0, pO> 0, and 

then 

Np = Nop , o = -R. tanh oc = l!1. (Cl3) 
p Ipl' p pO' 

V(Bp) 10) = e-iNp"p 10) 

= exp {tanh ~ a*ab*np } 10) 

= ~ exp {pa*ab*} 10). (C14) 
pO + m l + m 

In terms of the variables (C6) the same result can be 
expressed as follows: 

V(Bp) 10) = eiN""Pe-zz 

= exp {-(cosh ocpzz + sinh ocpzazop)} 

(C15) 

It is easily seen [especially if one uses (CI4)] that 

(01 V(Bp) 10) = ~ 1 (C16) 
cosh 20Cp 

which again has a pole for ocp = hr{2n + 1). 
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Analyticity of the Envelope Diagrams* 
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Analyticity of the envelope and open envelope diagrams is investigated, and solutions to the Landau 
equations are obtained which do not satisfy the usual symmetry property. The Landau curves which 
these solutions generate are found to have the following characteristics when the anomalous thresholds are 
on the unphysical sheet: (I) they are also on the unphysical sheet; (2) they have asymptotes that depend 
on the external masses of the diagrams; (3) the Landau curve for the envelope diagram has as an 
asymptote a line u = const, although the diagram has no u channel; (4) a new type of effective inter
section is found. 

I. INTRODUCTION 

In investigating the analyticity of the envelope1.2 
and open envelope2- 5 diagrams, previous papers have 
been restricted to solutions of the Landau equations 
that satisfy the following symmetry property: Let qi 
be the internal momenta of the diagram and r:t.i the 
Feynman parameters. If a combination of rotations 
and reflections carries the diagram into itself with 
qi ~ qi', then the solutions to the Landau equations 
giving physical singularities obey the relations 

r:t.i = rxi " qi' qj = ±qi' . qj', qi' qj' = ±qi' . qj' 

the signs of the scalar products being determined by 
the direction of the vectors in the diagram. The 
validity of this symmetry property was proven6 under 
the assumption that Landau curves lying on the 
physical sheet are associated with positive Feynman 
parameters. However, Eden! has shown that isolated 
acnodes on the physical sheet are given by complex 
parameters, while the work of Cunningham7 suggests 
that real Landau curves with complex Feynman 
parameters might occur quite generally. 

In view of these results, the aforementioned proof 
cannot be regarded as valid, and the solutions to the 
Landau equations that do not satisfy the symmetry 
property must be investigated individually to deter
mine whether or not they can give rise to physical 
singularities. 
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Science Foundation and the Atomic Energy Commission. 
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Ann Arbor, Michigan. 
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n. THE ENVELOPE DIAGRAM 
In the notation of Fig. 1, 

s = 3 + 2(Y23 + Y34 + Y24)' (Ia) 
t = 3 + 2(Y13 + Y3S + Y,s), (Ib) 

where Yij = qi . q,. Conservation of momentum at the 
vertices gives 

Y2S = Y14 = 1 - m2/2, (2a) 

YI3 + Y23 + YI2 + (3 - M2)/2 = 0, (2b) 

Y34 + Y3S + Y4S + (3 - M2)/2 = O. (2c) 

Y34 will be taken as the independent parameter; the 
other Yi/S will be solved for in terms of Y34' and this 
will give the Landau curve by the parametric equations 
(la, b). 

The Landau equations are 

rx2q2 + r:t.sq5 - rx3q3 = 0, (3a) 

rx4q4 + r:t.IqI - rx3q3 = O. (3b) 

Dotting (3a) with q2, qs, and q3 gives 

Y3S = Y23Y2S ± [1 - (Y23)2]t[1 - (Y2S)2]t. (4a) 

Choose new variables 

Y34 = cos (rp + (12), Y3S = cos p, 
Y23 = cos (rx + (/2), YI3 = cos r/J, (5) 

Y14 = Yzs = cos O. 

In terms of them, (4a) becomes 

p = 0 ± (to + rx). (4a') 

Similarly, dotting (3b) with q4, qI' and q3 gives 

r/J = 0 ± (to + r/J). (4b) 

In Eqs. (4a') , (4b) the minus sign will be picked; 
the other choices of signs give Landau curves generally 
on the unphysical sheet. Equations (2) and (4'), then, 

MN2 

m 
1 3 5 

m M 
4 

FIG. 1. Envelope diagram. Internal 
masses are unity, external masses are 
m and M. 

2168 



                                                                                                                                    

ANALYTICITY OF THE ENVELOPE DIAGRAMS 2169 

--

-4 

20 

t 

15 

10 

-5 

-2 

(0) 

10 

8 

6 

-2 

-4 

10 

I 

I 
I 
I , 

I 

\ 
\ 
\ 

\ 
\ 

\ , 

15 

, 
' ... '-

5 20 

--. ----------
I ---- --------
I 

6 8 10 

(C) 

------

20 

t 

15 

10 

........ ......: 5 

I 
i 
I , 

\ 

i 
I 

\ 
\ 
\ 
\ 

\ 
\ 

\ 

', .... ....... 
... ... 

~ --------- -------
I 

-5 

-5 

20 

~" 
10 

5 

5 10 
\ 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

(b) 

II !i 

i \ !\ 
" 1\1 I \ 

\ 1'\ \ \ 
\ \ 

15 5 20 

\ ' , 
, --~--I---:-==:--==--=-=.::. 

I 
I 

I 
L , ...... 
I ---__ ------

(d) 

FIG. 2. Landau curves of the envelope diagram for m = I. Dashed lines are I, solid lines are II, and dot-dash lines are anomalous 
thresholds (when real): (a) M' = 0.5; (b) M' = 1.0; (c) M' = 1.05; (d) M2 = 6.0. 

together give sand t in terms of cp and oc: 

s = s(cp, IX) = 1 + [sin (to - cp)]-l 
X {4 sin to(cos to + cos cp)(1 + cos (to + IX» 

+ (l - M2) sin (to + cp)}, (6a) 
t = s(-cp, -oc). (6b) 

It remains to determine IX in terms of cpo This is done 
by dotting (3a) with q2' qa' ql to obtain 

Y15 = [sin (to + OC)]-1{Y13 sin 0 - Y12 sin (to - IX)}, 
(7a) 

and dotting (3b) with q4, q5, and ql to obtain 

Y16 = [sin (to + cp)]-1{Y35 sin 0 - Y4. sin (to - cp)}. 
(7b) 

Equating (7a) to (7b) then gives the relation between 
IX and cp, called the tautening equation: 

o = 2(cos to + cos cp)(cos to + cos IX)(sin oc - sin cp) 

+ (1 - M2) cos to sin (IX - cp). (8) 

Equation (8) is a fourth-order equation for IX. One of 
its solutions is IX( cp) == cp, which was studied8 in Refs. 
1 and 2. Typical Landau curves9 are drawn in Fig. 2. 

8 In addition to the nodes on the physical sheet found in Ref. I, 
there are nodes on the unphysical sheet that were not fully accounted 
for. 

• Hereafter referred to as the curve 1. 
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Only the curve inside the crossed cuts lies on the 
physical sheet. 

The remaining three solutions to (8) cannot be 
expressed so easily. However, after some straight
forward algebra it can be shown that these three 
solutions, when substituted into (6a), (6b), together 
parametrize a single Landau curvelO that is given by 
the following equation: 

o = [u - m2(M2 - l)][(s - 1)(t - 1) 

+ (M2 - 1)(1 + 2m 2 - M2)] + m4(m2 - 4) 

X (M2 - 1). (9) 

Equation (9) can be rewritten as 

2 [U-4(M
2 -1)] (s - t) = (u - uI)(u - U2) 2 2 ' 

U - m (M - 1) 
(10) 

where 

U1.2 = tm2[M2 + 3 ± (M2 - 1)!(M2 - 9)!]. 

For 1 < M2 < 9, u1.2 are complex, and the curve (10) 
must have the general form exemplified in Figs. 2(c), 
2(d). For 0 < M2 < 1, u1.2 are real with 4(M2 - 1) < 
m2(M2 - 1) < U2 < UI, and the curve (10) has the 
form of Fig. 2(a). At M2 = 1, the Landau curve 
degenerates into the three straight lines S = 1, t = 1, 
and U = 0 [Fig. 2(b)]. 

From Eq. (10) and Fig. 2, the Landau curve can be 
seen to have the following properties: 

(1) It is a cubic curve in the s-t plane, and for 
M2 ¥- 1 it has no nodes or cusps in the finite plane. 

(2) It is on the unphysical sheet. This can be seen 
by examining the Feynman discriminant: 

D(IX, s, t) 

= 1X21X31X4S + IXIIX3IXSt + 1X3(IXI1X2 + 1X41XS)M2 

+ [IXIlXi1X2 + 0(3 + 1X5) + IXz0(3(IXI + 1X3 + 1X5)]m2 

- [( IXI + 1X4)( 1X2 + IXs) 
5 

+ IXsC IXI + 1X4 + 1X2 + 1X3)] .L lXi • 
i=l 

(11) 

D(IX, S, t) is negative for positive IX when s, t < 3, 
M2 < 3, m2 < 2; therefore, the scattering amplitude 
cannot be singular there. But in Fig. 2(a), each of the 
three branches of the Landau curve has some segment 
in the region s, t < 3. Since none of the three branches 
has any tangency that could bring it onto the physical 
sheet, the entire curve must be on the unphysical sheet. 

As m2 and M2 vary, no developments occur which 
could bring any branch on the unphysical sheet, and 
hence they remain always nonsingular. 

(3) It has the line U = m2(M2 - 1) as an asymptote, 
even though the diagram itself has no U channel. 

10 Hereafter referred to as the curve II. 
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FIG. 3a. Feynman parameters for the curves I and II near their 
effective intersection for m2 = 1.0, M2 = 1.05. 
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FIG. 3b. Model for dissolution of a pinching singularity. Pinching 
OC 2 values are shown by dots for I and crosses for II. 

Further, the value of the asymptote depends on both 
the internal and external masses. 

(4) It has points of tangency with the Landau 
curve I. These tangencies are effective intersections, 
but they have a new type of tangency, hitherto un
observed, in which the point of tangency P divides 
the Feynman parameters into real and complex 
values. This is illustrated in Fig. 3(a), where the 
quantity ri(s) = sin OO(i(S)!1X3 (S) has been plotted. 
For the curve I, CI represents the values r 2(s), which 
equals r4(s). For the curve II, C2 represents rz(s) for 
s > Sp, and C3 gives r4(s) for s > sl'; both are real. 
For s < s p, C4 , and Cs give the real and imaginary 
parts of '2(S), r4(s); they are complex conjugates.u 

(5) The slope of the Landau curve is given by 

ds IXIIXS sin (to + ¢) sin (to + IX) 
-= --= - (12) 
dt 1X21X4 sin (t& - ¢) sin (to - IX) 

11 As it turns out, the curve II is doubly parametrized with respect 
to <p. For each point on the curve, one set of pinching Feynman 
parameters is given by Fig. 3; a second set is given by interchanging 
the values of OC2 and oc •. As pointed out in Ref. 7, it is this non
uniqueness of Feynman parameters that allows them to take 
complex values. 
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Hence, the Landau curve has a point of tangency P 
with an s threshold (s = SI) if a l = ° or as = ° at P. 
But for the curve I, al = a5' and therefore the line 
S = Sl cannot be an anomalous threshold but must be 
a normal threshold. It can then be shown that 
each anomalous threshold intersects the curve I in 
four finite points, and none of these intersections are 
tangentia1.12 

For the curve II, a2 can be zero with a4 nonzero (the 
point Q in Fig. 3), and it can then be concluded that 
each anomalous threshold has two effective tangential 
intersections with the curve II. 

Typical examples of I and II are drawn in Fig. 2 for 
m2 = 1. For M2 < 1 [Fig. 2(a)] the anomalous thres
holds are complex and on unphysical sheets. At 
M2 = 1 [Fig. 2(b)], they become real at s, t = 3. For 
M2> 1 [Fig. 2(c)] , they separate. At M2 = 3, the 
two lower ones slip through the unphysical normal 
threshold at s, t = 1 and onto a different unphysical 
sheet, where they become tangent to different branches 
of II [Fig. 2(d)]. 

Finally, it should be noted that paragraph (4) could 
give rise to a new mechanism for the dissolution of 
singularities. In Fig. 3(b), the two setsll of pinching 
a2 values collide in such a way that the contour of 
integration becomes free of pinching and the sin
gularity is dissolved. 

III. THE OPEN ENVELOPE DIAGRAM 

For the diagram of Fig. 4, it will be assumed that 
solutions to the Landau equations satisfy a "half 
symmetry" property-namely, that qi' q/s carried 
into each other under a reflection about the vertical 
are equal. For example, qa' q6 = -ql . q5 and 
ql . q6 = -q3 . Q5' Under this assumption, the Landau 
curve can be expressed in terms of the parametric 
equations13 : 

S = 4 + 4y + 4v + 2Y24 + 2Y56 , 

t=4+4x+4u+2Yla- 2Y56' (13) 

where 

1 
Y56 = I _ Z2 {y(y + uz) - x(u + yz)}, 

I 
h4 = I _ u2 {v(y + uz) - w(z + uy)}, 

1 
Y13 = -1--

2 
{x(u + yz) - z(z + uy)}; (14) 

-y 

12 A similar result. has been shown for the wigwam diagram 
[J. Cunningham and M. Rafique, Nucl. Phys. Bl, 21 (1967)]. 

13 UM denotes the Mandelstam variable; u denotes the parametric 
variable u(x). 

Mfi2S M 
I 5 3 

M M 
4 

FIG. 4. Open envelope diagram. 
Internal masses are unity, external 
masses are M. 

y = A(x) ± B(x, u), z = A(x) T B(x, u), (15) 

V = A(u) ± B(u, x), w = A(u) T B(u, x); (16) 

A(x) = t(b - x), 

B(x, u) 

= t{ (1 + u {2 - (~ = :)2J ( (17) 

b = t(M2 - 3). 

The signs in the expressions for z and ware determined 
by the signs in the expressions for y and v, respectively. 
Picking a + sign for y then gives the tautening 
equation for u and the sign of v in terms of x: 

±A(x)B(u, x)(1 - x)(1 + u)(x + u) 

= A(u)B(x, u)(1 - u)(1 + x)(x + u). (18) 

Eq. (18) has five different solutions for u in terms 
of x. One solution [u(x) == x] is the solution studied in 
Refs. 2-5, and it has the "full symmetry" property 
that Yij'S carried into each other under a horizontal 
or vertical reflection are equal. 

Two other solutions of (18) are u(x) = -x and 
u(x) = -x + a + 1. They lead to Landau curves 
which are the straight lines S = 0, t = 0, or uM = 0. 

The remaining two solutions satisfy a quadratic 
equation. Upon solution it leads to the Landau curves 
of Fig. 5. These curves have the following properties: 

(1) By examining the limit x -+ I + E, it can be 
shown that S ~ wand t ~ 16 - (5 - M2)2. This 
asymptote is the anomalous threshold for the diagram. 

Similarly, when x ~ -1 + E, then S --+ wand 
t --+ _(M2 - 1)2, a spurious asymptote not related 
to any threshold. Further, unlike the nonthreshold 
asymptotes of Ref. 3, the value of the asymptote 
depends on both the internal and external masses. 

(2) Three of the Landau curves have branches lying 
in the same region of the s-t plane as the S reaction. 
Hence, by a Coleman-Norton argument,14 they must 
lie on an unphysical sheet. 

By examination of the Feynman discriminant,15 
it can be seen that D(oc, s, t) < 0 whenever a> 0 and 
s, t, U,lI < 4. This can be used to show that the 
remaining Landau curves also must lie on the un
physical sheet. 

14 S. Coleman and R. E. Norton. Nuovo Cimento 38, 43S (1965). 
15 R. J. Eden, Phys. Rev. 119, 1763 (1960), Eq. (S.IS). 
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(0) (b) 

FIG. 5. Landau curves II of the envelope diagram: (a) M2 = 0.5; (b) M2 = 4.0. 

(3) Unlike the Landau curves found in part II, the 
curves for this diagram have several node--cusp 
developments. 

(4) The Landau curves found are parametrized by 
values of x that satisfy one of the two conditions: 

(a) either x, y, z, U, v or w is real; 
(b) or else all are complex,lwith U = x*, v = y*, 

and w == z*. 
By a numerical searchline technique it could be 

shown that the curves of Fig. 5 have no undiscovered 
real extensions. However, there could be entire real 
Landau curves, yet undiscovered, which are para
metrized by complex x values other than those 
above. 

(5) It can again be shown that the curves I and II 
have effective tangential inters¢!ctions with nonzero 
Feynman parameters, and that anomalous thresholds 
intersect I nontangentially and intersect II both 
(effective) tangentiaUy and also nontangentially. 
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We have obtained an expansion of the free energy per spin of an Ising model with long-range interac
tion in the absence of an external field, for temperatures above the Curie temperature of the Weiss
Bragg-Williams approximation (BWCP). We use as expansion parameter the reciprocal (y) of an 
effective number of neighbors. Terms through order y2 are obtained by extracting factors from a repre
sentation of the partition function as an average over random fields. For terms of higher order, we give a 
diagrammatic series in which all terms through order yn are contained in the diagrams with not more than 
2(n - 1) bonds. The terms of order yO are given explicitly. For temperatures below the BWCP we have 
calculated terms through order y. Since after a few finite terms the coefficients in this y expansion become 
infinite at the BWCP, we exhibit a modification of the random field representation which avoids this 
difficulty. We have compared our results with those of previous authors wherever available-that is, 
through order y for the general case and through order y~ for the one-dimensional mod~1 with ex.ponential 
interactions above the BWCP. The results of the modified random field representatIOn are In formal 
agreement with those of previous authors. In this previous work, an equation is given, whose solution is 
identified as the approximate Curie point. We give arguments to show that this interpretation is not 
justified. 

SECTION 1 

The investigation of the Ising model with long-range 
interaction was proposed by Brout1 in the anticipation 
that in the limit of infinite range, the Weiss theory of 
ferromagnetism is correct, and becomes a starting 
point for an expansion of the free energy in powers of 
y, the reciprocal effective number of neighbors. 2 

Originally, it was hoped that information about the 
phase transition would be obtained from such an 
expansion. However, by pointing out a discrepancy 
in his first-order results, Brout showed that this hope 
is not realized.3 By abandoning the straightforward 
Z-1 expansion in favor of a sphericalization method, 
Brout obtained results which do not have this dis
crepancy. Similar results were obtained by Horwitz 
and Callen.4 Brout, as well as Horwitz and Callen, ob
tained his results by selective summation of diagrams. 
Miihlschlegel and Zittartz5 obtained essentially the 
same results by the method of random fields, using a 
variational procedure to approximate the average over 
fields. These results were thought to be good approxi
mations in the neighborhood of the true Curie point 

* Program at Northwestern University supported by the National 
Science Foundation and the Office of Naval Research. 

1 R. Brout, Phys. Rev. 118, 1009 (1960). 
2 Our y is essentially equivalent to the parameter Z-l used by 

Brout, z being the effective number of neighbors. In some of the 
literature y is used to denote the reciprocal range of interaction and 
corresponds to our yl/D, where D is the dimensionality of the 
model. 

3 See Ref. 1, the discussion of Eqs. (4.2) and (4.17). 
• G. Horwitz and H. B. Callen, Phys. Rev. 124, 1757 (1961). 
• B. Miihlschlegel and H. Zittartz, Z. Physik 175, 553 (1963). 

of the model, but further investigations have shown 
that this is not the case.6 

In view of these difficulties, it appears useful to 
present the results of the straightforward y expansion 
for the free energy in the absence of an external 
magnetic field. For temperatures above the Curie 
point of the Weiss-Bragg-Williams approximation 
(BWCP), we obtain the terms through order y2 by 
extracting factors from a variant of the Kac integral 
representation7•8 of the partition function. We present 
a diagram series for higher-order terms in which the 
free energy through order yn is obtained from the 
class of diagrams with no more than 2(n - I) lines. 
We have calculated the y3 term explicitly. Below the 
BWCP, we obtain, by a slightly different method, the 
terms through order y. We have included this calcula
tion for completeness, although we cannot prove that 
the result includes all terms of order y. However, the 
result, when specialized to the one-dimensional Kac 
model, agrees with the exact result obtained by Kac8 

and Baker. 9 It also agrees with the results of Refs. 
I and 5. 

6 M. Coopersmith and R. Brout, Phys. Rev. 130,2539 (1963), the 
last paragraph in Sec. II; R. Brout, Phys. Rev. 122, 469 (1961), 
Eq. (2.0ff. 

7 M. Kac, in Applied Probability, L. A. MacColl, Ed. (McGraw
Hill Book Co., New York, 1957), Vol. VIII, pp. 73-85. 

8 M. Kac, Phys. Fluids 2,8 (1959); and "Statistical Mechanics of 
Some One-dimensional Systems" in Studies in Mathematical 
Analysis and Related Topics, Gilbarg et al., Eds. (Stanford University 
Press, Stanford, Calif., 1962). 

• G. A. Baker, Phys. Rev. 122, 1477 (1961). 
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The method of random fields10 which we employ 
has the advantage of giving these results rather easily 
and of making obvious the reason for the breakdown 
of the y expansion at the BWCP. We have removed the 
cause of this breakdown by employing another 
variant of the method of random fields. This method is 
similar to that of Miihlschlegel and Zittartz.5 Our 
version has the advantage of showing clearly that the 
singularity, which under certain circumstances may 
occur, cannot safely be ascribed to a phase transition 
of the model, as was done by some of the previous 
authors. In the cases where these singularities occur, 
they occur precisely at the temperature for which the 
method cannot be justified. One might think that this 
method would give at least terms of dominant order 
in y at the BWCP, since it avoids the obvious short
comings of the straightforward y expansion. We show, 
however, by comparison with the results of Kac and 
Helfandll for the two-spin correlation function of the 
one-dimensional Kac model, that not all terms of 
dominant order (yi) are given correctly, although a 
very good approximation is obtained for the term of 
largest range. 

Section 2 states the problem and introduces our 
notation. Section 3 describes the method of random 
fields which converts the partition function from a sum 
to an integral. We describe precisely the change in the 
integrand which occurs at the BWCP. The physical 
interpretation has not yet been made rigorous, but we 
believe that this change in the system means physically 
the appearance of metastable states in the finite 
mode1.12 It is not a phase transition, and the occurrence 
of metastable states in the finite model is in general 
neither a sufficient nor a necessary condition for a 
phase transition of the infinite model.13 The maximum 
of the integrand occurring at temperatures above the 
BWCP and the largest pair of maxima occurring below 
the BWCP give the Weiss theory. The terms of order 
yare obtained in this section by expanding the expo
nent in the integrand in the neighborhood of this 
maximum. 

In Sec. 4 we change to a different integral representa-

10 A short survey of the method of random fields in equilibrium 
statistical mechanics, in which some of the present calculations are 
sketched as examples, was given by one of us (A. J. F. S.) in Analysis 
in Function Space, W. T. Martin and I. Segal, Eds. (MIT Press, 
Cambridge, Mass., 1964), Chap. 9; also in Statistical Physics, 
Vol. III of Brandeis Summer Institute Lectures in Theoretical Physics 
(W. A. Benjamin, Inc., New York, 1963). 

11 M. Kac and E. Helfand, J. Math. Phys. 4, 1078 (1963). 
12 The existence of metastable states for the finite Ising model 

with nearest neighbor interaction was shown by A. J. F. Siegert, 
Phys. Rev. 97, 1456 (1955). 

13 L. van Hove (personal communication). However, the existence 
of metastable states, together with certain other conditions, can be 
shown to be a sufficient condition for condensation. See A. J. F. 
Siegert, Phys. Rev. 96, 243 (1954). 

tion, applicable only above the BWCP, and extract 
from the partition function factors which contribute 
the terms of first and second order to the free energy. 
The remaining factor is investigated in Sec. 5. It 
has the form of a grand partition function of a system 
of interacting particles in an external field. The relation 
is purely formal, but we can use this formal similarity 
to obtain an expansion for the terms of order y3 and 
higher. We obtain the terms of order y3 explicitly as an 
integral involving the Fourier transform of the given 
interaction between a pair of spins. In this section, 
we also obtain the above mentioned estimate of the 
order in y of the terms in this expansion. Details of 
the proof are given in Appendix B. 

In Sec. 6 we use a representation of the partition 
function which is valid below, as well as above, the 
BWCP, and obtain from it the free energy to order y 
below the BWCP. In Sec. 7 another variant of the 
integral representation is used, which enables us to 
remove the singularities at the BWCP. This repre
sentation is closely related to Brout'sl sphericalized 
model and to the work of Miihlschlegel and Zittartz.5 
In Sec. 8 we discuss the singularities occurring in the 
expansions of Sec. 7. 

Finally, Sec. 9 is a summary of our results and a 
comparison with the work of previous authors. 
Appendices A and B contain details of calculations 
which are omitted in the text, while Appendices C and 
D contain the specialization of our results to the one
dimensional model with exponential interaction which 
we compare with the calculations of Kac8 and Kac 
and Helfand,11 based on Kac's integral equation 
method. 

SECTION 2 

We consider an Ising model of n spins located at the 
points of a lattice in D dimensions (D = I, 2, 3). 
For the physical problem, we are interested in an 
infinite lattice. However, we perform our calculations 
using a lattice of finite extent and then allow the 
number of lattice sites to become infinite (thermo
dynamic limit). We give below our notation and 
conventions for the finite and infinite lattices. We also 
show how, given the interaction for the infinite lattice, 
one may construct a periodic interaction to be used 
with the finite lattice. 

For the finite lattice, the number of sites is n = mD , 

where m is an integer. Subscripts k, I, ... , denote 
lattice sites and are understood as D-dimensional 
vectors with integer-valued components. A prime is 
used to indicate that the term k = I is excluded from 
the double sum L~'l' The symbols /1>k' /1>1' etc., 
denote the spin variables, which assume the values 
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± 1. The energy of a pair of spins located at sites k and 
I is -JYPkZ(Y' n). (The arguments Y, n will generally be 
omitted in the calculation.) The variable Y is the 
reciprocal of an effective number of neighbors2 with 
Y --+ 0 for infinite range, and J is a coupling parameter. 
Summation over the values of all the spin variables is 
indicated by IIIlI' 

The partition function of this system is then given by 

where 
v = J/kT. (2.2) 

The following assumptions are made about the 
interaction: The matrix PkZ is symmetric and depends 
on k and I only through the vectorial distance k - I, 
and Pk-Z will be used interchangeably with PkZ' Only 
the pure ferromagnetic case PkZ > 0 is considered in 
the present paper, although most of the formal 
results are independent of this assumption.14 Although 
the diagonal elements Pkk = Po do not appear in the 
physical problem, it is convenient to assign the value 

Po(Y, n) = 1 (2.3) 

in the calculations. Born-von Karman boundary 
conditions are assumed, and, accordingly, Pk(Y' n) is 
assumed to be a periodic function of the components 
of k with period nllD = m. The eigenvalues of PkZ are 
then simply the Fourier componentsgT of Pk' We have 

(2.4) 

and 
(2.5) 

where T is a vector with integer-valued components 
and Ik or IT extends over the n points of the lattice. 

In order to use the method of random variables in its 
simplest form-with real-valued random variables
we assume that the matrix P is positive-definite; i.e., 

gT> O. (2.6) 

The function Cn(y) is defined by 

Cn(y) = Y I Pk(Y' n) (2.7) 
k 

and we assume that 

lim Cn(y) = C(y) (2.8) 

14 Actually, Pk! ~ 0 is sufficient for all the proofs, provided that 
(p')., > 0 for some positive integer S(k.1J. This means that for any k 
and 1 there is a chain PkTI' PTIT2' ••• , PT._!! of positive elements 
connecting k and I. This excludes the case of a lattice composed of 
two noninteracting sublattices. 

exists. We also assume that 

lim C(y) = lim lim Cn(y) = C (2.9) 
y-+O }'-+O n-+ 00 

exists, and is different from zero, so that the second 
virial coefficient exists even in the limit of infinite 
range of interaction (y --+ 0). Note that the order of 
the two limits in (2.9) must not be interchanged. 

The lattice of physical interest is the infinite lattice. 
In that case, we define an interaction matrix piy). 
Without restricting generality, we can assume sym
metry 

(2.10) 
and specify 

Po(y) = 1. (2.11 ) 

We assume purely ferromagnetic interaction 

(2.12) 

and the existence of 

(00 ) 

I Pk(Y) == y-lC(y); y > 0, (2.13) 
k 

where the sum extends over the infinite lattice. We 
also assume that 

lim C(y) = C (2.14) 
y~O 

exists, assuring the existence of a finite second virial 
coefficient for the model. We define the function 
g(w), where w is a vector in D dimensions with 
components in the interval (0,277), by 

(00 ) 

g(w) = I eik'Wpiy) (2.15) 
k 

and restrict our calculations to the case 

g(w) > ° (2.16) 

for w in the region specified above. (This restriction 
could be avoided by the use of complex-valued local 
fields.) The BWCP is then determined by the equation 

vC(y) = 1. (2.17) 

The connection between the infinite and finite 
lattice is made as follows. Assuming the properties 
(2.10)-(2.17), we may construct a sequence of finite 
lattices which have the proper thermodynamic limit, 
by defining a sequence Pk(Y, n) in terms of the inter
action Pk(y), by 

(00) /(00) 

Pk(y, n) == I PHsm(Y) I Psm(y), 
s s 

(2.18) 

where I~OO) is the sum over all vectors with integer 
components in the infinite lattice. The symmetry 
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condition Pk(Y, n) = P-k(Y, n) and the condition 
Pk(Y, n) > 0 are satisfied since Pk(Y) was assumed to 
have these properties. Equation (2.3) then follows 
from (2.18). We also have 

lim Pk(Y' n) = piy) 
n .... CX) 

and 

or 

Z Pk(Y' n)e2lTik · TIm 
k 

(2.19) 

(2.20) 

gT == t Pk(Y' n)e-
2lTik

· TIm = ge:
T

) /~J Psm(Y). 

(2.21) 

Condition (2.6) is satisfied in view of (2.16). Finally, 

j
(CX)J j(CX)J 

Cn(y) == ygo = yg(O) ~ Pam(Y) = C(y) ~ Pam(Y) 

(2.22) 

so that the conditions (2.8) and (2.9) are fulfilled. 

SECTION 3 

The calculations are based on the identityI5 

(27T)-nI2(det A)! 

<Xl 

X r . J dnx exp (i t ~kXk - t t; XkAk!X!) 
-Q() 

(3.1) 

valid for any positive-definite symmetric matrix 
A and any set of complex variables ~k. It is con
venient to consider the integral as the average of 
exp (i Zk ~~k) with respect to the probability density 

Wn(x) = (27T)-nI2(det A)! exp {-t(x . A • x)}, (3.2) 

(written in an obvious vector notation) and to use the 
abbreviation 

(3.3) 

for the left-hand side of Eq. (3.1). It is customary to 
caIl the variables Xk normally distributed or Gaussian 
random variables. 

15 H. Cramer, Mathematical Methods of Statistics (Princeton 
University Press, Princeton, N.J., 1951), p. 118. 

Substituting -iftivy)! for ~k and P for A-I, one 
then has for Qn, defined by Eq. (2.1), the expression 

Qn = exp (- nv
y

) Z exp /\(VY)! ZftkXk)/\ . 
2 II,) k av x 

(3.4) 

The first factor compensates for the diagonal elements 
in Zk!' which are excluded in Eq. (2.1), but not in Eq. 
(3. I). The summation over the spin-variables can then 
be carried out and yields 

Qn = 2ne-nVY/2/\I1 cosh (xk(vy)!)\ . (3.5) 
k lav x 

Equations (3.4) and (3.5) can be interpreted by the 
statement that the partition function of the system of 
interacting spins is equal to the average of the partition 
function of noninteracting spins in a (temperature
dependent) random magnetic field. These equations 
thus represent a rigorous formulation of the idea 
of the Weiss field. 

In trying to evaluate Eq. (3.5) for y ~ 0, one is 
obviously led to try the approximation 

cosh (xivy)!)""'" ehY"'k". (3.6) 

The resulting average exists only if the smallest 
eigeQ-value of p-1 is larger than vy, that is, if 

vygo = vy Z Pk < 1, (3.7) 

where go is the largest eigenvalue of p. In the limit 
n ~ 00 this means 

vC(y) < 1. (3.8) 

The average of the approximate expression is easily 
evaluated and one obtains 

Qn""'" Q~ == 2ne-nVY/2{det (I - vyp)}-t. (3.9) 

This yields the free energy to order y in agreement with 
Brout1 above the BWCP. Since 

cosh y ~ e!lI" , (3.10) 
we have 

(3.10') 

Before we continue with the detailed calculation, 
it is of interest to discuss the integral 

it == r ~J {I] cosh [Xk(VY)!]} 
-<Xl 

X exp [-t ZXk(p-l)kIXI]dnx, (3.11) 
k,1 

which is the important factor in Eq. (3.5). 
Extrema of the integrand occur for 

(vy)! tanh [Xk(VY)!] - Z (P-1)kIX/ = 0 (3.12) 
! 
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or 
Xk = (vy)t I Pkl tanh [x1(vy)i]. (3.13) 

I 

The point X k = 0 (for all k) is always a root of this 
set of equations. Above the BWCP it is the only root, 
since 

vy I xi = (vy)2 I (p2)li tanh [xZ<vy)i] tanh [x;(vyi] 
k l,i 

::;;; (vygo)2 I {tanh [x1(vy)ilY, 
! 

where go is the largest eigenvalue of p. Obviously this 
inequality is compatible with (3.7) only if all X k are 
equal to zero. This point is then a maximum of the 
integrand. 

At temperatures below the BWCP, the point x = 0 
is still a root of Eqs. (3.13), but is not a maximum of 
the integrand. There are, however, two trivial roots: 

for all k 
and 

Xk = -x for all k, 

where x is the positive root of the equation 

x = (vy)i I P! tanh [x(vy)i] 
! 

or 

(3.14a) 

(3.14b) 

(3.15) 

(3.16) 

The integrand has maxima of equal size at these 
two points. In the following discussion, we will refer 
to these two points as the Weiss field. 

Other maxima can exist,16 but they are smaller 
than the maxima at the points given by Eqs. (3.14). 
One sees this by writing the integrand in Eq. (3.11) 
in the form eU{X) with 

U(x) = -1 I XiP-1)k!X 1 + I In cosh [xivy)l]. 
k,1 k 

(3.17) 
At the extremum 

(3.18) 

with 

I;l(xk) = In cosh [xk(vy)l] - i(Vy)lXk tanh [xivy)l]. 

(3.19) 

The function u(x) is even, and duJdx > 0 for x > O. 
Furthermore, if Xko is the largest component of a 
solution of Eq. (3.13), and if Xko > 0,17 then 

('JIy)lxko ~ vy I PI tanh [xk.(vy)l] (3.20) 
I 

16 Some examples were pointed out to us by Dr. George Moore. 
These known examples result in maxima small compared with the 
two largest maxima. 

17 If Xko < 0, we consider instead the inverted solution x~ = -Xk' 

or 

tanh [xko(vy)l] > 
xko(vy)i - (

Vy I Pl)-l = tanh [X(?,)l] (3.21) 
! x(vy) 

from Eq. (3.16) and Xko ::;;; x. This argument can easily 
be generalized to show that all components of all 
solutions ofEq. (3.13) lie between x and -x, defined by 
Eq. (3.16). Since the equal sign in the inequality (3.20) 
occurs only when all components are equal to xko ' 
we have 

(3.22) 

for the largest components xm of any solution other 
than the Weiss field and, therefore, 

U(XO) - U(x) > n(u(x) - U(Xm», (3.23) 

where XO is the Weiss field and x any other solution of 
Eq. (3.13). The inequality (3.23) does not imply that 
U(XO) - U(x) is of order n, since we have not proved 
that u(x) - u(xm) has a lower bound when n becomes 
infinite. We cannot disprove the existence of solutions 
ofEq. (3.13), whose components have values arbitrarily 
close to x and -x over large domains oflattice points, 
when n becomes very large. We can prove that no 
solution of Eq. (3.13), other than the Weiss field, has 
components which are all of the same sign (Appendix 
A). Integration over the neighborhood of the Weiss 
field only can still yield a good approximation if the 
contribution of the domain type maxima is essentially 
the same as that of the Weiss field maxima and their 
number sufficiently small compared to (exp ny).18 

SECTION 4 

In order to carry out the calculation of the free 
energy to order y2 above the BWCP, we apply a 
simple transformation which results in the extraction 
of the factor Q~ from the partition function. Qn can 
be expressed in the form 

Qn = I exp [-12 (bk! - VYPk1)"'k"'l] 
{II} k.l 

X exp [i (1 - Vy)} (4.1) 

Since the matrix I - vyp is positive-definite above the 
BWCP, this can be expressed as 

Qn = I/\exp (i I ~k"'k)/\ exp [!! (1 - vy)] 
(II) k aVI; 2 

= 2n exp [!! (1 - vy)]/\IT cos ~k/\ , (4.1') 
2 1r avl; 

---
18 This does not mean that the contribution of the other maxima 

to the integral is negligible, but only that their contribution to the 
free energy per particle is irrelevant. See the argument preceding 
Eq. (2.4) in G. F. Newell and E. Montroll, Rev. Mod. Phys. 25, 
353 (1953). 
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where the new random variables ~k are defined by the 
probability density 

wn(~) = (27T)-n/2{det (I - vyp)t!e-!(I;' U_vyp)-l'I;). 

(4.2) 

This result follows from Eqs. (3.1)-(3.3). With Q~ 
defined by Eq. (3.9) we then have 

Qn = Q~qn' (4.3) 

where qn is defined by 
00 

qn = en/2(27T)-n/2J- . J dn~ 
-00 

x e-!(I;' (l_vyp)-l. 1;) II COS~k' (4.4) 
k 

The following calculations are motivated by the 
observation that the random variables ~k are anti-

with 'f}k defined by 

~k = U'f}k 
and 

(4.9) 

(4.10) 

The factor (27T)-n/2 exp {-t Ik 'f}n can be considered 
as the probability density for independent Gaussian 
random variables 'f}k with mean zero and standard 
deviation unity, and we can write qn in the form 

It is convenient to write this in the form 

(4.12) 
correlated, i.e., with 

(~k~l>av I; = -VYPkl < 0, for k ¥: T. (4.5) 

It seemed possible that an expansion, starting in 
zeroth approximation with independent random 
variables, could yield results, even though the range 
of the anticorrelation increases with y-l. This expecta
tion, though admittedly weak, is borne out by the 
calculation. 

For the purpose of this expansion we define the 
matrix p as a function of v, y, and n, by 

1+ vyp = (/ - vyp)-l. (4.6) 

This equation can also be written in the form 

P = P + vypp, (4.7) 

if vy ~ 0. The homogeneity of P carries over to P so 
that we can write Pkl or Pk-l for the matrix elements. 
We then divide the quadratic form in Eq. (4.4) into 
diagonal and off-diagonal terms and introduce new 
variables: 

00 

qn = en/2(27T)-n/2J- . J dn~ 

x II cos ~k 
k 

-00 

00 

= en/2(27T)-n/2u n J- . J dn'f) 

-00 

X exp [-t I 'f}~ - vyu
2 
I' 'Yh'fJIPkl] 

k 2 k,l 

X II cos (U'Yh), (4.8) 
k 

(4.13) 

(2) _ / ( vyu
2 

"" _) 
qn = \exp - -2-6, 'f}k'f}IPkl 

X II cos (U'f}k) \ (4.14) 
k (cos (U'f}»av~/avTj 

where 

(cos (U'f})av ~ == (27T)-! J e-h2 cos (u'f)) d'f} = e-!u
2
. 

(4.15) 
From Eqs. (4.3) and (4.12) we then have 

(4.16) 

Substituting from Eqs. (3.9), (4.10), and (4.13), we 
obtain 

1 vy 1 
-In Qn = In 2 - - - -In det (I - vyp) + t 
n 2 2n 

- tin (1 + vYPo) - t(1 + vYPo)-l 

(4.17) 

We will show later that the correction term lin In q~2) 
is of the order y3, if the expansion of this term in 
powers of y is semiconvergent. 

The terms given in closed form can also be expressed 
in terms of one function Po(~), which is the diagonal 
element of a matrix p(~) defined by a slight generaliza
tion of Eq. (4.7). With p(~) defined by 

we have 
p(~) = P + ~p(~)p, 

p(~) = p(1 _ ~p)-l 

(4.18) 

(4.19) 
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and 

In det (I - vyp) = Tr In (I - vyp) 

Equation (4.l7) can then be written in the form 

1 
-In Qn = In 2 + t(1 - vy) 
n 

+ t IY PoW d~ - tin (1 + vYPo(vy)) 

- t(1 + vYPO(vy»-l + ..! In q~2). (4.21) 
n 

The function f5oC~) can be expressed in terms of the 
Fourier coefficients gT defined by (2.5). We then have 

(4.22) 

and 

f5k(~) = ..! L gT e211ik ' Tim, 
n T 1 - ~gT 

(4.23) 

where the summation extends over all vectors T with 
components 0, 1, ... , m - 1. 

The free energy per particle, 1p, is given by 

-1{JlkT = lim..! In Qn. 
n-+ 00 n 

The limit R(~) of Po(~) required for the evaluation of 1p 

becomes the integral 

R(~) == lim f5o(~) = ~ J' . 'JdDw g(w) , 
n-oo (277') 1 - ~g(w) 

o 
(4.24) 

where w is a vector in D dimensions and 

g(w) = lim L Pk(y, n)e-ik
'
w

. (4.25) 
n-+ook 

[The sequence Pk(y, n) was introduced to have the 
convenience of Born-von Karman conditions; only 
Pk(y, 00) is of interest in the physical problem. We 
can choose a sequence such that 

(00) 

g(w) = L piy, oo)e-ik ' w , (4.26) 
/, 

where Lk"') is the sum over all vectors k with integer 
components. ] 

We thus have for the free energy per particle, 1p, the 
result 

(VY 
-1plkT= In 2 + HI - vy) + t)o R(~) d~ 

- tin (1 + vyR(vy)- t(1 + vyR(vy)-l 

+ lim..! In q~2), (4.27) 
n-+ 00 n 

where R(~) is defined by Eqs. (4.24) and (4.25). A 
series for lin In q~2) will be developed in Sec. 5, and it 
will be shown there that the limit n ->- 00 of each term 
in the series is of order y3 or higher order. The order 
of each term in the series will be obtained in Sec. 5 
and the terms of order y3 will be calculated there. 

It is interesting to observe the singularities of the 
terms of order y2 at the BWCP. (The terms of order y 
in the free energy remain finite for the one-, two-, and 
three-dimensional model.) The behavior of the terms 
of order y2 is determined by the number of dimen
sions and the form of g(w) for small w, which in turn 
depends on the existence of the second moments of 
Pk(y). The integral representing R(vy) exists for any 
fixed temperature above the BWCP, since 

Ig(w)1 ~ g(O) = y-lC(y) 

and the integrand is finite if 

I - vC(y) > O. 

(4.28) 

(4.29) 

If in the neighborhood of w = 0, the function g(w) 
has the form 

g( w) r.v g(O) - rl2W 2 , (4.30) 

then the integral representing R(vy) becomes infinite 
at the BWCP for the one- and two-dimensional 
model, but remains finite for the three-dimensional 
model. 

If, however, 

g(w) r.v g(O) - rl1lwl for w ~ 0, (4.31) 

the function R(vy) becomes infinite at the BWCP for 
the one-dimensional model only. Since the free energy 
per particle must remain finite, the singularities of 
R(vy) indicate that the expansion in y breaks down at 
the BWCP. (We have left the fourth and fifth term in 
the form in which they were obtained, rather than 
expanding them in order y2, since the order of the 
singularity is smaller in the original form.) 

The form of g(w) for small w is determined by the 
moments of Pk(y, 00). If, e.g., the moment tensor 
Ik kkpk exists and is diagonal with equal diagonal 
elements, the function g(w) has the form (30) for 
sufficiently small w. If the second moments do not 
exist, g(w) can have the form (4.31) for small w. 
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SECTION 5 

In this section we derive a series expansion for the 
last term in Eq. (4.17), 

lim ! In q~21, 
n-+ 00 n 

in terms of coefficients similar to Mayer's reducible 
cluster coefficients, and prove that each term of the 
series is of order y3 or higher order. In order to obtain 
this series we first expand the exponential function in 
Eq. (4.14) and obtain 

00 1 
q~2) = I - (_lvyu2)N 

N=oN! 

x < (~' rh1]IPkr If £p(1];»',",l' (5.1) 

where 

£P(1];) == cos (U1];)/(cos (u1];»av 7) = eta' cos (u1];) 

(5.2) 

and 11; extends over all lattice points j. We now change 
the notation in the sum I~,l from points to pairs of 
points, so that PI' P2, ... , PN denote pairs of points, 
and we use p~ , P: to indicate the members of the pair 
Pa' With this notation we have 

N N 

(!' 1]k1]IPkl) = 2N !' !' ... !' IT (1]pa'1]Pa'P1»' 
k,! 1', 1>. PN a=1 

(5.3) 
where 

(5.4) 

and the sums "", extend over all pairs of two different 4..1>a 
lattice points, counting each pair only once. Eq. (5.1) 
then becomes 

N 

X I' II P1>aF N(Pl, P2, ... , PN)' (5.5) 
:PltV:1h .•• , VB «=1 

with 

F N(Pl, P2, ... , PN) == I\Ir 1]pa'1]1>,. 11 £p(1];)\/ . 
er=1 ; aV7) 

(5.6) 

The form of (5.5) is now analogous to that of the 
grand canonical partition function of a gas; the pairs 
correspond to the position vectors of the gas molecules, 
and the sums over pairs to the integrals over the 
coordinates. We can thus apply the Ursell develop
ment to F N(Pl, P2, ..• , PN) by defining cluster 

functions S;.(P1,P2, ... ,P;.) in the usual way: 

F1(PI) = Sl(P1), (5.7) 

F2(Pl,P2) = SI(P1)Sl(P2) + S2(PI,P2), (5.8) 

Fa(P1 , P2, Pa) = Sl (PI)Sl (P0S1 (Pa) 

+ S2(Pl'P2)SI(Pa) + ... + Sa(Pl,P2,Pa), (5.9) 

etc. Because of the independence of the variables 1]k' 
the cluster functions SA vanish when the set of pairs 
PI' ... ,PAis not connected, that is, when the set of 
pairs can be divided into two or more subsets, such 
that pairs in different subsets have no point in 
common. With £p(1]) defined by (5.2), Sl vanishes, 
since 

Sl(P) = (1]p'1]1>"£P(1]1>')£P(1]p'»av 7) = 0 for P' ~ p", 
(5.10) 

and therefore 

and 
(1]k cos (u1]k»av 7) = O. 

(5.11) 

(5.12) 

With cluster coefficients b;. defined by 
). 

n).! b;.. = ! SiPl' P2, ... ,P;..) 11 Pp er , (5.13) 
1>,," . ,1>;, «=1 

one obtains, by the procedure of Kahn and Uhlen
beckl9 

(5.14) 

It should be noted that this is not a power series in y, 
since b). depends on y. 

The set of pairs {PI"" ,P;.} in Eq. (5.13) is repre
sented by a graph, if each pair Per is represented by a 
line connecting the two lattice points p~ and P; . The 
cluster property of S). restricts the sum to connected 
graphs. Furthermore, the number of lines entering 
any point of the graph must be even, since 

(1]~ cos (U1]k»av 7) = 0 for odd s, (5.15) 

and, therefore, F;..(P1, .•• ,P;.), as well as any product 
of functions FA occurring in the expression for S;. 
vanishes, if this restriction is violated. We indicate 
these two restrictions by the subscript "ev. con." and 
write the definition of b;.. in the form 

A 

n)'!b;.= ! S;"(Pl,"·,P2)IIp1> .. ' (5.16) 
:Pl,"',PA «=1 

ev. con. 

The coefficients b;.. in Eq. (5.14) depend on the 
number n of lattice sites. We will assume that for the 

11 B. Kahn and G. E. Uhlenbeck, Physica 5, 399 (1938). See also 
B. Kahn in Studies in Statistical Mechanics, J. de Boer and G. E. 
Uhlenbeck, Eds. (North-Holland Publishing Co., Amsterdam, 
1965), Vol. III. 
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purpose of estimating the order in y it is permissible 
to perform the limit n -+ 00 term by term. In order to 
show that lim (lIn) In q~2) is of order y3, we prove 

first that 
(5.17) 

where ISll remains bounded for y -+ 0 and m2 is the 
number of points of degree two. (The "degree" of a 
point is the number of lines entering it.) In order to 
show this, we calculate Fib, ... ,Pl) explicitly. If 
the graph (P1,··· , Pl) has mf points of degree f, 
we obtain from (5.2) and (5.6) 

FiP1'···' p;) 

= IT [(rl cos (u'Yj»avTi/(cos (u'Yj»avTi] ml, (5.18) , 
where the product extends over even numbers f. 
Using Eq. (4.15), we obtain 

('Yjf cos (u'Yj»av ,,/(cos (u'Yj»av" 

= eU2/2(_1)f/2(:u)e-u2/2 = (-l)f/2Hf (u), (5.19) 

where H,(u) is the Hermite polynomial of degree f in 
the notation of Ref. 15. We have in particular 

H 2(u) = u2 - 1 = (1 + vYPo)-1 - 1 

= -vYPo/{l + vYPo)· (5.20) 

We will show that Po is finite for ve(y) < I, so that 

Fl (P1, ..• ,p;) = ymtFl , (5.21) 

where Fl remains bounded for y -+ o. Equation (5.17) 
then follows from the inversion formula for Sl. 

To estimate the diagram sums, we note first that the 
matrix elements of p are nonnegative since 

00 

p = pI (vYPY, (5.22) 
8~O 

and the matrix elements of p are nonnegative by 
assumption. The series converges when vygo < 1. We 
then obtain an estimate for the diagonal element of 
powers of p. We have 

(pl)o = 1 I ( gT )l, (5.23) 
n T 1 - vygT 

where gT is defined by Eq. (2.5). Since 

0< gT ~ go, (5.24) 
we have 

(pl)o ~ (1 1 )l 1 ~ g~ 
- vygo n T 

).-1 1 A-1 < go _ I g = go (5.25) 
- (1 - vygO)A n T T (1 - vygo/ 

or 
(5.26) 

where M). remains bounded for y -+ 0 for fixed 
vygo = vC(y) < 1. We note further that 

gT 
>0, (5.27) 

1 - vygT 
since 

0< gr ~ go· (5.28) 
Therefore 

(pA)kl ~ (pA)O. (5.29) 

We can now estimate the sum over all graphs of the 
type under consideration, and obtain 

). 

~ IT P'Pa ~ 2-). I Pkhh/2· .. PI).-lk 
1>lt'" ,:PA «=1 k.lt.··· ,l,t-2 

= 2-). I (P).hk = T).n(pA)o, (5.30) 
k 

since every graph on the left appears in the sum on the 
right, and all Pkl are nonnegative. This upper bound is 
still too high, but serves together with the inequality 
(5.26) to confirm the expectation that one obtains a 
factor y-1 from the summation over every point 
except one, which one can consider fixed to start with. 
Summation over that point then yields the factor n. 
An estimate for the sum over graphs with m, 
points of degree f (f = 2, 4, ... ) is then obtained 
by observing that this condition constitutes a con
straint on the sum over points, which keeps ([/2) - 1 
points tied to one of the points and thus eliminates 
([/2) - 1 factors y-1. Therefore we expect to find 

1· ! ).~/ITl - "" [1+~mt<t/2-1)] (531) 1m Y.4 P"", Y t __ 4 ,. 
n~oo n «=1 

where I' means the sum over all graphs of the type 
considered, which have mf points of degree [> 2. 

In Appendix B we have made this argument rigorous 
for two special cases, which are sufficient for the 
calculation to order y3. We have shown there that the 
sum over all graphs with at least one point of degree f 
satisfies the inequality 

A " lim L ~I IT p- < yf/2M' k Pa - ;,., 
n-+oo n PI"" d)A «=1 

(5.32) 

and the sum over graphs with at least one point of 
degree f and at least one other point of degree h 
satisfies the inequality 

A A 

lim L I" IT P"'" ~ y,/2+h/2
-

1Ml, (5.33) 
n-+oo nPl.···."Aa=l 

where M~ and M: remain bounded for y -+ O. 
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Using these inequalities and Eq. (5.17), we have 

y)./b)./ S ym2+f/2c~ 

with the first condition and 

(5.34) 

with the second condition, where c~ and C; remain 
bounded when y ---+ 0, and m2 is the number of points 
of degree 2. If there is no point of degree four or 
higher, we have 

y)./b)./ S ym2+1c~ = y1HC~. (5.36) 

If there is at least one point of degree four, there 
must be either two or more points of degree two, or at 
least one more point of degree four or higher. If the 
first alternative is true, one has from (34) 

(5.37) 

If the second alternative is true, one has from (35) 

(5.38) 

Every term in the series for lim (ljn) In q~2) is, 

therefore, of order ya or higher order, since A ~ 2. 
If one accepts the heuristic argument leading to 

Eq. (5.31), one obtains 

(5.39) 

Since 

A = i I jm!, (5.40) 
!22 

one has 

(5.13), (5.8), (5.18), (5.19), and (5.20), one has 

b2 = -2
1 ! I S2(P, p)(p1')2 = -211 I F2(p, p)(p1')2 

n l' n l' 

= 11 H~(u)! (p1')2 = 1( VYPo _ )21 !'(Pkl? 
2 n l' 4 1 + vYPo nk.1 

1 ( vy Po )2 1 " [( -2) (_ )2] = -4 1 + - - £.., P kk - Pkk 
vYPo n k 

=!( vYPo )2[(p2)O _ (Po)2]. (5.44) 
4 1 + vypo 

In the limit n ---+ 00, Po becomes R(vy), defined by 
Eq. (4.24); using (5.23), (p2)O becomes 

R 22( vy) = lim (p2)O 

211 

= _1 J .. 'JdDW{ g(w) }2 (5.45) 
(277-)D 1 - vyg(w) , 

o 

with g(w) given by Eq. (4.26). Only the term (p2)O 
contributes a term of order ya to y2b2 , since Po 
remains bounded for y ---+ 0 according to (5.26). 

The only term which can contribute a y3 term to 
y4b4 is 

Since 
S4(P1,P2,Pa,P4) = F4(P1'P2,Pa,P4) 

- [F2(P1, P2)F2(Pa , P 4) 

+ F2(P1, Pa)F2(P2' P4) 

(5.46) 

+ F2(P1,P4)F2(P2,Pa)], (5.47) 

from Eqs. (5.18) and (5.19) we obtain 

(5.41) Sip, p, p, p) = m(u) - 3H~(u), (5.48) 

and 

so that 

1 + m2 + I m!(f. - 1) ~ 1 + iCA + m2). (5.43) 
124 2 

Taking m2 = 0 in the inequality (5.43) shows that all 
terms through order yn are obtained by taking terms 
through A = 2(n - 1) in (5.14). Some of the terms in 
(5.14) can stilI be ruled out by using the full inequality 
(5.43) (including m2). For instance, terms of order y3 
in (ljn) In q~2) can arise only from A = 2 and m2 = 2 
(2 lines and 2 points of degree 2), and from A = 4 
and m2 = 0 (4 lines and 2 points of degree 4). 

These two terms are easily evaluated. From Eqs. 

with 

and we have 

b1 = ~ (H~(u) - 3H~(u» ~ I' (Pklt 
4! 2n k.l 

= ~! (H~(u) - 3H~(U)H(f(Pl)4 - (pO)4) , (5.49) 

where II extends over all points I of the lattice. From 
Eq. (4.23) we then obtain 

!(Pll 
I 

= ~ I I IT ( gTj ) e(211il/m)'(T,+T2+T,+T,) 
n4 I T,.T2.T •. T. ;=1 1 - vygT; 

= ~ L IT ( gT; ) gT,+T2+T, . (5.50) 
na T,.T2,T. ;=1 1 - vygT 1 - vygTl+T2+T3 
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For n - 00, this becomes 

n-+ 00 l 

21T 

= (27T)-3D r . J dDwl dDw2 dDw3 

o 

x IT ( g(w;) ) 
;=1 1 - vyg(Wj) 

X g(w1 + W2 + w3) (5.51) 
1 - vyg(w1 + W2 + W3) 

The terms H!(u) and (PO)4 contribute terms of higher 
order in y. Substituting these results in Eq. (5.14), 
we obtain to order 1'3 

1· 11 (2) 1m - n qn 
n-t co n 

= (vy)2HvyR(vy)]2R22(VY) 

+ (vy)4.l H:(1)tR42(VY) + «1'4» 
4! 

= (vy)4{iR2(vy)R22(VY) + J.12R 42(VY)} + «1'4», 

(5.52) 

with R, R 22 , and R42 defined by Eqs. (4.24), (5.45), 
and (5.51), respectively. Since yR22 and yR42 remain 
bounded for I' - 0, the terms of (5.52) are of order 
1'3 and higher order. 

We note that the functions R22 and R42 become 
infinite at the BWCP, even in the three-dimensional 
case, if g(w) is of the form 

(5.53) 

for small w. 
In order to check the numerical factors in (5.52), we 

can perform a Mayer expansion ofEq. (4.14). With 

exp (- V
y

2
u

2 
I' 17krhPkl) = II" (1 + fkl)' (5.54) 
k,l kl 

where 

/;'1 == exp (-Vyu2'fJk'fJlPkl) - 1, (5.55) 

and the double prime indicates that each pair (kl) 
is to be counted only once, and k is different from I, 
we have 

( 
vyu2 I _) 

exp - -2 I 'fJk'fJIPkl 
k,l . 

= 1 + iI' fkl + iI' I"fkz!ii + .. " (5.56) 
kl Jr,I i,i 

where .!;,; indicates that i ¥- j and the pair (ij) is 

SECTION 6 

In order to obtain an approximation which is valid 
at any fixed temperature below as well as above the 
BWCP, we make use of the results obtained in Sec. 3 
by expanding in terms of the deviations of the random 
fields from the Weiss field. 

It is convenient to change from the random variables 
Xk defined by Eq. (3.2) (with A == p-l) to independent 
Gaussian random variables CT specified by 

(6.1) 
and 

(CTCT')av C = ()TT" (6.2) 

The variables Xk can then be expressed by 

Xk = I CTg~UTk' (6.3) 
T 

where gT are the eigenvalues and UTk the normalized 
eigenvectors of p. The eigenvalues are given by Eq. 
(2.5); the eigenvectors are trigonometric functions. 
Note that UOk is independent of k, 

(6.4) 
and go is given by 

go = y-1Cn(y) (6.5) 

[Eqs. (2.5) and (2.7)]. 
The partition function Qn, given by Eq. (3.5), then 

becomes 
Qn = 2ne-nvy/2p n' (6.6) 

with P n defined by 

P n == /\II cosh [XiVy)t]\/ 
k av x 

= /\II cosh [I (Vygr)!CrUrk]\/ 
k T av c 

== r . J exp { - t ~ C; 

+ I In cosh [I (Vyg}CTUTk]} II dC
T i . 

k T T (27T) 
(6.7) 
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We proved in Sec. 3 that the integrand assumes its 
largest value at two points, defined by Eqs. (3.14a), 
(3.14b), and (3.16), and only at these points, which in 
the variables c, are given by 

C, = 0, 'T ~ 0, 

Co = ±(nlvygo}~Y, 

where y is the positive root of the equation 

y = veney) tanhy. 

(6.8a) 

(6.8b) 

(6.9) 

The variable Co is thereby singled out. In order to 
carry out the expansion, we rewrite (6.7) in the form 

Pn = r exp {-l I c; 
).0>0 T 

+ t In cosh (Y + f [(vygicT 

- n~Y<5ro]Urk)\ II dc T ! 
'J ' (27T) 

+ r exp {-l I c; 
).0<0 r 

+ I In cosh (-Y + I [(vygicr 
k r 

+ n!y<5TO ]U'k)} II dc,!. (6.10) 
r (27T) 

Changing the sign of all variables in the second 
integral, one obtains 

J =J exp{-tIc; 
.0<0 •• >0 T 

+ I In cosh (-Y - I [(vygic r 
k T 

- ntY<5 ro]U'k)} II dc,!, (6.11) 
r (27T) 

which is equal to the first integral. We then change to 
new variables c~ by 

c~ = C, - (njvygo)!<5 ToY, (6.12) 
and obtain 

-00 

X exp {-Uc~ + (n/vygo)!y]2 - l I C~2 
T"O 

+ t In cosh (Y + f (Vygr)!C;Urk)}' (6.13) 

Expanding the exponent of the integrand to second 

order in the deviations from the Weiss field, we obtain 
(omitting the prime at the variables) 

P n ~ P~ == 2 r II dCT 

- )co>-<n/vygo)!'11 , (27T)! 

x exp {-l (co + (n/vygo)!y)2 - l Ic; 
. , .. 0 

+ I [In cosh Y + tanh Y I (vyg}C,UTk 
k r 

+ t(1 - tanh2 Y)(f (Vyg,)!C,U'k)2]} (6.14) 

= 2J II dc, 
c.>-(nlvygo)~11 , (27T)! 

x exp {-uco + (n/vygo)!y]2 - t I C~ 
, .. 0 

+ n In cosh y + (nvygo)!co tanh y 

+ HI - tanh2 y) f vygrC;}. (6.15) 

Since 
(vygo)-!y = (vygo)t tanhy, (6.16) 

according to Eqs. (6.9) and (2.22), the terms linear in 
Co cancel, and 

P~ = 2 exp {-n[ y2 - In cosh yJ} 
2vCn(y) 

and 

xJ II dc, 
co>-(n/vyyo)t'll , (27T)! 

x exp {-t f c~[l - vyg.(l - tanh2 Y)J}, 

(6.17) 

lim 1: In P~ 
n~oo n 

y2 1 
= - -- + In cosh Y - t lim -

2vC(y) n-+oo n 

X I In [1 - vygr(1 - tanh2 y)] 
, .. 0 

+ 11' 1 foo dco 
~ 1m - --

n-+ro n -(n/vyuo,tll (27T)! 

X exp {-c~[1 - vCiy)(1 - tanh2 y)]} 
2 

= - -y- + In cosh y - t(27T)-D 
2vC(y) 

2lr 

X r . J dDw In [1 - vyg(w)(l - tanh2 y)], 
o 

(6.18) 
since the last term vanishes for y > o. 
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For the free energy at temperatures below the 
BWCP we thus obtain 

{ 

y2 
tp "-' -kT In 2 - --

- 2vC(y) 

+ In cosh y - lvy - !(27T)-D 
2" 

x r . -J dDw In [1 - vyg(w)(1 - tanh2y)]}. 

o 
(6.19) 

Comparison of this result with Eq. (4.27) shows that 
in the limit y-..O, i.e., vC(y)-..I, the free energy 
approaches the same value from both sides of the 
BWCP, since 

2" 

-(27T)-D r . -J dDw In [1 - vyg(w)(1 - tanh2 y)] 

o • 
cvyU-tanh v) 

== Jo R(~) d~, (6.20) 

with Ra) defined by Eq. (4.25). 
The energy per particle, E, is, in this approximation, 

i = J.E.. (.l!...) 
dv kT 

= - J - - -- + In cosh y - ivy d { y2 
dv 2vC(y) 

+ tIY(1-tanh2Y)R(~) d~}, (6.21) 

where y is to be considered a function of v. Since 
dyjdv becomes singular for y -.. 0+ but d(y2)jdv 
remains finite, we use the latter and obtain 

{ 
y2 dy2 1 ( y ) 

E = -J 2V2C(y) + Tv 2y tanh y - vC(y) 

+- 1-tanh y+v--Y[ 2 dy2 1 
2 dv 2y 

x (-~:::~ :)]RCo:~2 y)}. (6.22) 

The second term vanishes for y =;l: 0, and we obtain 

E = -J{-L - ~ + ~[1 - tanh2 y 
2V2C(y) 2 2 . 

limit when the temperature approaches the BWCP 
from above and below. To show this, we solve Eq. (6.9) 
for small positive y and obtain 

or 

and 

_1_ = tanh y "-' 1 _ t, (6.24) 
vC(y) y 3 

Y2 ~ 3 (1 __ 1_) (6.25) 
- vC(y) , 

y2 3 
d-~--· 

dv - v2C(y) 
(6.26) 

We thus have, with Ve defined by Ve == C-l(y), 

E(v=v,+O) = -J{ - ~ - YR(VcY)}, (6.27) 

while for temperatures approaching the BWCP from 
above we have, from Eq. (4.27), to first order in y 

E(v=v -0) = -J{- ~ + ~ R(VcY)}. (6.28) , 2 2 

This discrepancy does not invalidate the results, but 
shows that the conditions stated for the validity of the 
expansion in yare necessary. Under these conditions 
it is not permissible to approach the BWCP for any 
fixed y, however small. Above the BWCP this can be 
seen also from the fact that, even for the three
dimensional model, the y3 terms in the energy derived 
from Eq. (4.27) became infinite at the BWCP, if g(w) 
has the form (4.30). 

SECTION 7 

We have seen that after a few terms in the straight
forward y expansion of the free energy, we obtain 
terms which become infinite at the BWCP. This is 
clearly a failure of the approximation and does not 
indicate a phase transition. In this section we show 
how to avoid this by using a variant of the partition 
function 

Qn = "5' exp (V
2
Y!' Pklf-lkf-ll)' (7.1) 

{'i;) k,l 

Since f-l: = 1 and Pkk = Po = 1 by assumption, we 
may write (7.1) in the form 

- V dy2 tanh y ]R ( vy )1\ (6.23) Qn = exp [!!.2 (ex. - Vy)] 
dv y cosh2 Y cosh2 y r 

We had found that R(vy) becomes infinite at the BW 
Curie point for the one- and two-dimensional models 
if g(w) is given by Eq. (4.30) for small w, but remains 
finite for the three-dimensional model. Even in that 
case, however, the energy does not approach the same 

x ! exp [-i !(ex.t5k1 - VYPkl)f-lkf-ll] , (7.2) 
(II) k,l 

which is clearly independent of the choice of the 
parameter ex.. In order to apply the techniques of Sec. 
3 to (7.2), it is necessary that the matrix ocI - vyp 
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(with matrix elements OCbkl - VYPkl) be positive
definite. This requires 

(7.3) 

where go is the zeroth Fourier coefficient of Pk' 
Proceeding as in Sec. 3, from (7.2) we obtain 

Qn = 2n(27T)-n/2 exp G (oc - VY)] {det (ocI - vYP))-! 

GO 

-GO 

(7.4) 

Defining a matrix pet) by the relation 

(I - tp)-1 == (I + tp), (7.5) 

and setting Xk = u~ioc)! with u == [1 + (vy/oc)Po]!, 
we obtain 

Qn = 2n(27T)-n/2un 

X exp [~(OC - VY)]{det (I - v: p)r! 
GO 

X r . J exp ( - t t ~:) 
-GO 

Here Po stands for Pkk(VY/OC) which is independent of k. 
Finally, defining an average ( )av Ii over independent 
Gaussian random variables ~k with mean zero and 
mean square unity, i.e., 

GO 

<f)av Ii == (27T)-n/2 r . J exp ( -t t ~:) FIJ d~k' 
-GO 

(7.7) 
we obtain 

1 

Qn = (2u)nen(a-Vr-U
2
a)/2{det (I - ~ p)r\n, (7.8) 

where 

hn = I\exp (- vyu
2 
2' Pklk~l) IT cos [U~koc!]/\ 

20c k,l k av Ii 

X (cos [u~koc!]);;::I;' (7.9) 

The free energy per spin, 1p, is now given by 

with 

1 
-f31p = :F1 + -In hn' 

n 

:F1 = In 2 + In u + Hoc - vy - u2oc) 
- - In det I - - P . 1 (vY ) 

2n oc 

(7.10) 

(7.11) 

The right-hand side of (7.10) must be independent of 
the choice of oc. However, it is possible that a propi
tious choice for oc may result in the first few terms in the 
expansion (7.10) being a good approximation to the 
true free energy. To that end, we expand the exponen
tial in hn and obtain 

1 (VYU2)2 , ,__ 
hn = 1 + -2 -2- ~ 2 PiiPkl 

0: 't,' 11,1 

X <~i~i~k~l IT cos [U~8OC!]/\ 
8 avl; 

X (cos [U~kOC!]);;:; I; + ... , (7.12) 

In obtaining these results, we have used the fact that 

(7.14) 

The second term in (7.13) may be eliminated by choos
ing oc to satisfy the equation 

(7.15) 

Rewriting this equation, we obtain 

With this choice of oc, the next term in the expansion 
(7.13) also vanishes. In fact, all diagrams-with Pkl 
considered as a line between vertices labeled k and /
which have at least one vertex of order less than four, 
vanish for this choice of oc. 

An alternative approach which suggests that (7.15) 
is a reasonable criterion is the following. The free 
energy 1p given by (7.10) is independent of oc. We can 
choose oc so that the approximation given by (7.11) 
is locally independent of oc, i.e., set d:F1/doc = O. 
This yields 

d:F1 = (1 _ u2oc){1 au + ~ __ 1_} = 0, (7.17) 
doc u aoc 20c 20cu 2 

which is consistent with (7.15). In obtaining (7.17) 
we have used the relation 

lndet (1- ~ p) = -nlVy/apo(t)dt, 

according to (4.20) with v replaced by v/oc. 

(7.18) 

Still a third criterion which also suggests (7.15) as 
the appropriate choice for oc is the following. In an 
external magnetic field H(r) the partition function 
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(7.1) becomes 

Qn = I exp (V
2

y I' Pklflkfll + {3 I Hkflk) , (7.19) 
{Il} k,l k 

where Hk is the value of the external field at site k (in 
appropriate units). The two-spin correlation function 
<flrfls) may be obtained from (7.19) in two distinct 
ways: either by differentiating twice with respect to 
external fields or once with respect to the interaction 
matrix element PT.; that is, 

or 

<flrfls) = ~ a In Qn . (7.21) 
vy oPrs 

Therefore, in any exact calculation, the thermodynamic 
identity 

~ a In Qn = ~ {021n Qn + a In Qn a In Qn} (7.22) 
vy OPTS {32 oHroHs oHr oHs 

must obtain. Transforming (7.19) into an integral 
and summing over all flk = ± 1 results in 

Qn = (2u)n exp (~(a - IVY») 

X {det (I _ v: p)t!(27T)-nI2 

00 

X f ... f exp ( -t t ~: - u~:y ~' Pkl~k~l) 
-00 

k 

Defining < )av Ii by (7.7), (7.23) becomes 

Qn = (2Ut en(a-V r-U
2

a)/2{det (I - V: p) t! 

X [If cosh ((3Hk )] hn' (7.24) 

and 

rp(~k' Hk) = ~u~ka! - i{3Hk] 
<cos [u~ka! - i{3Hk])av Ii 

eu2a/2 cos [u~ka! - i{3Hk] 

cosh ({3Hk) 
(7.26) 

The free energy per spin is now given by 

-(3tp = lin Qn = -(3tp(O) + 1 In hn' (7.27) 
n n 

with 
-(3tp(O) = In (2u) + i(a - vy - u2a) 

- ~ In det (I _ vy p) 
2n a 

1 + - I In cosh ((3Hk ). (7.28) 
n k 

We may expand the last term in (7.27) by the technique 
of Sec. 5; we obtain 

-In hn = I - vyu b" == -(32, tpW, (7.29) 1 00 (2)" 00 

n ,,=1 a ,,=1 

where the b" are given by (5.13) except that they now 
contain an additional dependence on the external 
fields H k • Explicitly, tp(O) is given by (7.28) and 

vyu4 

-(3tp(l) = - 2,' Pii tanh ({3Hi) tanh ({3Hi), (7.30) 
2n i,i 

and 

-(3tp(2) = (VYU2)2~{t 2,' [(u20( _ 1)2 
a 2n i,i 

- U40(2 tanh2 ({3Hi) tanh2 ({3H i)](Pii)2 

+ u20( I tanh ({3Hi) tanh ({3Hk) 
i*i,k 
i*k 

X [(u 2a - 1) - u20( tanh2 ({3Hi)]PiiPik}' 

(7.31) 

To get an approximate expression for <flrfls)' we con
sider terms up to and including tp(2) in (7.27). After 
taking the derivatives indicated in (7.20) and (7.21), 
we set all Hk = 0, so that our results are for the case 
of zero external field. In this manner, we obtain 
from (7.20) 

<flrfls) = (vyu4){Prs + 2(u20( - 1)[(p2)rs - 2PoPrs]), 

(7.32) 
and from (7.21) 

We note that these two expressions are not in general 
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equal, so that the identity (7.22) is violated. However, 
the identity can be preserved (at least to this order) 
if we choose IX to satisfy (7.15), since both (7.32) and 
(7.33) then become 

<I-'.I-''} = (vyu4)Pr.· (7.34) 

Using this approximation, we obtain for the energy 
per spin 

E ~ - (Vy)2_1_ ~I P P- = _ .! (IX - 1 - vy), 
- 2 {3 k •• rs 2{3 

IX n r.' 

and for the free energy per spin 

-{31jJ ~ In 2u + t(1X - 1 - vy) 

_ ..lIn det (I _ vy p) 
2n IX 

(7.35) 

rVy,<x 
= In 2u + t(1X - 1 - vy) + !Jo poet) dt. 

(7.36) 

These expressions are well behaved at the BWCP, 
so that our IX formalism has removed the singularities 
which arise there in the straight r expansion. 

SECTION 8 

The results of the previous section are closely 
related to previous work of Brout, l and M iihlschlegel 
and Zittartz.5 Since our notation differs from that of 
these authors, we give here a comparison. Brout uses 
the interaction Hamiltonian 

-Je = t ! I Viil-'il-'i 
i.i 

and Fourier transform 

v(q) =! viieiCl'(H), 
i 

(8.1) 

(8.2) 

where i and j are vectors with integer components, 
q is a reciprocal lattice vector, and Vii is chosen to be 
zero. He then introduces a parameter <5 determined by 

1 = !! 1 (8.3) 
n CI 1 + {3<5 - {3v(q) 

Miihlschlegel and Zittartz use 

-Je = ! ! I J'iiO'iO'i, 
i.i 

V(p) = ! J'iie-iP' (';-';: 
i 

and a parameter I-' determined by 

1 =!! 1 
n " 1 - 2{31-' - {3v(p) 

(8.4) 

(8.5) 

(8.6) 

The corresponding formulas in the present paper are 

JY~I 
-Je = -2 -4 Piil-'il-'j, 

1.3 

~ -biT' (i-J)/m gT = k Pije , 
j 

and 

1 = 1 !_-=.1_ 
n T IX - vygT 

which may be obtained from (7.16) and (2.4). 

(8.7) 

(8.8) 

(8.9) 

Our formulas may thus be transferred into Brout's 
notation by the replacements 

JYPii -+ Vi; (i ¢ j), Jy(gT - 1) -+ v(q), 

and (IX -: 1 - vy)/ {3 -+ <5; and into the notation of 
Miihlschlegel and Zittartz by I-'i -+ O'i' JYPij -+ Vii' 
JygT -+ v(p), and IX -+ 1 - 2{31-'. In these papers, the 
Curie point is determined from the equation 

1 + {3e<5 - {3ev(O) = 0 

(in Ref. 1) and from 

1 - 2{3el-' - {3ev(O) = 0 

(8.10) 

(8.11) 

(in Ref. 5). In our notation, this would correspond to 

IX - veygo = O. (8.12) 

Now, we recall from Eq. (7.3) that the representation 
we have employed requires IX > vygo, and is therefore 
invalid at the temperature required by (8.12). The 
anomalies which occur at Te as determined from (8.10)
(8.12) are therefore spurious in the sense that they 
arise from the representation employed and the choice 
of the parameter IX. It could, of course, happen that 
the anomalies which result from our representation 
still reflect a phase transition of the model, in which 
case we may hope that the Te determined from (8.10)
(8.12) is close to the true Te for the model. This hope is 
certainly unjustified for the case of the two-dimensional 
model, since in that case (8.10)-(8.12) show that the 
right-hand sides of (8.3), (8.6), and (8.9) become 
infinite while the left-hand sides of those equations 
remain finite, so that there is no solution Te. To 
see this, writing (8.9) in the limit as n -+ 00, we 
obtain 

2.-

1 = (217)-D ... , f f 
dDW 

IX - vyg(w) 
(8.13) 

o 
where D is the dimensionality of the model. Assuming, 
as usual, that g(w) '" g(O) - Aw2 for small w, and 
inserting the value of IX given by (8.12), we obtain 

(8.14) 
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For D = 1, 2, this integral diverges logarithmically 
or worse at the lower limit, while for D = 3 it remains 
finite. We conclude, then, that in one or two dimen
sions the equation determining the "Curie point" has 
no solution, so that the singularities in the approxima
tion are not related to a phase transition of the model. 
In the one-dimensional case, where there should not 
be a solution Tc, we show the failure of the approxima
tion by the other means (Appendix D). Thus, while 
we cannot exclude the possibility that in three dimen
sions the failure of the approximation is linked to the 
phase transition, the fact that this. same .approximatio~ 
fails in the case of one and two dimensions makes this 
very doubtful. 

SECTION 9 

This section is a summary of our results and a 
comparison with previous work. 

The following results have been obtained for the free 
energy per spin, "P, for the model described in Sec. 2. 
For any fixed temperature above the BWCP, we have 
found (in Sees. 4 and 5) that 

"P = -kT{ln 2 + fl + f2 + f3 + «1'4»}, (9.1) 

where «1'4» denotes an infinite series of terms of 
order 1'4 and higher order, and fl , f2' and f3 are of 
order y, 1'2, and 1'3, respectively, and are given by 

fl = ~[IY R(~) d¢ - vy J, (9.2) 

1[ v1'R(v1') J 12 = -"2 In (1 + v1'R(vy» - 1 + vyR(v1') , (9.3) 

and 
fa = (v1')4[tR2(v1')R22(V1') + -l:!-R42(VY)]. (9.4) 

Here 
2" 

R(¢) ==ltmpo(¢) = -- ... d w , . 1 f f D gem) 
n-oo (27T)D 1 - ¢g(m) 

o 
(9.5) 

n-oo 

- _1 f' ~"'fdDw[ g(w) J2 (9.6) 
- (27T)D 1 - ~g(w) , 

o 
and 

R'2(¢) == lim I [pz(¢)]4 

where 
(00) 

() "" ik'CJ) gw =",e Pk' (9.8) 
Ie 

and the matrix p(~) is obtained from the matrix of the 
interaction, p, by 

P == p(l - ~p}:-\ (9.9) 

and Po is Pkk($). The term f3 is of order 1'3, not 1'4, 
since 1'R22(v1') and yR42(VY) are bounded for y ->- 0 for 
any fixed temperature above the BWCP. The terms 
It andI2 have been obtained without diagram summa
tion by extracting factors from a representation of the 
partition function as an average over Gaussian random 
variables. The remaining terms fa + «1'4» are 
denoted by lim (lin) In q~2), and we have obtained a 

n-OO 

series for them [see Eq. (5.14) and the definitions 
(4.10), (5.7)-(5.9), (5.16), (5.18), (5.19)]. We have 
proved that the limit as n ->- 00 of each term in this 
series is of order 1'3 or higher, and we have a heuristic 
argument for the order of each term in this series 
which shows that all terms of order 1'n are contained 
in the first (2n - 3) terms of the series. The term fa 
given above is obtained from the first and third term 
of the series; the second term is of higher order. 

The first-order term of (9.1) agrees with that 
derived in Ref. 1, which gives explicitly only the 
terms of order 1'. Stell et al20 have checked our Eq. 
(9.1) through order 1'2 by a different method and 
report agreement. Baker9 and Kac8 have given the 
exact free el1ergy for the one-dimensional model with 
exponential interaction which has a phase transition 
in the limit l' ->- O. Kac obtained the free energy per 
spin as the largest eigenvalue of a certain integral 
equation and gives explicitly the terms through order 
1'2 above the BWCP. We have specialized our results 
to this case in Appendix C and show agreement. 

If the second moments of Pk exist and Pic satisfies 
certain symmetry conditions, g( w) has the form 

gem) '"'-' g(O) - Aw2 , (9.10) 

for small w. The analytic form of R(v1') near the 
BWCP is then the same as the analytic form of similar 
integrals occurring in the theory of the spherical 
modtl.21 Specifically, R(v1') becomes infinite for the 
one- and two-dimensional models, but remains finite 
for the three-dimensional modeL 

If g(w) has the form (9.10), the function R 22(VY) 
becomes infinite at the BWCP even for the three
dimensional model. Since both R22 and R42 are positive 

•• G. Stell et al., J. Math. Phys. 7, 1532 (1966). 
2' T. H. Berlin and M. Kac, Phys. Rev. 86, 821 (1952); see also 

Newell and Montroll, Ref. 18. 
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above the BWCP, there can be no cancellation, and 
fa becomes infinite at the BWCP. However, our 
assumptions do not exclude interactions which do not 
have a second moment. If Pk does not have a second 
moment, then g(w) can be of the form 

g(w) "-' g(O) - B Iwl (9.11) 

for small w. In this case, R(vy) remains finite for the 
two-dimensional model. 

For temperatures below the BWCP, we obtained, 
in Sec. 6, the free energy per spin in the form 

1p ~ -kT{ln 2 - -Y- + In cosh Y - tvy 
2vC(y) 

217 

o 

x In [1 - vyg(w)(1 - tanh2 y)]}, (9.12) 

with y the positive solution of the Weiss field equation 

y = vC(y) tanhy, (9.13) 
and 

C(y) = yg(O). (9.14) 

Equation (9.12) gives 1p through order y below the 
BWCP and is in agreement with the calculation of 
BrouUIt also agrees with the result of Kac8 and Baker9 

when it is specialized to a one-dimensional system with 
exponential interaction. For temperatures above the 
BWCP, Eq. (9.13) has only the root y = 0 and then 
(9.12) agrees with (9.1) through order y. 

In Secs. 7 and 8 we have introduced another variant 
of the partition function characterized by a parameter 
IX which is chosen to satisfy the equation 

(9.15) 

This allows us to make contact with previous work of 
Broutl and Miihlschlegel and Zittartz,5 and our 
results agree with those given by them. We are able 
to eliminate the singularities at the BWCP by this 
technique. We have also shown that the singularities 
which now occur are not related to a phase transition 
of the one- or two-dimensional model and are prob
ably also spurious for the three-dimensional case. 
The main calculation of these sections yields the 
two-spin correlation function in the form 

vy _ (VY) (flrfls) ~ 1X2 Prs ;- , (9.16) 

with firs defined by (9.9). In Appendix D we use (9.16) 
to obtain an explicit form for (flrfls) for the one
dimensional case with Prs '"" e-Yir-s i, and compare 
our result with that of Kac and Helfand.ll The result 
of their calculation is 

(flrfls) = yi{ ale-bly-tir-si + a2e-b.y-tir-si + ... } + O(y!). 

(9.17) 

Kac and Helfand find al = 0.656, bI = 0.754, a2 = 
0.0019, b2 = 2.91. We have obtained al = 0.630, 
bI = 0.794, b2 = 2.382. We have not calculated a2 

exactly, but our estimates indicate that it is consider
ably smaller than the corresponding value of Kac 
and Helfand. Thus we see that this improvement of 
the method removes the most serious drawback of the 
straight y expansion in which, after a few terms, the 
coefficients of the series become infinite at the BWCP. 
It does not, however, correctly yield the dominant 
terms (yi) in the spin correlation function, although 
the numerical values of the parameters in the term of 
longest range are very well approximated. Since the 
choice of IX or the corresponding parameters of Brout 
and Miihlschlegel and Zittartz seems to be forced by 
the additional arguments in Sec. 7, it appears unlikely 
that a different choice of IX will result in a substantially 
improved approximation at the BWCP. 
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APPENDIX A 

We prove here that no solution of (3.13), other than 
the Weiss field solution [(3.14a), (3.14b)], has com
ponents, all of which are of the same sign. 

Introducing a more convenient notation by 

Yk == (VY)!Xk' (AI) 

we write Eq. (3.13) in the form 

Yk = vy 2: Pkl tanh Yl· 
I 

(A2) 

Summation over k yields 

2: Yk = vCn(Y) 2: tanh Yl' (A3) 
k 1 

or 
2: (Yk - vCn(Y) tanh Yk) = O. (A4) 
It 

With 
(A5) 
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where x is defined by Eq. (3.16), we have 

Ihl < Y (A6) 

for all solutions other than the Weiss field solution. 
With Yk in this interval and vCn(Y) > 1, 

Yk - vCn(Y) tanhYk > 0, if h < 0, (A7) 

and vice versa. The components h of any solution. 
other than the Weiss field solution cannot, therefore, 
be all of the same sign. 

APPENDIX B 

In order to prove the inequality (S.32), we note that 
the matrix elements of P are nonnegative according 
to Eq. (S.22). Furthermore, every even-connected 
graph with at least one point k of degreef, withf > 2, 
is contained in the class of graphs consisting of fl2 
chains leaving the point k and returning to it, if 
neither the points of one chain nor the points of 
different chains are required to be distinct. The 
chains will be labeled by (j (= 1, 2, ... ,//2) and the 
number of p bonds in the chain (j by .10"' The total 
number of bonds in the chains must be the same as 
that in the graphs under consideration. We thus have 

A 

I' IT PVa 
v,··· VA a=1 

~ I' I IT (I Pkl,Pl,Z2' .. PZ'ak) ' 
11' ... ,).,/2 k 0'=1 {r} 

(Bl) 

where I~ ... A is restricted by " . / /. 
112 

I .10" = }" (B2) 
0'=1 

and II!} means the sum over 11, 12 , ••• , I~ == IAO"-I' 

The right-hand side of the inequality (Bl) can be 
immediately evaluated in the form 

A 112 

I' IT PVa ~ I' I IT (pA"hk 
PI' .. PA a=1 A,,' .. • A//. k 0"=1 

112 

= n I' IT (pA")O' (B3) 
i. I • " 0,).//2 0'=1 

so that, according to (S.26), 
i. A 

lim ~ I' IT PVa 
n-+oo n Pl.··· .p). (1=1 

112 

~ I' yA II yl-A"MA" = yf/2M~, (B4) 
A,,' .. • A//2 ,,=1 

where the quantities MA and therefore M~, also 
" remain bounded for y -->- 0, since the sum over 

AI, .12 , ••• , }'112 is a finite sum. 
The sum I~ ... PA over graphs with at least one " , point of degree f and at least one point of degree h 

can be estimated by a similar procedure. There are 

at least two paths between the two points, and we have 
A 

"'" II-"- Pvl1. 
PI'" 'd';' 1X=1 

f' 

~ A"~ At' A"~' Ah' ,tAb tz !! (~ PkZ, ... Pl~k) 
X (I Pki, ... pja'!) (I Pki, ... PibZ) 

{j} Ii} 

X IT (I Pll, ... PZTl) , (BS) 
T=1 IT) 

where f' = tu - 2), hi = t(h - 2), and I~, means 
[AO"-1 ,j~ meansj A.-I, etc., and the sums over the chain 
lengths Al ... AI" A~ ... A~', Aa, Ab, are restricted by 

!(f-2) !(h-2) 

I A" + I A; + Aa + Ab = A. (B6) 
0'=1 T=1 

We obtain 

(B7) 

where M; remains bounded for y -->- O. 
(B8) 

APPENDIX C 

In this appendix we specialize the results of Sees. 
4 and 6 to the case of a one-dimensional model with 
exponential interaction defined by 

piy) = e-y1kl , (Cl) 

and compare the results with exact calculations of 
Baker9 and Kac.8 We limit our computations here to 
terms through order y2 above the BWCP and order 
y below the BWCP since these are the only results 
explicitly given in this prior work. 

For the interaction given in (CI), we have 

( ) 
_ ~ ilco>-"Ikl sinh y 

g w = "- e ' = (C2) 
k=-oo cosh y - cos w 

The function R(~) is obtained most conveniently 
from the Fourier coefficients Rk(~) of g(w)/(l -
~g(w)) : 

RkW == ~ r2~ g(w) e-ikw dw, (C3) 
27T Jo 1 - ~g(w) 
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so that 
(C4) 

Explicitly, with g(w) given by Eq. (C2), we have 

1 12
" sinh ye-ikro 

Ri;) = - dw. 
27T 0 cosh Y - ; sinh y - cos w 

We write this in the form 

sinh y 1 1211 sinh ye-ikro 

Rk(;) = --- dw 
sinh y 27T 0 cosh Y - cos w ' 

with y defined by 

cosh y == cosh Y - $ sinh y, 
and 

y~o. 

Since Eqs. (CI) and (C2) imply that 

-ylkl 1 12
" sinh y -ikro d e = - e w, 

27T 0 cosh Y - cos w 
we have 

(CS) 

(C6) 

(C7) 

(CS) 

(C9) 

Ri$) = s~nh ~ e-r1kl , (ClO) 
smh y 

and in particular 

R(;) = Rom = sinh y = sinh y . 
sinh y [(cosh y - $ sinh y)2 - l]t 

\ 

(Cll) 

Considering y as a function of $ with y as a fixed 
parameter, we have 

. h - dy d h - . h sm y - = - cos y = -sm y, d; d; 
(CI2) 

or 

R(;) = _ d~~$), (C13) 

and we obtain 

I7 R(;) d; = -y(vy) + y 

= -arc cosh (cosh y - vy sinh y) + y. 

(C14) 
The BWCP defined by 

veyg(O) == veC(y) = I (CIS) 

expect. For any y > 0, the function R(vy) becomes 
infinite at the BWCP. 

Expanding in Eqs. (CII) and (CI2) in powers of y, 
we obtain for fixed v < Ve 

R(vy) = 1/(1 - 2v)t + O(y2), (CIS) 
and 

The free energy per particle is then obtained from 
Eqs. (9.1)-(9.3): 

1p = -kT{ In 2 + ![LVY R($) d$ - vyJ 

_ HvyR(vy»2 + «y3»} 

= -kT{ln 2 + ~ [1 - v - (1 - 2v)t] 

(C20) 

for any fixed temperature above the BWCP. Writing 
this in the form 

lim Q!!n = e-'I'lkT = 2e-VYI2{1 + ~ [1 - (1 - 2v)t] 
n-+oo 2 

+ y2 [1 _ (1 _ 2V)t]2 _ y2 _v
2

_ + «y3»}, 
8 4 1 - 2v 

(C2l) 

we establish complete agreement with the result 
obtained by Kac's integral equation method.s With 
the aid of Eq. (ClO), it would not be difficult to 
evaluate the functions R22 and R24 in our result, and 
obtain the free energy to third order in y. 

For any fixed temperature above and below the 
BWCP, we obtain the free energy per particle through 
O(y) from Eqs. (6.19) and (6.20) or (9.12). Observing 
that C(y) = 2 + O(y2), we obtain 

1p r-..J -kT{ln2 - ~: + In cosh y 

+ ~ {I - 'I' - [1 - 2'1'(1 - tanh2 y)]t}}, (C22) 

is given by where y is equal to zero, or to the positive root of the 

VcY sinh y/(cosh y - 1) = vcY coth y/2 = 1, (C16) Weiss field equation (6.9) 

or 

The BW Curie temperature J/kvc is an increasing 
function of the range y-l for y > 0, as one would 

y = 2'1' tanh y, (C23) 

for temperatures above or below the BWCP, respec
tively. Equation (C22) is in agreement through order 
y with the results of Kac.8 
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APPENDIX D 

In this appendix we test the approximation devel
oped in Sec. 7 by applying it to the two-spin correlation 
function <I'rl'.> for a one-dimensional model with 
interaction (CI). In the limit of infinite size of the 
model, the matrix elements Pro are given by Rk [Eq. 
(CIO)] with k = Ir - sl, and y given by (C7). At the 
BWCP (v = t), we solve (7.15) approximately for 
small y and obtain 

rx '"" I + (vy)i. (DI) 

Then (C7) and (C8) give 

y ro.J (2)-!y*. (D2) 

Collecting these results, we find for the leading term 
of longest range 

<I'rl'.> ro.J O.630yi e-O.794Y*lr-'I. (D3) 

This result is discussed and compared with the exact 
result ofKac and Helfandll in Sec. 9, following (9.16). 
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We analyze the general two-dimensional hyperbolic differential equation of second order by means of a 
substitution method. Our main interest lies in the support of the solutions, i.e., in an answer to the question : 
under what circumstances can a signal be transmitted along null rays? It turns out that, in general, a 
signal spreads, i.e., fills the entire future of an event. However, reasonably large classes of differential 
equations do permit nonspreading (characteristic propagation) solutions. As examples it is shown that 
multipole solutions of the flat space-time scalar wave equation and Maxwell equations fall into the non
spreading class, whereas multi pole solutions of the corresponding equations in a curved Schwarzschild 
background always show spreading (or continuous reflection). 

1. INTRODUCTION 

The propagation of disturbances of most physical 
systems can be mathematically described by second
order normal hyperbolic differential equations. In the 
simplest cases, these equations admit of wave solutions 
which propagate at some characteristic velocity, i.e., 
at some velocity which only depends on the medium 
(but not on frequencies, intensities, pulse shapes). 
We say that such solutions have the characteristic 
propagation property. In general media, such simple 
solutions are absent. The front of any disturbance will 
still propagate at some (maximum) characteristic 
velocity, but there will be a tail, or wake, to the wave 
which travels at all smaller speeds. This tail can be 
considered as a result of continuous backward 
scattering, or reflection, of the wave; we say in this 
case that the solution spreads. Our main effort will be 
directed towards finding criteria which tell whether a 
given equation has characteristic propagation solu
tions or not. 

* This work has been supported by the Office of Aerospace Re
search, United States Air Force. 

In this article we restrict ourselves to problems of 
one space dimension only (which form an exceptional 
case in the general theory of hyperbolic differential 
equations). Note that this restriction nevertheless 
allows the treatment of separable problems in which 
the solutions can be expanded in terms of complete 
orthonormal functions with respect to two space 
variables. Examples of this kind are media with plane 
symmetry, spherical symmetry, or cylindrical sym
metry.1 

In the literature2 we could not find results relating to 
spreading, except in very special cases in which explicit 

1 Note Added in Proof: The tail problem in three space dimensions 
has recently been solved by McLenaghan for the wave equation in 
Einstein spaces: [R. G .. McLenaghan, Proc. Cambridge Phil. Soc. 
(1968) (to be published)). 

• In historical order, we mention the following books on 
hyperbolic differential equations: (a) J. Hadamard, Lectures on 
Cauchy's Problem in Linear Partial Differential Equations (Dover 
Publications, Inc., New York, 1952); (b) J. Leray, "Hyperbolic 
Differential Equations," Lecture notes, Princeton University, 1952; 
(c) R. Courant and D. Hilbert, Methods of Mathematical Physics 
Vol. II (Interscience Publishers, Inc., New York, 1962); (d) 
L. Hormander, Linear Partial Differential Operators (Springer
Verlag, New York, 1963); (e) I. M. Gel'fand and G. E. Schilov, 
Verallgemeinerte Funktionen (Distributionen) III (VEB Deutscher 
Verlag der Wissenschaften, Berlin, 1964). 
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solutions were obtained. The characteristic propaga
tion property is related to Huygens' principle,3 whose 
precise scope of validity is not known (compare 
Hadamard's conjecture and its counterexamples4). 

In one space dimension, Huygens' principle is known 
not to be valid5 ; but characteristic propagation can 
be considered a modified Huygens principle for one 
space dimension. 

In trying to find criteria for the modified Huygens 
principle, we develop a (seemingly) new approach 
towards solving, or analyzing, the general second
order hyperbolic differential equation in two dimen
sions. The approach consists of repeatedly replacing 
the searched-for solution by suitably defined potentials. 
This substitution method gives closed-form solutions in 
terms of finite-order potentials for large classes of 
equations and gives integral representations in terms 
of "negative-order potentials" for other classes of 
equations; these two classes have nonvoid intersection. 
If applied to the characteristic initial-value problem, 
the substitution method gives partial answers to the 
characteristic propagation problem.6 

In Sec. 4 the substitution method is presented and 
reduced to the study of a sequence of functions in two 
variables. This substitution sequence is crucial to our 
analysis. Some of its properties are surveyed in Sec. 
5 and proven in Secs. 8-12. The main results con
cerning spreading are derived in Secs. 6 and 7. In a 
sense to be specified below, we find that, among all 
solutions, the spreading ones form an open set whose 
boundary points are those with characteristic propaga
tion. 

In this article we restrict ourselves to the homogeneous 
(rather than inhomogeneous) equation. As shown in 
the literature,7 the general solution of the homo
geneous problem implies the general solution of the 
inhomogeneous problem via Green's celebrated inte
gral theorem for which one needs the so-called 
Riemann-Green function, viz., the solution of the 
(homogeneous) adjoint equation for special boundary 
conditions.s 

3 Huygens' principle is formulated, and discussed in Ref. 2(c), and 
in the following: (a) L. Asgeirsson, Commun. Pure Appl. Math. 9, 
307 (1956); (b) S. Helgason, Acta Math. 102, 239 (1959). 

• Hadamard's conjecture, and some of its counterexamples, are 
presented in Ref. 3(a). 

5 See, e.g., Ref. 2(c), p. 765. 
• Note Added in proof: F. G. Friedlander has pointed out to us 

that "our" substitution method was already known to Laplace in 
1773, and used at length by Darboux; see G. Darboux, Le,o/ls sur fa 
tMorie des surfaces (Gauthier-Villars, Paris, 1915). 2me M., vol. II, 
book 4, Secs. 2-9. Darbouy presents a more powerful (and sophisti
cated) approach to one of the problems treated by us in Sec. II 
(symmetriGal double-terminating sequences). 

7 See, e.g., Ref. 2(c), pp. 449--461. 
S As a review article on the Riemann-Green function, we mention 

E. T. Copson, Arch. Ratl. Mech. Anal. 1, 324 (1962). 

The present analysis arose from the question 
whether electromagnetic waves in curved empty 
space-time suffer backward scattering-the answer to 
which appears to be positive. More precisely, (even) 
the simplest case of a Maxwell field on a Schwarzschild 
background gives rise to spreadmg. Further physical 
examples are deformations of a (nonhomogeneous) 
rope (which may even be immersed in damping 
surroundings), electromagnetic currents in a cable, 
or nonrelativistic quantum-mechanical probability 
amplitudes. These examples will be briefly treated in 
Sec. 8. 

2. REDUCTION TO RIGHT AND LEFT NORMAL 
FORM 

The general homogeneous second-order hyperbolic 
differential equation can be written as 

Lr/> = 0, (2.1) 

with the linear operator 

L : = gabV/)b + haaa + i. (2.2) 

Here gab = g(ab), ha, and i are 

(n + 1) 1 = (n + 2) 
2 + n + 2 

arbitrary functions of the n coordinates x a ; aa denotes 
(ordinary) partial differentiation, and Va covariant 
differentiation. 

The equation Lr/> = 0 can be simplified (i) by a 
conformal transformation of the metric gab, (ii) by 
suitable coordinate choice, and (iii) by a factor trans
formation on the unknown function r/>, by means of 
which n + 2 coefficients can be eliminated. 

In what follows we restrict ourselves to n = 2 
dimensions. Every 2-dimensional metric is conformally 
flat: 

gab = Igl-!1]ab, g:= det (gab)' gabgbC := o~, (2.3) 

where 1]ab is a flat-space metric tensor of signature 
(+ -). By adapting coordinates, we can choose 1]ab 

in one of the two normal forms 

f [~~l (a)} 
('1"')'" W _ ~J. (b) . (2.4) 

Choice (a) means that we have introduced two null 
coordinates u and v which are related to the Minkowski 
coordinates x and t of choice (b) through 

u = (x - t)12, 

v = (x + t)/2, 
(2.5) 
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For any choice of the coordinates, the covariant 
d' Alembertian takes the simplified form 

gabViJb = Igl-! oa Igl! gab ob = Igl-i Oa'fJabOb' (2.6) 

Combining the above simplifications with the factor 
transformation 

(2.7) 

from (2.2) and (2.6) we get 

Lr/> = f Igl-i {Oa'fJabOb + Igl! [ha + (lnf2).a]oa - j}1J! 
(2.8) 

with 
j:= -Igl i {haoaln If I +rlV~f+ i}, 

f·a : = gabod. (2.9) 

The first-order differential term in L can obviously be 
annihilated iff ha is a gradient. In general, we use f 
to annihilate at least one of the two first-order com
ponents, and for the coordinate choice (2.4a) we 
obtain 

Lr/> = flgl-i {ovou + hou - j}1J!, (2.10) 
where 

oulnf2= -hu' h:= hv + ovlnf2. (2.11) 

Finally, with 

k := exp fdV'h(U, v'), j:= jk, (2.12) 

Eq. (2.1) becomes equivalent to 

(2.13) 

where Ov acts on everything to the right of it. 
We call (2.13) the right normal form of Eq. (2.1). 

It contains the two coefficients j and k; u and v are 
characteristic or null coordinates. The function k can 
be eliminated, i.e., set equal to one through a s_uitable 
gauge iff it is a product of a function of u and a 
function of v, which takes place iff ha is a gradient. 
Physically, a nontrivial k corresponds to the presence 
of dissipation, i.e., to nonc6nservation of the energy 
of the system. 

Before we ask for the degree of uniqueness of the 
right normal form, we are interested in a transition 
to the corresponding left normal form (the roles of u 
and v interchanged): 

{oukov - j}X = 0, (2.14) 

which is obtained from (2.13) via the factor trans-
formation 

1J! =: k-1X· 

By straightforward calculation one finds 

k = k-\ ? =i + ovou In jkj. 
k k 

(2.15) 

(2.16) 

Let us remark that the adjoints of Eqs. (2.13) and 
(2.14) are obtained by interchanging Ou and ov; 
consequently, right and left normal form are adjoints 
of each other iff k = const, in which case they are 
equal and self-adjoint. 

3. GAUGE GROUP ; INVARIANTS 

In Eqs. (2.13) and (2.14) we obtained the right and 
left normal form of the homogeneous second-order 
hyperbolic differential equation in two dimensions. 
It contains the two coefficients j and k. We inquire 
into their degree of uniqueness. 

The first step in our reduction to normal form was a 
conformal simplification of the metric gab. We intro
duced two null coordinates u and v defined by 
gabVaob = jgj-i ovou' The corresponding null rays 
v = const, u = const, are the two null eigendirections 
of gab, and are thereby unique. Consequently, u and v 
are unique up to arbitrary monotonic transformations 

11 = 11(u), 

v = v(v), 
(3.1) 

which form the only possible coordinate gauges left. 
Once our equation is in the normal form (2.13) 

{Ovkou - j}1J! = 0, 

the only factor transformation 1J! = : fx which preserves 
this shape obeys /.U = 0, and the only possible 
conformal factor to be absorbed into this shape is a 
function of u. Considering the combined effect of 
a coordinate gauge, a factor transformation, and a 
conformal gauge, we find that the coefficient k is 
invariant up to a u-dependent factor and a v-dependent 
factor, and the same applies to j. k-Ij is invariant 
under combined factor and conformal gauges but 
behaves under coordinate gauges (3.1) as 

k-1i = 11 V k-1;, 
cf ,u ,v d (3.2) 

i.e., like a scalar density. The same applies to the nor
mal form of the d' Alembertian 

OvOu = 11. uv.vo"o". (3.3) 

From these results we infer that the operator 

(3.4) 

maps scalars or scalar densities into scalar densities, 
and that the operator 

(3.5) 

maps scalars or scalar densities into invariants. 
Equally, one finds that Ej and Ek are invariants under 
arbitrary gauges. (N.B.: Ej means "E applied to j!") 
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Of outstanding physical interest are static media 
for which both / and k can be chosen as functions of 
x = u + v only [cf. (2.5)]. A function Au + v) 
satisfies 

(3.6) 

and this equation is gauge independent, i.e., charac
terizes static coefficients in any normal form. 

4. SUBSTITUTION METHOD; POTENTIALS 

In this section, we consider the characteristic 
initial-value problem for "incoming" ("left traveling") 
radiation. By "incoming (left traveling) radiation" we 
mean solutions of (2.l3) in the future light cone of 
some event (chosen as the origin of spacetime) which 
vanish along the left boundary (ray). (See Fig. 1. 
Notice that with our coordinate choice u decreases 
towards the future!) An analogous treatment can, of 
course, be given under the outgoing radiation con
dition, and the solution of the general characteristic 
initial-value problem can be obtained as a super
position of an incoming and an outgoing solution. 

Our substitution will be based on the once-inte
grated right normal form (2.13) for zero outgoing 
data (outp = ° at v = 0), which reads 

/ooutp = fdV'itp, /0:= k. (4.1) 

This equation turns out to be form-invariant if we 
express the function tp in terms of a (generalized) 
potential tp2 defined by 

/tp2 := fdV'itp. (4.2) 

Indeed we obtain [cf. (3.4)] 

. :l /0 (:l:l' /.U:l') ;'ouutp = j UuU,,;'tp2 - / U,,;'tp2 

= ;'~ (o,,[Ou/tp2 - /.u tp2] + /tp2D/). (4.3) 
;' 

But the quantity in square brackets is equal to /Outp2' 
On the other hand, (4.1) and (4.2) yield 

(4.4) 

FIG. I. Incoming (or left trav
eling) radiation. 

comparison with (4.3) gives 

O,,/Outp2 = /tp2(i/o1 - D/), (4.5) 

or, for zero outgoing data (Ou'P2 = ° at v = 0), 

/Ou'P2 = l"dv:t'2'P2' (4.6) 

with 

(4.7) 

All steps of the foregoing transformation can be 
followed backwards to derive Eq. (4.1) from Eq. (4.6), 
and we have shown that the in tegro-differential 
equations (4.1) and (4.6) are eqUivalent (under the 
incoming radiation condition) if 'P and its potential 
tp2 are related by definition (4.2). This remarkable 
result allows one to replace a differential equation by 
another one of the same shape but with (in general) 
different coefficients. 

Moreover, a potential substitution analogous to 
(4.2) can be performed any number of times, both 
"forward" and "backward," resulting in 

Iteration of Eq. (4.9) gives a closed form expression 
for 'P in terms of its kth-order potential tpk+l: 

I'P = /-lo,,//"i1o"/2/a1 
... O"ik-V'i/Oviktpk+1j, 

for k > 0, (4.11) 
and 

(4.12) 

for potentials 'P-k of negative order - (k + 1), k ~ 0. 
The importance of this result can be gathered from 

the following remark: Suppose the sequence /k 
terminates to the right, i.e., we have in+! == 0, 
in ¥- ° for some n > 0. In this case, Eq. (4.8) for 
k = n + 1 reads Ou'Pn+1 = 0, so that 'Pn+l is an arbi
trary function of v; and formula (4.11) gives the 
general incoming solution as a modified nth-order deriv
ative [of an arbitrary nth order potential 'Pn+l(v)]. 
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Correspondingly, for left termination 

j=~n+1) == 0, j=~ ¢ 0, 

the general incoming solution is obtained from formula 
(4.12) as a modified nth-order integral [of an arbitrary 
(n + l)th-order potential V'-n(v)]. 

We have seen that the whole sequence of equations 
(4.8) is determined by the two coefficients jo ,j1 : = j 
in the right normal form (4.1). According to our 
invariance considerations in Sec. 3, the sequence of 
functions jk(U, v) defined recursively in (4.10) is 
invariant under combined factor and conformal 
gauges. We call it the substitution sequence. Under 
coordinate gauges, all ratios ii/jk+1 transform like 
scalar densities (which implies that their vanishing is an 
invariant property). Sequences related in this way 
form equivalence classes. 

In Eq. (2.16) we found that the left normal form is 
related to the right normal form according to 

jo-Y = joJ' + Djo, }o = jo1, 

which, via Eq. (4.10), implies that 

joY = j=Uo , whence / = j=i , 

and recursively 
';' ·-1 

cJk = cJ-k' 

(4.13) 

(4.14) 

(4.15) 

We call j=~ the mirrored sequence. Our last equation 
\ 

where 

tells that the incoming and the outgoing problem are 
described by mirrored sequences. 

If a sequence terminates to the right (left), its 
mirrored sequence terminates to the left (right). In 
either case, formulas (4.11), (4.12) provide closed 
form solutions. We can therefore solve the general 
characteristic initial-value problem (and especially 
determine the Riemann-Green function) whenever 
the sequence terminates to (at least) one side. 

For further analysis it is important to know that 
there is a mutual linear dependence between the 
kth-order transverse derivatives o~V' and the kth-order 
potentials V'k+1' We claim 

k 

:::lk '" k· f k> 1 UuV' = k a 1cJIV'I+1, or _, (4.16) 
1=1 

with coefficient functions a~ which are recursively 
determined by 

a~ = 0, for 1 = 0, 1 > k, 
k ~1 k+1 k + ·-1:::l • k 

ak = cJo, a1 = al- 1 cJl uUcJla I' (4.17) 

The simple proof by induction is omitted; it makes 
use of Eqs. (4.8) and (4.9) which imply that 

OUV'1 = j~\jlV'I+1' (4.18) 

We now show how formula (4.12) may be simplified. 
To this end we prove 

(4.19) 

(4.20) 

The proof is done by n-fold integration by parts, starting at the left end. We only demonstrate the first step, 
writing "Ihs" for the left-hand side of Eq. (4.19): 

In the second step, the square bracket takes the role 
of g1 (Xl) in the first step, and so on. 

For later use let us mention the following properties 
of the integrating kernel Gn(x, xn) in (4.19): 

n 
o:Gn(x, x) = II gk(X), (4.21) 

k=1 

They follow straightforwardly from the definition 
(4.20) once we note that Gn(x, xn) is stationary in all 
upper limits x, except the one at the right end. For 
instance, 

o",Gn(x, xn) 

= giX)gn<xn)Ja: dx n- 1gn_ 1 fa: ... fa:dx2g2(x2)' 
Xn )Xn-l JX3 

(4.22) 
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Application of (4.19), (4.20) to (4.12) yields 

(4.23) 

where H_1e is constructed from the i-<z-oi=~, i-Ie in the same way as Gk is constructed from the gz: 

H_iv, Vk) := i-ivk) (VdVk_d=U_<k_I) (V dvle- 2i=fk-oi-<k-2) (V ,"', (Vdvoi=tio I' 
JVk )Vk-l )Vk_2 JVl 

(4.24) 

for k > 0 (we have suppressed the additional u dependence), and where 

Ho(v, Vo) = io(Vo). (4.25) 

5. PROPERTIES OF SUBSTITUTION SEQUENCES for k ~ 2, and 

In the last section we defined the substitution ·-1 ·k-I '-k(l + ) ?-HI =??o Co 
sequence ik(U, v) and hinted at its importance in the 
analysis of solutions. Several of our future con
clusions will depend on nontrivial properties of this 
sequence which we shall prove in Sec. 8-12. For the 
benefit of the reader, the present section gives a 
summary of some of the results obtained. 

(A) We speak of right-terminating sequences if ik 
vanishes identically for some k ~ 1, and of left
terminating sequences if i=t vanishes identically for 
some k ~ 1. If both conditions are satisfied at the 
same time, we speak of double termination. The 
number of finite, nonvanishing elements in a sequence 
will be called its length. Lemma 1 states that all these 
possibilities are realizable. 

Lemma 1,' There exist sequences of any length 
L ~ 1. The general sequence of length L depends on 
2L arbitrary functions of one variable. The general 
right- (or left-) terminating sequence depends on one 
arbitrary function of two variables. Almost all 
sequences do not terminate to either side. 

Proof (sketch): The proof is now sketched. A left
(right-) terminating sequence is determined by its 
left (right) end element, i.e., by the last finite, 
nonvanishing element at that end. For double termina
tion, the left-end element has to satisfy an ordinary 
linear homogeneous differential equation with arbitrary 
coefficients. 

(B) There are sequences which can be expressed in 
closed form. They are the ones which satisfy 

Di = cVo~), Dio = co(jo~) (5.1) 

with arbitrary constants c and co' One finds 

. '-k+I 'k(l ) ?k =?o ? - c 

x(l- 3c + co)'" (1 - G)c + (k ~ l)co) (5.2) 

(5.3) 

for negative indices (k ~ 2). In the simplest special 
case, both i and io are constant. 

(C) Of special interest to physics are static sequences 
whose elements can and will be chosen as functions of 
x = u + valone [cf. (3.6)]. We will show that all 
members of double-terminating static sequences are 
rationalfunctions in x and (a finite number of)eWkX with 
possibly complex frequencies Wk' Special cases are 
rational functions in x alone. However, this structure 
is not sufficient for double termination. 

(D) Self-adjoint equations give rise to symmetrical 
sequences (in the gauge io = 1)1 which are defined as 
those equalling their mirrored ones: 

. '-1 
?-k = jk . (5.4) 

This is a direct consequence of Eq. (4.15) relating the 
right and left normal form. As a consequence, 
terminating symmetrical sequences are double-termi
nating. We have a conjecture concerning the analytic 
shape of their members (see Sec. 11). 

(E) We summarize: There exist non terminating, 
right-terminating, left-terminating, and double-termi
nating sequences. Symmetrical sequences are either 
nonterminating or double-terminating. None of these 
possibilities is lost if one restricts the sequences to 
static ones. Analytic expressions for all these classes 
are either known or conjectured, and criteria for their 
occurrence available. Several of the known solutions 
in the literature belong to nonterminating sequences. 6 

(F) Let us finally relate some properties of the 
sequences to well-known phYSical problems. The 
simplest physical media are static and nondissipative. 
Their corresponding substitution sequence is static 
and symmetrical. For instance, the radial behavior of 
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Maxwell multipole waves in fiat space-time gives rise to 
static, symmetric, terminating sequences whereby the 
order of termination is related to the order of the pole. 
The corresponding problem on a Schwarzschild 
background, however, gives rise to nonterminating 
(static, symmetric) sequences. 

6. SPREADING; CHARACTERISTIC 
PROPAGATION 

We are now ready to discuss the support of solu
tions, i.e., give partial answers to the question under 
what circumstances a wave propagates with or with
out a tail. 

The support of a function is the closure of the set on 
which the function does not vanish. The question for 
the existence of a wave tail is a question for the 
support of the solution (within the domain of de
pendence). For instance, let us consider kth-order 
right-terminating sequences. Formula (4.11) shows 
that in this case an incoming solution can only be 
different from zero along null rays v = const at 
which "Pk+l does not vanish. We call this phenomenon 
characteristic propagation. In a slightly more sophisti
cated language this means that the v support of 
the solution is contained in the support of "Pk+l' [The 
v support of "P, for ° ~ -u ~ uo, is the closure of the 
set of v- values at which "P does not vanish for some 
-u E (0, uo).] 

We just saw that for right-terminating sequences the 
support of "PHI contains the support of the solution 
and (clearly) also the support of the (characteristic) 
initial state "P(O, v). In general, if the initial state is of 
compact (or bounded) support, the kth-order potential 
need not have compact support: the solution spreads. 
However, all "PHI of compact support give rise to 
characteristic propagation. 

One might conjecture that characteristic propaga
tion was a privilege of right-terminating sequences. 
The conjecture is false; but we will show below that 
characteristic propagation is a measure-zero phenom
enon within the set of all equations and initial 
states. We are going to develop sufficient conditions 
for spreading. 

In what follows we assume the coefficientsjo ,j, and 
initial states "P(O, v) to be infinitely differentiable. 
Well-known existence theorems9 then guarantee the 
same differentiability structure for the solution 
"P(u, v); and we know that the expansion 

00 k 

"P(u, v)~ .2 ~ o~"P(O, v) (6.1) 
k~O k! 

• See Ref. 2(c), p. 470, or Refs. 2(d) and 2(c). 

is (at least) an asymptotic expansion. lO That is, if one 
extends the summation on the right-hand side up to the 
Kth term only, Eq. (6.1) is valid with a possible 
deviation of the order of the (K + l)th term. 

Our further discussion will be based upon Eqs. 
(4.16) and (4.17), which express the kth transverse 
derivative o~"P as a linear combination of the first k 
potentials "PI with nonvanishing highest coefficient 
a~ =jol. We conclude: 

Lemma 2: The union of the supports of all the 
potentials at u = ° is contained in the v support of the 
solution for ° ~ -u ~ Uo, Uo > 0. 

Proof' One reads off from (6.1) for u = ° that the 
support of the initial state (= Oth potential) is con
tained in the v support of the solution. Inductively, 
suppose that vo is contained in the support of "PHI but 
not of "PI for I:::;; k. Equations (4.16) and (4.17) imply 
that Vo must be contained in the support of a~"P, and 
hence in the v support of "P, because different terms in 
a power-series expansion cannot cancel each other 
identically in some interval. 

Lemma 2 has important consequences. Suppose the 
initial state "P(O, v) has compact support contained in 
the interval (0, Vo), say. According to Eq. (4.11), the 
lth potential is a modified lth-order integral of the 
initial state and is of the form (4.12). This integral may 
vanish for all v ~ Vo, at least for some small values of 
I. Supposeit vanishes fori ~ k, but not fori = k + l. 
In this case, we have "PHI = const ¥= ° for v ~ Vo; 
i.e., the support of "PHI extends to infinity. In other 
words, either all potentials are supported by (0, vo) or 
the v support of the solution includes all points from 
Vo to infinity. 

We can give sufficient conditions for the latter case 
to happen, conditions which are based upon the fact 
that repeated integration of a function with compact 
support leads eventually to a function with non
compact support. This fact is a generalization of a 
converse of the classical theorem of Rolle, which says 
that the derivative of a differentiable function on the 
real line has a zero between each two zeros of the 
function. We prove: 

Lemma 3: Let f(x) be an infinitely differentiable 
function whose support is an interval. Let Z[fJ be the 
number of zeros of f(x) whereby nth-order zeros are 
not counted if n is even, and whereby the two end 
points are counted onefold each. Then Z[f'] ~ 
Z[f] + 1. 

10 A. Erdelyi, Asymptotic Expansions (Dover Publications Inc 
New York, 1956). ' "' 
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Lemma 3 says that, on differentiation, one wins 
zeros, or conversely, that on integration one loses 
zeros. Its proof follows from the fact that a function 
has a relative extremum between each two of its 
zeros, so that f' has an odd-order zero between each 
two zeros off The number of intervals between zeros 
equals the number of zeros minus one, and the 
proposed inequality results when one takes account 
of the two end points. 

If one applies Lemma 3 to a function f with 
Z(fJ = N + 2, then, after at most N-fold integration, 
one arrives at a functiong with Z[g] s 2, which means 
that g has no zeros in the interior of the interval. A 
further integration necessarily results in a monotonic 
function. Consequently, the nth-order integral of a 
function f supported by an interval must have a 
noncom pact support if 

n > Z[fJ - 2. (6.2) 

We want to extend Lemma 3 to the potentials "Pk 
which are obtained from "P by repeated integration 
analogous to Eq. (4.12). Here we have to multiply 
each integral by a ratio of it's before the next inte
gration. If all these ratios are free of zeros (and 
infinities) or have only a limited number of them, a 
generalized Lemma 3 stilI applies, because the proof 
takes only account of the number of zeros in the 
interval. That is, if the (repeated) zeros of all the 
elements of a nonright-terminating sequence do not 
lie dense everywhere on the v axis, there will be 
potentials of noncompact support for all initial states 
with a finite number of (odd-order) zeros whose 
support is contained in an interval between accumu
lation points of zeros. The sequences (5.1) and (5.2) 
form examples of this kind for almost all values of c 
and Co. 

Let us make precise what we mean by "spreadIng." 
We say that a solution spreads (strongly) if its support 
is eq ual to the domain of dependence ( or future) of the 
nonzero initial data. (The future of a set is the union 
of the future light cones through all the points of the 
set.) 

With this definition we can infer from Lemma 2 
that an incoming solution spreads whenever there are 
potentials of noncompact support. Actually, the above 
proof only applies to a retarded time slice (0 S 
-u suo) of infinitesimal thickness. But it is not 
difficult to prove spreading globally under this 
condition by means of an argument by contradiction. 

Further insight can be gained by considering left
terminating sequences. They will provide examples of 
characteristic propagation for nonright-terminating 
sequences (and certain initial states). In (4.23) and 

(4.24) we obtained the general incoming solution for 
(n + 1 )th-order left termination: 

"P = ioifdV'H_n(U, v, v')"P_n(v'). 

In order to check on characteristic propagation, we 
have to assume "P(O, v) of compact support, contained 
in the interval (0, Vo), say, and ask whether the integral 
can vanish identically for u ~ 0, v ~ Vo. If it does 
vanish for v ~ vo, then so does the integral 

leu, v, VI) :=LvdV'H_n(U, Vi' v')'If_n(v') 

for aII Us 0, v ~ VO, Vi ~ vo, (6.3) 

because 'If-n(v) vanishes for v ~ Vo. But I(u, v, VI) is 
an analytic function in u and Vi if the functions ik(u, v) 
are analytic in uand V, and "P-n(v) is continuous, so that 
(at least) under this assumption I has to vanish 
identically in u and VI for all v ~ vo. Conversely, the 
condition 

leu, v, VI) = 0, for v ~ Vo, (6.4) 

is clearly sufficient for characteristic propagation of 
all initial states supported by (0, vo). 

In order to evaluate the criterion (6.4), let us 
restrict ourselves to static sequences in which case v 
can be replaced by v + u = x in all the relevant 
equations. The condition for characteristic propaga
tion now reads 

0= LlldX'H_n(XI' x')"P_nCx' - u), for x ~ Vo + u, 

(6.5) 

identically in Xl' Or, using the fact that "P-n(v) 
vanishes outside the interval (0, vo), we get 

° = L:dX'H_n<XI , u + x')"P_n(x') 

= (H_n * ~-n)(XI' u), (6.6) 

where ,p_n(v) := 'If-n( -v), and * denotes convolution 
with respect to the second argument of H_ n • 

Under Fourier or Laplace transformation, con
volution maps into ordinary (pointwise) multiplica
tion. Hence we get the equivalent criterion 

0= fLn(x1 , kW_n(-k) (6.7) 

for the Fourier or Laplace transforms H_n and 'if;-n 
of H_ n and "P-n. 

Now "P-n is by assumption a function of compact 
support, which implies that its transform 'if;-n is 
entire analytic. Consequently, 'if;-n has at most discrete 
zeros which cannot accumulate at finite points. 
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Criterion (6.7) says that the k support of H_n(xl , k) 
must be contained in the set of zeros of tP-n( -k). 
This restricts H_ n to (at most) a series in exponentials 
with polynomial factors (depending on the initial state). 
Almost periodic functions are special cases of this 
kind. 

So far we have ignored the fact that criterion (6.7) 
has to be satisfied identically in Xl' which imposes a 
severe extra restriction upon the (left-terminating) 
sequence considered. This extra condition drops out 
for n = 0 [cf. (4.25)], in which case we have 

HO(xI , x) = jo(X) , 

and (6.7) simplifies to 

(6.8) 

o = jo(k)tPo( -k). (6.9) 

Any function jo can "generate" a first-order left
terminating sequence. The criterion for characteristic 
propagation can therefore certainly be satisfied in this 
case, namely, by choosingjo as a series in exponentials 
with polynomial factors and choosing the initial 
state such that Eq. (6.9) is satisfied. 

Another important special case deserves mentioning: 
If the substitution sequence is left-terminating, static, 
and periodic in space, the integral in condition (6.5) 
can be understood as being extended over a (possibly 
multiple) period of H_n containing the support of 
"P-n' By continuing "P-n periodically, one can expand 
H_n and "P-n in Fourier series (rather than Fourier 
integrals), and criterion (6.7) becomes a countable 
number of conditions on the corresponding (discrete) 
Fourier coefficients. 

Let us summarize this section. We have seen that for 
right-terminating sequences there exists a functional 
class of initial states with compact support which 
propagate along characteristics (namely, those 
derivable from corresponding potentials). For left
terminating sequences, characteristic propagation can 
also take place, but only under highly restricting 
conditions on the sequence and the corresponding 
initial states. Nonterminating sequences give rise to 
spreading for almost all initial states, but we have 
only been able to present a proof for restricted classes 
of sequences and initial states, and there are indications 
that exceptional cases exist. In the following section 
we will derive further criteria for spreading. 

7. FURTHER CRITERIA FOR SPREADING 
(BY EXPANSIONS) 

In this section we will prove spreading under 
certain assumptions by means of several different 
expansions. 

(A) Whenever the coefficients, and solutions, pos
sess asymptotic expansions in x-lor V-I around 
infinity, one can apply Lemma 3 (of the last section) 
to prove that, in general, all initial states of compact 
support must spread. In order to avoid lengthy 
formulas we restrict our calculations to symmetric 
sequences. We assume j(u, v) of the form 

00 

j = 2.J,(u)x-1 (7.1) 
1=2 

and try to solve Eq. (2.13), or rather its integrated 
equivalent 

au"P = Cdvj"P + aucf;(u), (7.2) 
,,00 

with the ansatz 
00 

"P = I 'P1(U)X- I
• (7.3) 

/=0 

That is, we try to solve the general characteristic 
initial-value problem based upon the two null rays 
u = 0 and v = 00; [c/>(u) is the initial state at v = 00, 

recently called the news function]. 
Note that in Eq. (7.2), v and v' can be replaced by 

x and x' (x = u + v). Insertion of (7.1) and (7.3) 
into (7.2) leads to (' := au) 

00 

IX-k['P~ - (k - l)'Pk_ I ] 
k=O 

00 Ie-I 

= - Ix-lek-IIJk_Z+l'i"1 + feu), (7.4) 
k=I /=0 

whence 

'P~ = c/>', 
Ie-I 

'P~ = k-1 2 'Pz[O~-lk(k - 1) - Jk+I - 1] for k ~ 1. 
(=0 

(7.5) 

From this infinite system of ordinary differential 
equations, the functions 'P'1e(u) can be successively 
determined by quadratures. Assume c/>Cu) of compact 
support contained in the interval (0, uo). Under what 
circumstances can we prove spreading, i.e., non
vanishing of some 'Pk(u) for u ~ Uo if 'PkCO) = O? 
Notice that the roles of u and v are interchanged as 
compared to the discussion of spreading in the rest of 
this article, and that we have considered a time 
reversed problem. 

A simple answer can be given if we assume j to be 
static so that the expansion coefficients J/ are all 
constant. In this case, 'Pk becomes a constant 
linear combination of iterated integrals of c/>(u) up to 
order k: 

'Piu) = ± c~ r U

du1 rUldU2" . rUI-ldulc/>(UZ), k ~ 1, 
1=1 Jo Jo Jo 

(7.6) 
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with highest coefficient 

k! c~ = -J2(2 - J 2)(6 - J 2)' •• (k(k - 1) - J 2 ) 

(7.7) 

for J2 ~ 0. If Jl = ° for 2 ~ I ~ p, the sum in (7.6) ex
tends only up to I = k - P + 1, with highest coefficient 

k (k - 1)1 
ck- p+1 = - I J p+1 , k 2 p, (7.8) 

p. 

and all the coefficients 'Yk with 1 ~ k ~ P - 1 vanish 
identically. Combining the two cases, we see that 
'Yk is a linear combination of iterated integrals of cP 
whose order tends to infinity for k -+ 00 (at least) 
unless J2 = n(n - 1) for some positive integer n. In all 
cases except possibly this latter one, therefore, Lemma 
3 implies spreading. 

In (7.5) we obtained ':F; = ° for J2 = 0, 1 ~ I ~ 
P - 1, [p as in (7.8»). The corresponding 'YI are the 
conserved quantities of Newman and Penrose,u 

(B) We are now going to prove that "almost all" 
solutions spread. To this end we observe that an 
incoming solution (as defined in Sec. 4) is fully 
described by the two coefficients io, j(u, v) in the 
normal form, and by its initial state 'Y := 1p(0, v). 
Consequently, the triplets of functions 1p : = {in ,j, 'Y} 
characterize solutions. They form in a natural way 
an infinite-dimensional vector space. Each finite
dimensional linear subspace carries a natural topology 
induced by its Euclidean metric. We can therefore 
legitimately talk of neighborhoods of solutions when
ever we deal with finite-dimensional linear subspaces.12 

With these definitions we prove: 

Lemma 4: In every finite-dimensional linear subspace 
of solutions which contains a spreading one, the 
spreading solutions form an open set whose boundary 
points are those with characteristic propagation. 

Proof' We first show that the spreading solutions 
form an open set. To this end, consider a one-dimen
sional neighborhood of a given solution: 

_ (0) + ." (1) 111 (k) • _ {'(k) .(k) ur(':)} (7 9) 
1p - 1p €.,.,.,.. - rio 'rl ,T . • 

1p is linear, hence analytic in E. A well-known existence 
theorem13 guarantees that the corresponding solutions 

11 The "conserved quantities" of an asymptotically fiat space-time 
were discovered, and described in the following: (a) E. T. Newman 
and R. Penrose, Phys. Rev. Letters 15,231 (1965); (b) E. T. Newman 
and R. Penrose, Proc. Roy. Soc. (London) Ser. A (1968) (to be 
published). 

12 The topology induced in this way on the full space is the 
inductive limit topology. 

13 See Ref. 9. 

must likewise be analytic in € so that for sufficiently 
small lEI, 

(7.10) 

with well determined functions 1p(k)(U, v). Byassump
tion, the zero-order term 1p(O) spreads. Consequently, 1p 

must spread for sufficiently small lEI. The generaliza
tion from one dimension to a finite number of them is 
obvious. 

In order to show that the solutions with character
istic propagation form boundary points, we consider 
a "straight line" connecting one of them with a 
spreading solution. On this line, the set of character
istic propagation solutions cannot have interior 
points. For suppose there was an interior point, and 
consider a nearest boundary point 1p(0). By assumption, 
in any neighborhood of 1p(O) there are spreading 
solutions, which implies that at least one of the 
"coefficients" 1p(k) in the expansion (7.10) of 1p spreads. 
But then 1p must spread in a full E neighborhood except 
possibly at E = 0, and one arrives at a contradiction. 
Consequently, the characteristic propagation solutions 
can be nowhere open in a finite-dimensional subspace 
which contains a spreading solution. 

(C) A third type of expansion, called expansion in 
progressing waves, is used in the literature for the 
construction of solutions.14 It can likewise be used for 
a discussion of spreading. One makes the ansatz 

OCJ 

1p = ,2gk(U, V)Xk(V) (7.11) 
k=O 

with 

Xk := l"dV'Xk-l, Xo arbitrary, (7.12) 

and finds that the right normal form (4.1) is solved 
identically in the Xk by 

ougo = 0, 

ioougk+l = Ci - ovioou)gk' (7.13) 

One has a freedom in the choice of the initial data 
gk(O, v) of which one can dispose by setting 

giO, v) = o~. (7.14) 

This choice implies that Xo(v) is the initial state. An 
application to problems with a right-terminating 
sequence teaches, however, that there is another 
natural choice which in some cases can be defined by 

gi-oo, v) = o~. (7.15) 

In general, the initial state is given by (7.11) with 

14 See, e.g., Ref. 2(c), pp. 620-636, 760-764. 
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u = 0, and its convergence must be postulated. If 
(7.11) converges for u = 0, it converges (at least) for 
some neighborhood of u = 0. 

Can it happen that the series in (7.11) is finite? As 
a consequence of (7.12), a termination implies that 
gk vanishes identically beyond some k. We will show 
that this can only happen for right-terminating 
sequences. If the sequence does not terminate, its 
individual terms will eventually have noncompact 
support according to Lemma 3. In general, therefore, 
the solution will spread for nonright-terminating 
sequences. But there are exceptional cases in which the 
infinite series (7.11) has a compact support. 

Let us derive a closed-form expression for the func
tions g/c(u, v) satisfying (7.13) with go = 1. To this end 
we define the modified derivatives of g/c: 

.. .. 
[I] • = 0 c!1-2 0 c!1-3 0 .. , c!l o ,10 0 gk' u. u. u . u . ugk' I C. 2, 

c!1-1 c!1-2 c!2 c!1 

g~l] : = ougk' (7.16) 
and claim 

[I] .-2. . [1-1] .-I:l' [I] 
gk+l = JI-lc!I-2c!lgk - c!1-IUvc!I-1gk , 1 C. 2, 

[1] .-1 . .-1::\. [1] 
gk+l = c!o c!lgk - c!o Uv!ogle . (7.17) 

The bottom line is equivalent to the defining equation 
(7.13); it starts a proof by induction. We skip the step 
I = 1 ---+ I = 2 as it is perfectly analogous to the 
general step 1---+ 1 + 1. Assume (7.17) for I, multiply 
by il-lil\ and integrate by parts: 

il-1 [I] = il-2 [1-1] _ 0 il-l [I] _ il,V il-l [I] 
. gk+! . gk v. gk .. gk' 

!I !1-1 !l c!1 "'I 
(7.18) 

Application of Ou yields, with (7.16), 

g
[I+!] _ g[l] _ :l g[l+l] _ D .. il-1 g[l] _ il,V [1+1] 
k+1 - Ie Uv k 'ell. k . gle , 

cli "'I 
(7.19) 

and Diz(il~'I-I) = 1 - il-l(in-~'l+! leads to 

[1+1] ·-2. . [l] .-1::\. [1+1] (7 20) 
gk+1 =!l "'1-1!1+1gle - "'Z uv",zgle . . 

Q.E.D. 

Next we have go = 1, whence gll] = io~·. We claim 

[Ic] "'k glc = -.- . 
c!1e-l 

(7.21) 

For the proof by induction from k to k + 1, insert 
(7.21) into (7.17) for 1 = k + 1, and observe that 
gLI] = ° for 1 c. k + 1. 

Formula (7.21) shows that gLk] vanishes for a 

(k - 1)th-order right-terminating sequence, so that 
gle = ° can be achieved by a suitable choice of the 
initial data (constants of integration, which are 
functions of v). We omit a further analysis along 
these lines. 

(D) Let us mention that there are yet other ex
pansions which lend themselves to an analysis of the 
solutions. For instance, the asymptotic expansion in 
terms of inverse powers can be paralleled by an 
expansion in terms of exponentials e-kx• However, 
with none of these expansions were we able to give 
exhaustive criteria for spreading. 

8. CLOSED-FORM EVALUABLE SEQUENCES; 
EXAMPLES 

In the following sections we will prove a number of 
astonishing properties of substitution seq uences, some 
of which have already been listed in Sec. 5. Our main 
concern is the finding of closed-form expressions 
for the elements of certain classes of sequences, or at 
least of criteria for special cases to occur, in order to be 
able to tell the properties of a given differential equa
tion. In this section we present some formulas and 
simple examples. 

(A) The substitution sequence was defined in Eq. 
(4.10) for any given pair of functions io, il' One 
finds recursively [compare (3.5)] 

.. . 
c!2 "'1 D . . b I liE' --:- = --:- - 'ell =. --:- 1, 1 = - :/1 , 

"'1 "'0 c!o 
where 11 is an invariant [compare (3.5)] and 

·3 

I = 1 - Eb I 2 . 1, 

"'0 

From the identity 

. ik+1 ik i2. 
c!k+! = -.- -.- ... --:- "'1 

c!k "'Ie-l "'1 
one obtains 

I
· 'k+l '-IeI I I I I "'k+! -!1 "'0 k k-l . .. 2 1, 

and from (8.3) 

Ik = 1 - Eili2" 'ik' 

Insertion of (8.4) into (8.5) yields 

(8.1) 

(8.2) 

(8.3) 

(8.4) 

(8.5) 
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This equation is a recursive formula for the invariants 
Ik defined in (8.3). Once the Ik are known, the 
elements ik of the sequence are given by Eq. (8.4). 
We shall need these formulas in the sequel. 

The invariants Ik are constant if and only if Eell and 
Eio are constant. In this case, all members of the 
sequence can be expressed in closed form, which we 
have done in Eqs. (5.2) and (5.3). Let us find the 
corresponding functions iI' io! We distinguish several 
cases: 

Case I: 
Eio = 0 

means 
OvO" In /iol = 0, 

whose general solution is 

io = g(u)h(v). 

(8.7) 

(8.8) 

In this case, a conformal plus, factor gauge can be 
applied to achieve io = 1; and the remaining equation 
Eil = CI simplifies to VI = :i) 

Di = ci. (8.9) 

We derive the complete solution of this equation in 
Sec. 11. 

At present, let us content ourselves with the special 
case of a static equation for which (8.9) becomes 

In"/il = ci, ( ' .. -- dd
x

)· 

Multiplication with 21n' Iii yields 

(1 ' / ·1)2' 2·' n / = Ct. 

Again we have to distinguish different cases. 

(8.10) 

(8.11) 

(a) c = 0 implies In' iii = a (a, b = const), whence 

For c :¢. 0, Eq. (8.11) integrates to 

(ln' 1i1)2 = 2cV + a). 

We distinguish further: 

(b) for a = 0 one gets i' = (2ci3)f, so that 

. 2 
/ = c(x - xol 

(c) For a:¢. 0, (8.13) leads to 

(8.12) 

(8.13) 

(8.14) 

(2c f(X - x -I 41 - 2 {arc tanh f } 
) 0) - i(i + a)f - a f arccothf' 

( 

. f 
f:= 1 +;), (8.15) 

whence 

(8.ol6) 

or 
r-- 1 Ii = a sinh-

2 [ (~r(X - xo)] (8.17) 

In these last two solutions of (8.10), the product ac 
can be positive or negative (without violating the 
reality of i). If it is negative, "cosh" or "sinh" change 
into "sin" of some real argument. The four classes 
of solutions (8.12), (8.14), (8.16), and (8.17) exhaust 
all solutions of Eq. (8.10). Note that (8.14) can be 
obtained from (8.17) as a limiting case as a --+ O. 
This completes our discussion of Case 1. 

Case 2: Eio = Co, Ei = c, coc :¢. O. We conclude 
i = iglco, whence 

i/o1 = ia, !1..:= 1 - COc-1 (8.18) 
and 

(8.19) 

Again, two cases have to be distinguished: 
(a) !1.. = O. The general solution of (8.19) is obtained 

from (8.8) by multiplication with a special solution; 
it reads 

I i = eCllJ
'/

2g(u)h(v) j; 
(b) !1.. :¢. O. In this case we set 

f:=ia
, 

and obtain from Eq. (8.19) 

Df= occf, 

(8.20) 

(8.21) 

(8.22) 

which is identical in shape with Eq. (8.9). We therefore 
know all sequences with constant invariants. 

(B) A fairly general shape of a wave equation 
encountered in physics is 

{OyA(Y)Oy - ,u(y)o~ - v(y)}cp = O. (8.23) 

For instance, a vibrating rope is described by (8.23) 
with A(y) being the tension coefficient, ,u(y) the mass 
density per unit length, and v(y) = O. The reduction to 
normal form is achieved by setting 

dx (I!:.)f, {u:= (x - t)/2}, 
dy:= A v := (x + t)/2 

(8.24) 

and 
cp =: (A,u)-t1Jl. (8.25) 

One finds 

i = (A,urtO;(A,u)t + ,u-Iv, io = l. (8.26) 
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The corresponding sequence is static and symmetric 
as it has to be for a time-independent medium without 
dissipation. Nothing can be said about termination 
before one has specified the two functions A,u(x) and 
,u-lV(X). 

The propagation of an electromagnetic test field in 
an empty spherically symmetric space-time can be 
essentially described by an equation of the shape 
(8.23). (For a "test field" one ignores its reaction 
upon the space-time geometry, i.e., replaces the 
right-hand side of Einstein's equation by zero.) The 
electric and magnetic field form a bivector F~/3 = F[~/31 
(in 4-dimensionallanguage) which satisfies Maxwell's 
equations 

(8.27) 

in the absence of electric sources. (A comma denotes 
ordinary differentiation; an asterisk denotes passing 
to the dual.) The complex bivector <1> a/3 has only three 
linearly independent (complex) components each of 
which obeys a generalized covariant wave equation15 

as a consequence of (8.27). For spherical symmetry, it 
is convenient to introduce a tetrad which is covariantly 
constant along the (outgoing) radial null geodesics 
and to expand the tetrad components of <1> a/3 in terms 
of spherical harmonics. Call "<1>" the contraction of 
<1>~/3 with the timelike tetrad bivector containing the 
(outgoing) radial null direction, and r-l1>z := <1>z(r, t) 
its lth expansion coefficient (l describing the repre
sentation of the rotation group). One then finds16 for 
1>1 an equation of the shape (8.23) with 

A(r) = r2(1 _ 2~), 

( 
2 )-1 ,u(r) = r2 1 - ~ , 

2m 
vCr) = 1(1 + 1) - - , 

r 

(8.28) 

where r stands for y and m is the mass parameter of 
the spherically symmetric empty space-time (which is 
known to be a Schwarzschild space-time). The corre
sponding normal form can be easily gathered from 
Eqs. (8.24), (8.25), and (8.26): 

dx r 
-= , 
dr r - 2m 

15 R. C. Tolman, Relativity Thermodynamics and Cosmology 
(Oxford University Press, London, 1934), Eq. (108.1). 

,. A discussion of Maxwell's equations formulated for complex 
tetrad components of the field bivector can be found in the following: 
(a) E. T. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962); 
(b) A. I. Janis and E. T. Newman, J. Math. Phys. 6, 902 (1965). 

and 

. _ (1 2m) 1(1 + 1) . - 1 / - - , /0 - . r r2 
(8.30) 

Note that for m # 0, r is different from the normalized 
radial coordinate x defined in (8.29). 

Let us mention that the scalar wave equation in a 
Schwarzschild space-time can be analogously reduced 
and leads to 

Formulas (8.30) and (8.31) deserve a discussion. 
In flat space-time, i.e., for m = 0, we have x = r, and 
j is of the form (8.14) (with constant invariants). 
Equation (5.2) shows that the sequence is (double-) 
terminating of order I. All potentials of order I give 
rise to characteristic propagation. Physically, I is the 
order of the multipole moment considered. 

In curved space-time, i.e., for m # 0, the sequences 
determined by (8.30) or (8.31) cannot terminate 
because j is not a rational function in x and eO"" (see 
Sec. 11). In order to show that all the corresponding 
solutions '1jJ with an asymptotic expansion around 
infinity must spread, we have to slightly modify the 
approach taken in Sec. 7 under (A): We expand '1jJ 

in terms of negative powers of r (rather than x), and 
enter into Eq. (7.2). As a result, we get a three-term 
recursion relation for the expansion coefficients 'Yk(U) 
of 'Y, which reads 

k'Y~ = [k(k - 1) - 1(1 + 1)]'Yk _ 1 

_ 2m{k(k - 2)}'Y (8.32) 
(k _ 1)2 k-2 

for k ~ 1. Here the upper line refers to (8.30), the 
lower line to (8.31). It is now easily seen that no 'Y~ 
can vanish identically (for m # 0), so that Lemma 3 
implies spreading. 

The scalar monopole wave in a Schwarzschild space
time is by itself a nontrivial example. Here, from Eqs. 
(8.1) and (8.2), one finds 

~ = _ ~(1 _ 2~) (1 _ 6~), 
~3 = _ ~(1 _ 2m) (1 _ 6m)-2 
"2 r2 r r 

X (4 - 77 !!! + 24 . 19 m 
2 

_ 36 . 25 m
3

). 
r r2 r3 

(8.33) 
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No unexpected simple structure law has been rec
ognized by us. 

9. CRITERIA FOR NONTERMINATION 

How can one know whether a given substitution 
sequence terminates or not? We are going to give 
partial answers to this important question for static 
sequences. For simplicity's sake let us assume all 
sequences considered to be analytic. Their elements 
can be locally represented by convergent power series 
in x or X-I. Let us write 

00 

fK(X) := 2 akx\ aK ¥= 0, (9.1) 
k~K 

for any power series which starts with a term of order 
K, where K stands for an arbitrary integer. The two 
expansions mentioned above need separate treatment. 

(A) Assumejo andj to be offinite order at infinity, 
i.e., 

(9.2) 

We claim 

Lemma 5: The sequences defined by Eq. (9.2) 
cannot terminate to the right (left) if 

(a) K S 1, 

(b) K = 2 and a2 ¥= Cn , 

(9.3) 

{
L > o} (." {right} .. 

(c) K z 3 and K ~ L lor left termmatlOn. 

Here, a2 is the coefficient of x-2 in the expansion of 
jf/j, and Cn runs through the sequence (n Z 1) 

{
n(n + L - 1) } {right} .. 

C n = for f termmatlOn. 
n(n + K - L - 1) Ie t 

(9.4) 

Proof' Equation (8.3) implies 

j~+1 = '-: _ D/ (j~)n-l (/:3)n-2 . .. (~). (9.5) 
/n c/o c/ /2 c/n-l 

A trivial calculation shows 

Dj;v(x-I) = Nx-2 + f3{X- I) , (9.6) 

so that under the conditions of the Lemma 

j;;:t'n+I = fK(X-I) + hex-I). (9.7) 

Obviously, the right-hand side cannot vanish if 
K S 1, which implies that the sequence cannot 
terminate (to the right) in this case. If K = 2, it may 
happen that the term of order -2 on the right-hand 
side cancels for some n. In this situation, one finds 
fix-I) = -cnx-2 + f3{X- I) with Cn given in (9.4) so 
that cancellation (to the right) cannot happen if 

a2 ¥= cn ; [see the calculation following Eq. (12.1)]. 
Finally, if K Z 3 and L Z 0, the term of order -2 
in (9.7) is strictly negative. In order to study termina
tion to the left, one need only consider the behavior to 

the right of the mirrored sequence ~ = j=~, in which 
joiJ and jol play the roles of joiJ and j before. One 
has 

jol = fK_L(X-I), (9.8) 

so that in (9.3) and (9.4), L has to be replaced by 
K - L for left-termination. Lemma 5 is thereby 
proven. 

(B) Assume jo and j to be of finite order at some 
point Xo which we choose as the origin of a Taylor 
expansion, i.e., 

We claim 

Lemma 6: The sequences defined by Eq. (9.9) 
cannot terminate to the right (left) if 

(a) K S -3, 

(b) d {
either a_I ¥= ° } K = -2 an , 
or a_2 ¥= dn 

(c) K= -1, 
(9.10) 

(d) K z ° and {L S -1 } for {rligrht} 
KSL-l et 

termination. 

Here ak are the coefficients of Xk in the expansion of 
jo:t', and dn runs through the sequence (n ~ 1) 

{
n(n - L - 1) } {right} dn = for termination. 
n(n - K + L - 1) left 

(9.11) 

Proof' In the present case, formula (9.5) takes the 
form 

(9.12) 

whose right-hand side can clearly not vanish (identi
cally) for K S -3 or a_I ¥= 0. This proves (a), (c), 
and the first line of (b). For K = -2, the term of 
order -2 on the right-hand side can only vanish for 
some n if a_2 assumes one of the integers given in 
(9.11); this finishes the proof of (b). Finally, if K ~ 0, 
and L S -1, the pole term on the right-hand side is 
strictly negative. Again, as in the proof of Lemma 5, 
the discussion of non-left-termination is reduced to 
that of non-right-termination by considering the 
mirrored sequence. 
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10. IDENTITIES FOR LEFT-TERMINATING 
SEQUENCES 

We are going to derive an infinite set of identities 
among the elements of left-terminating sequences. 
More precisely, we assumej=~ == O. In this case, the 
general incoming solution has the shape (4.12) for 
k = 0: 

(10.1) 

Assume jo to be analytic, and substitute it by its 
Taylor series expansion in u around u = Uo. As a 
result 

a:joV'(uo, v) = IdV'a:jo(Uo, v')· V'o(v'). (10.2) 

Now express "1'0 as a modified derivative of its first 
potential V' [according to (4.9)], perform an integration 
by parts, express V' as a modified derivative of "1'2' 
integrate by parts, and so on. After k + 1 steps, one 
gets (with j-1 replaced by "one" in the sum) 

k IV k . {k I] • , {k k+l] • 
aueloV' = 2: elo ' ;/1-1 V'H1 + dVelo' ;/kV'Hl' 

1=0 0 

(10.3) 

where 

.. . ak ' 

4·[k,I]:= (_I)la ell- 2
a ell- 3

a ... el0a uelo 
d'0 V. v. v . v . (l0.4) 

ell-1 ell-2 ell elo 

for I ~ 2, and 

Ak,O] := a~jo for 1 = 0, 
-[k,l] '- _~ .-lak . for 1=1. elo .- uvelo uJo 

ibk,l] is a modified lth-order v derivative of an ordinary 
kth-order u derivative of jo . 

On the other hand, one can give a proof by induction 
of the following linear expansion: 

with 

k 
~ k • '" bk . uueloV' =,,;;.. lellV'Hl 

1=0 
for k ~ 1, 

b~ = 0 for k < 1, b~ = 1, 

bk+1 bk + ·-1~ . bk 
I = 1-1 ell Uuell I' 

(10.5) 

(10.6) 

which is perfectly analogous to the proof of formula 
(4.16). 

We compare Eqs. (10.3) and (10.5), which haye to 
be equal for j=~ = 0 identically in "p. Let us show 
that j~k,k+l] must vanish by setting V'H1 = Ak,k+l]jk 
for 0 :::;; v :::;; Vo, and V'k+1 = 0 for v > vo. In this case, 
all the terms in the two sums vanish for v > Vo, 
whereas the integral term in (10.3) is positive definite. 
This implies the vanishing of Ak,k+l] if jk t= O. 
(Otherwise, for jk == 0, jr',k+l] would not be defined.) 
Next we claim that the two sums are identical term by 
term. For a proof, choose jtV'l+l = const recursively 

for 1= k, k - 1, ... , 1, in which case all the lower
order terms vanish identically. We can now compare 
the respective coefficients of V'H1 , and obtain 

.[kl] bk ell f '-1 0 
elo = z -. - or eI-1 = . (10.7) 

ell-1 

Note especially that b~ = 1, so that 

elk .[k.k] (10.8) -.- =elo 
elk-1 

A comparison of these formulas with Eqs. (8.3) and 
(8.6) reveals remarkable identities. 

11. DOUBLE-TERMINATING SEQUENCES 

With the knowledge of formula (l0.8), we are 
ready to derive closed-form expressions for the left
end elements of all double-terminating sequences. 

To this end let us number the elements of the 
sequence such that jo is the left-end element. Under 
these circumstances, double termination is equivalent 
with 

An,n] = 0 (11.1) 

identically for some n. This differential equation can 
be easily integrated with respect to v if repeated use is 
made of Eq. (10.8) and of the definition (10.4). One 
finds 

n 

2: cla~jo = 0, Cz = cz(u), Cn == 1. (11.2) 
1=0 

That is, jo satisfies an ordinary nth-order differential 
equation in u with arbitrary u-dependent coefficients. 
Its general solution is necessarily of the form 

n 

jo = Zgk(u)hk(v) . (11.3) 
k=l 

Here gk and hk are arbitrary functions. In order to see 
this let us assume feu, v) of the shape (11.3), and 
derive for it an equation of the form (11.2). We u
differentiatefup to n - 1 times: 

n 

a~f(u, v) = 2:a~giu)hk(V), 0:::;; 1:::;; n - 1, (11.4) 
k=l 

and conclude: Either the n derivatives a~gk are linearly 
dependent with respect to I 

n-l 

2: dz(U)a~gk = 0, (11.5) 
1=0 

in which case one gets 

n-1 

Z dl(U)a~f = 0, (11.6) 
1=0 
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from which (11.2) is obtained by differentiation and 
multiplication; or there exists an inverse matrix 
g~m with 

(11. 7) 

in which case one concludes 
n-l 

ou2,g:mo~f= 0 for 0 ~ m ~ n - 1. (11.8) 
1=0 

Each of these n equations takes the form (11.2) when 
divided by g:~I; the latter matrix elements cannot 
all vanish. 

What is the general form of io for double-terminating 
static sequences? In this case, au = a" = 0.,; and 
from (11.1) one derives Eq. (11.2) but with constant 
coefficients c1 • As is well known, the general integral 
of an nth-order ordinary differential equation with 
constant coefficients is a linear combination of n 
terms, each being a nonnegative power of x times an 
exponential function in x: 

. ~ k co,x 
elo = £., Ck,IX e . 01.9) 

k,l 

And conversely, every such sum satisfies an ordinary 
differential equation with constant coefficients. 

It may be interesting to observe that both the 
functions of type (l1.3) and those of type (11.9) are 
closed under ring operations (linear combination and 
multiplication), and differentiation. 

Our next problem is the determination of all 
symmetrical double-terminating sequences. These se
quences are of particular interest because they corre
spond to nondissipative media. Their determination 
turns out to be much harder than any of the earlier 
calculations, and we can only solve some lowest-order 
cases. However, from these lowest-order results one 
can guess at the general structure of the higher-order 
cases. Again, we restrict our calculations to the left
end element io. But once io is determined, with 
in == 1, there are closed form expressions for its 
successor in+!: 
in+! = -Dioll .. 'in-l 

= (_l)n-lVo' Dio' Dioil' D' .. Dioil' . "in_2]-1. 

(11.10) 

They can be obtained from (8.3) for i;1 il = 0 by 
shifting the sequence index by one, and observing 
thatin_l = i;!l for in == 1. 

We treat the lowest nontrivial case: a symmetrical 
double-terminating sequence of length three. Its de
fining equations can be written as follows: 

-1 0 . 1 . 0 eI-l == , ell = , el3 == . (11.11) 

Notice that they are equivalent to Eq. (8.9) for C = 1; 
but C can be absorbed into the definition of u, say. 

The equations i={ == 0 == ia were solved in (11.3), 
viz., 

3 

io = 2,giu)hk(v). (11.12) 
k=l 

If neither il nor i2 is to vanish identically, the sum in 
(11.12) must not be reducible to a shorter sum; which 
implies that the gk'S and hk's have nonconstant ratios. 
The remaining equation il = 1 reads [compare (8.1)J 

1 = -ioDio. (11.13) 

We spell it out, and insert the expression (11.12): 

-2,gkhk = 2, (g;gt - gkg;)(h~hl - hkh~). (11.14) 
k k<l 

(A prime denotes differentiation with respect to the 
argument.) 

Now we observe that, by means of suitable gauges, 
io can be multiplied by a product of an arbitrary 
function of u and an arbitrary function of v. We 
dispose of this gauge by setting 

g3 = 1, hs = 1. (11.15) 

Equation (11.14) thus simplifies to 

-(glhl + g2h2 + 1) 

= g~h~ + g~h~ + (g~g2 - glg~)(h~h2 - hlh~), 

(11.16) 
with nonconstant gk' hk . 

Equation (11.16) implies that there exist (at least) 
two linear relations with constant coefficients 

so that 
lin (g~, g~) = 0, 

{ g~ = CUgl + cl2g 2 + C1U + dl }. 

g2 = c2lg l + c22g2 + c2u + d2 
(11.17) 

This step, from (11.16) to (11.17), is lengthy and is 
achieved by a discussion of several possible cases. 
We express the result in vector notation: 

g'=Cg+l, g:=(;~), 

C := (Cn , C12), 1:= (C1U + d1). (11.18) 
cn , C22 c2u + d2 

The general solution of (11.18) reads 

g = ecu{a + fUdu'e-CU'I(U')}. a:= (::) =const. 

(11.19) 

For symmetry reasons, h must be given by an anal
ogous expression 

h = env{b + fdV'e-D"'m(v')}' (11.20) 
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In vector notation Eq. (11.16) reads 

-1 = tgh + tg'h' + tgTg'· thTh', T := [ 0,1J 
-1, ° ' 

(11.21) 

with "t" standing for "transposed." After (11.19) and 
(11.20) have been inserted, there exist two cases: 

(1) If det (C) :F 0, one concludes successively that 
1=0, TCT= tC, tCD = -1, and m = 0. The 
corresponding solution reads 

• -1 

g = eOu a, h = e- 0 v b, 

tr (C) = 0, taTCa· tbTtC-lb = 1. (11.22) 

It is six-parametric, and determines io via Eq. (11.12): 

(11.23) 

(2) If det (C) = 0, after some discussion one finds 
that gk and hk are polynomials of maximal degree two, 
and (11.21) results in nine equations for twelve 
unknowns. Presumably, these solutions are limiting 
cases of (11.22). 

As a last problem, we turn our attention towards 
static symmetrical double-terminating sequences. For
mulas (8.16) and (8.17) give two-parametric classes of 
such solutions for every length 21 + 1 if c = 2/1(1 + 1). 
But the defining equations 

i=i == 0, i! = 1, i2!+l == ° (11.24) 

result in a 21th-order equation for io, so that the 
general solution of order I must be 21-parametric. 
For I ~ 2, therefore, (8.16) and (8.17) do not repre
sent the general solution. 

Assume I = 2. The corresponding static sequence 
must be of the form (11.9) with precisely five terms, 
and the equation i2 = 1 can be reduced to 

(joi~ - i~2)(j~" - 1) = Cioi~' - 2ioj~)j~' + i~3. 
(11.25) 

By (11.9) and the special known solutions, one is 
tempted to try the ansatz 

2 2 

jo(X) = I ak cos wix - xk ) + II W;2, (11.26) 
k=l k=l 

which actually is a solution for 

Moreover, each cosine function in (11.26) can be 
replaced by either cosh or sinh. Note that (11.26) with 
(11.27) is Jour-parametric as wanted. 

There is good reason to conjecture that the ansatz 

(11.26) holds for any positive order I if the upper 
summation and multiplication limits are changed from 
2 to I. Likewise, formula (11.22) gives rise to general
izing guesses. We leave the proofs of such generaliza
tions as an unsolved problem. 

12. CANCELLATION OF POLES 

In Sec. 6 we found that accumulating zeros, or 
poles of j;Yk+l' play an important role in the dis
cussion of spreading. Can one make general state
ments about the zeros, or poles, of the elements of a 
sequence? In what follows we restrict ourselves to 
static sequences for which we prove a surprising 
lemma relating the zeros of successive elements. 

Suppose some member of a (static) sequence has a 
zero of order no at Xo whereas its predecessor is 
nonzero at that point. For later convenience, let us 
choose this member as jo(by shifting the index if 
necessary). From (8.3) we get 

/i/jk+l =i=Uo - Dioil·· ·jk' (12.1) 

which shows that ,loli has a second-order pole (at xo), 
whence i has a zero of order n - 2. Recursively, ik 
will have a zero of order n - 2k unless the product 
jOil ... jk happens to be nonvanishing and regular. 
This product has a zero of order n + (n - 2) + 
... + (n - 2k) = (n - k)(k + 1); it is thereforejinite 
for k = n. Consequently,i;;-lin+l is necessarily regular 
(at xo), and in+l may be expected to have an nth
order pole. (like in). If this were so, all the succeeding 
ratios jl1j!+l would have second-order poles. But 
this expectation is false: i n+l is necessarily regular! 
A direct proof of this "cancellation of poles" turned 
out to be hopeless except for lowest orders. We are 
going to sketch an indirect proof which is based upon 
formula (10.7). Let us collect all statements into the 
following: 

Lemma 7: If at some point Xo some member of a 
substitution sequence has an nth-order zero while its 
predecessor does not vanish, then its kth successor 
has a zero of order n - 2k for k ~ n, and its (n + l)th 
successor is regular. 

Proof· We have already verified all statements of the 
Lemma except the last one:in+l is regular ifio has an 
nth-order zero. Its verification will be the concern 
of the rest of this section. 

Let us first of all observe that under the above 
circumstances, in+l is regular (at xo)if and only if 
i;;-Yn+l has an nth-order zero. Secondly, we have the 
identity 

ioil ... ik = A+l (~l)k (~2)k-l ... ( ~·k) (12.2) 

"0 "1 "k-l 
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and insert it into (12.1) thus: 

jk+l = jo _ [(k + 1)D4' 
" if ° 

,1k ,I-I 

+ t(k - / + l)D ~l J. (12.3) 
l-1 ,11-1 

For k < n, the left-hand side and (hence) the square 
bracket must have a second-order pole whereas 
j=Uo is of order n. This implies that 

Djk~1 = D(x - Xo)-2[1 + O(x - xo) + c(x - XO)2 ~'o J 
,1k /-1 

= 2(x - XO)-2 

+ D[l + O(x - xo) + c(x - xo)2 ~'oJ, 
,I-I 

(12.4) 

where O(x - xo) vanishes at xo; and it transpires that 
the contribution of j=Lio to the left-hand side is (at 
least) of order n. But we want to verify thatj;~n+! is 
of order n, which means that nth-order contributions 
like j=~jo can be omitted. Omission of j=Lio means 
dealing with a sequence that terminates at k = -1, 
and we can apply formula (10.7): 

jn+! = .[k,n+!J(bk )-1 d I ( )n . - ,1o n+l mo u 0 x - X o , 
,In 

for k ~ n + 1. (12.5) 

We now infer from the definition (10.4) that 
j~k,n+lJ is regular at X o for all k ~ n + 1. Our proof 
would therefore be completed as soon as we could show 
that b~+1 had a pole of order ~ n (at xo) for some 
k ~ n + 1. Our conclusion will be by contradiction, 
and will only be sketchedP 

From the recursion relations (10.6) one -easily 
derives 

bk+1 a I I .. . I 
k = U n ,10,11" '!k . (12.6) 

We conclude exactly as below Eq. (12.1) that ifjo has 
an nth-order zero (at xo), then b~+1 has a first-order 
pole for 0::;;; k ::;;; n - 1, is regular for k = n, and 
has a first-order pole for k = n + 1 iff jn+! has a pole 
or a zero. Correspondingly, b~+l will have an lth
order pole unless all the terms contributing to this 
pole cancel. Let us show that such a cancellation 
actually takes place for n - I + 1 ::;;; k ::;;; n. 

To this end we calculate the coefficient c(k, I) of the 
lth-order pole of b~+l: 

c(k /) : = (x - x )lbk+11 ,Ok X=Xo· (12.7) 

17 The following formulas have been developed in collaboration 
with Dr. R. Kreps. 

From (12.6) for 0 ::;;; k ::;;; n one finds 

c(k, 1) = (k + 1)(n - k) = (n ~ If - K2, 

n - 1 
K:= k- --. 

2 
(12.8) 

Note that K runs through the half odds (rather than 
integers) for n even. Next, from Eqs. (10.6) one 
gathers 

c(k, 2) = L -- - K (-2K), 
k-(n-l)/2 [(n + 1)2 2J 

I<=-(n-l)/2 2 

for 0::;;; k ::;;; n. (12.9) 

Th~ latter sum is an even junction of k - (n - 2)/2, 
whIch therefore vanishes for k = n - 1, and trivially 
for k = n. This is a special case of the general formula 

m 

.2 odd (K) = even (m + t), for Iml::;;; I (12.10) 
1<=-1 

whenever K increases in steps of one; which is verified 
by observing that 

m-! -m-! m-! 
L-L= .2 . 

K=-I 1<=-1 I<=-(m-!) 
(12.11) 

Along the same lines one gets for the (l + l)th
order pole-term coefficient 

c(k, / + 1) = -2 .2 C(K, I) K + --=- , k-(n-l)/2 ( 1 1) 
I<=-(n-l)/2 2 

for 0::;;; k ::;;; n, (12.12) 

and a proof by induction shows that c(k, I) is an 
even function of k - (n - 1)(2 which vanishes for 
n - 1+1 ::;;; k ::;;; n. 

What is the leading pole-term of b~+l? From our 
above result, and the recursive relation (10.6) one 
learns that the only contribution to the Ith-order pole 
of bn+H1 f . d" n+! comes rom,ln+!' an IS gIVen by 

c(n + 1, /) = m(m - 1) ... (m - / + 1), / > 0, 

(12.l3) 

when jn+! has an mth-order zero. If jn+! had a pole, 
m would be negative, and c(n + 1, I) could never 
vanish. Which would lead to a contradiction for 
I ~ n. This proves thatjn+! must be regular. 
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A class of formal exact solutions of the 3-particle unitarity equations are obtained under the restriction 
that the S matrix be invariant under a contraction of the Poincare group known as the static limit. The 
main tool is the study of a homogeneous, multidimensional, Riemann-Hilbert boundary-value problem in 
the complex plane of a subenergy variable. It allows one to construct an ansatz for the S matrix that 
satisfies the four sets of 3-particle unitarity equations recurrently; i.e., the sets of Eqs. (II), (III), and (IV) 
are automatically satisfied, provided that (I) is satisfied. The set (I) is then reduced to a nonlinear bound
ary-value problem on the inelastic cut in the complex energy plane of the scattering amplitudes. The most 
general solution is obtained in terms of a particular solution; an algorithm is then described that pro
duces such a particular solution. Finally, the relation of crossing to our exact 3-particle unitary S 
matrix is discussed. 

1. INTRODUCTION 

It has been frequently suggested that an approxi
mate scheme for the S matrix involving only normal 
threshold singularities can serve as a basis for a 
complete S-matrix theory encompassing all Landau
Cutkosky singularities.1 

The multi particle physical unitarity equations are 
interpreted as giving the compound discontinuities 
of the connected amplitudes-considered as the real 
boundary values of analytic functions in the product 
of the independent variable's complex planes
across the energetically permissible normal threshold 
cuts.2 

The higher Landau singularities are then generated 
by iteration of the unitarity equations and the theory 
is built in successive stages: general properties such 
as Hermitian analyticity, the existence of particle 
poles in unphysical regions, the TCP theorem, and 
crossing symmetry are first made plausible within 
the normal threshold singularity scheme and then 
reconsidered at each successive stage of sophistication. 

Little has been achieved so far in terms of actual 
solution of the multiparticle physical unitarity equa
tion beyond the elastic approximation, which is 
easily enforced on the partial-wave amplitudes.3 

* Research supported by the National Research Council of Canada 
under tenure of a postdoctoral fellowship. 

t Certain results described here were derived in a different con
text in the author's Ph.D. thesis, M.I.T. (May, 1967, unpublished). 

1 R. J. Eden, P. V. Landshoff, D. I. Olive, and J. C. Polkinghorne, 
The Analytic S Matrix (Cambridge Univ. Press, London, 1966), and 
original literature cited therein; in particular, see the following: 
D. I. Olive, Phys. Rev. 135B, 745 (1964); Nuovo Cimento 37, 1422 
(1965); J. Gunson, J. Math. Phys. 6, 827, 852 (1965); H. P. Stapp, 
High Energy Physics and Elementary Particles, A. Salam, Ed. 
(I.A.E.A., Vienna, 1965). 

2 See, for instance, J. B. Boyling, Nuovo Cimento 33, 1356 (I 964b). 
3 Particular 3-particle unitary solutions have been obtained in 

some field theory models: P. R. Amado, Phys. Rev. 122, 696 (1961) 
for the second sector of the Lee model; and J. B. Bronzan, J. Math. 
Phys. 7, 1351 (1966) and J. Math. Phys. 8, 6 (1967) for the charged 
scalar-field theory. 

FIG. 1. Triangle singularity absent in 
static limit. 

However, besides the interest of getting insight into 
the highly nonlinear structure of the unitarity 
equations-for instance, with a view toward con
tinuation in the angular-momentum variables-there 
is at least one physical case for which the next 
dominant singularity is the second normal threshold: 
the lowest inelastic channel coupled to the Nrr system 
is the Nrrrr system, and it is the only one of interest up 
to 1 GeV (approximately); it influences even the 
low-energy region by making certain partial waves 
Wt ' D-;3' ... ) strongly inelastic. 

In this paper, a class of formal, exact solutions of 
the 3-particle physical unitarity equations4 will be 
described under the restriction that the S matrix be 
invariant under a "contraction" of the Poincare 
group known as the "static limit." 

This limiting situation would be obtained if the par
ticles making the asymptotic states could be classified 
in two kinds: infinite mass "baryons" interacting with 
relativistic spinless "mesons." The ensuing con
siderable technical simplification is the existence of a 
common partial-wave expansion for all "baryon"
"meson" pairs. The number of independent kinematic 
variables is reduced from 2, 5, and 8 for the 4-, 5-, 
and 6-point connected amplitudes to 1, 2, and 3, 
respectively. An extra bonus for our purpose is the 
absence of triangle singularities of the type repre
sented on Fig. 1: the Landau curve degenerates in 
the static limit. 

4 Three-particle unitarity has been discussed in different contexts; 
for instance, J. Aitchison and R. Pasquier [phys. Rev. 152, 1274 
(1967)] on the Khuri-Treiman amplitudes and L. Fleming [phys. Rev. 
1358,551 (1964)] on the isobar model. 
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We now summarize briefly the salient features of 
our solution of the 3-particle unitarity equations. 

The production amplitudes coupled to a given 
scattering channel, when continued analytically 
around the total energy normal thresholds, suggest 
that one consider a homogeneous multidimensional 
Riemann-Hilbert boundary-value problem in the 
complex plane of a subenergy variable. 

An ansatz for the 4-, 5-, and 6-point S-matrix 
elements is then developed in terms of the fundamen
tal matrix solution of this Riemann-Hilbert boundary
value problem; it incorporates the following physically 
motivated features: 

1. the connectedness structure of the S matrix; 
2. the factorization of residues of unphysical region 

(baryon) poles; 
3. a "protection" conjecture specifying that all 

4-point scattering amplitudes appearing in discon
nected diagrams or "subdiagrams" (see Fig. 2) ought 
to be replaced by their elastic approximations (Note: 
the crossing symmetric elastic scattering amplitudes 
are an input in the present problem, since the purpose 
is to incorporate the second-normal threshold); 

4. Extended factorization conjecture. This general
ization of 2 for the complete, connected, multiparticle 
amplitudes is suggested by the very structure of the 
unitarity discontinuity formhlas. It implies a factori
zation of the connected part ofthe 6-point amplitude
after the physical region cross-energy poles have been 
taken care of-into a production amplitude in the 
final state, times a prescattering correction, or, equiv
alently, into an "absorption" amplitude in the 
initial state, times a rescattering correction. For the 
5-point amplitudes (production or "absorption"), 
a similar ansatz (product of an inelastic 4-point 
amplitude times a rescattering or prescattering cor
rection) requires a compensating structure that can 
only be understood within the framework of a dis
cussion of crossing symmetry. 

When the above conjectures are implemented, the 
3-particle unitarity equations are shown to be satisfied 
recurrently; i.e., the sets of Eqs. (II), (ill" and (IV) of 
(3.6)-(3.9) are identically satisfied, provided (I) is. 
[The set (I) gives the inelastic, unitarity total discon
tinuity of the scattering amplitudes.] 

The inelastic unitarity equation for each scattering 
amplitude (I) is then reduced to a nonlinear boundary-

~ ----~-t~--
FIG. 2. Six-point disconnected subdia

gram (between vertical lines) and protected 
4-point amplitude. 

value problem on the inelastic cut in the energy plane. 
The most general solution is obtained in terms of a 
particular solution and an algorithm is described that 
constructs a particular solution. 

Finally, the last section discusses the consistency 
of crossing symmetry with the 3-particle unitary 
approximation, i.e., the appproximation to the S 
matrix obtained by arbitrarily breaking the normal
threshold singularity structure after the first inelastic 
normal threshold, in the total energy variable. 

2. THE STATIC LlMIT5 

To show briefly how the static limit makes certain 
aspects of the 3-body problem more tractable and 
allows one to concentrate on the structure of the 
3-particle unitarity equation, the transformation 
property of a multiparticle S-matrix element under 
an element of the Poincare group (a, A) will be 
recalled (see Barut5): 

S(K;, K f) = exp [i (; kf - t k;) . a ] [If D(SfJ(A;)] 

X [IJ D(SiJ(A~)*JS(A-IK;,A-IKf)' (2.1) 

A' = Bk:'j)ABa~j) is an element of the "little" group 
of p = (m, 0, 0, 0) (case of massive particles); 
B = HU, where U is a unitary matrix (taken equal to 
unity if all spins are measured with respect to the 
direction 0 z); H, the Hermitian factor is uniquely 
determined to be 

(
klla )1 

H = ~ ," = cosh (X;/2) + i{i' a sinh (X;/2), 

• (2.2) 
cosh (X;/2) = (1/vl2)[(k~/mi) + 1]1, 

sinh (Xi/2) = (1/vl2)[(k~/mi) - 1]1. 

This complicated transformation property, where 
spins and linear momenta are coupled, is to be con
trasted with the simple transformation property of 
S-matrix elements under isospin rotations: 

S(Ki' K,) = [If D(l/J(U)][IJ D(l'J(U)]*S(Ki , K,), 

(2.3) 

• The static limit is believed to be qualitatively exact in describing 
low-energy baryon-meson scattering. Since the classical work of 
G. F. Chew and F. E. Low [phys. Rev. 101,1570 (1956»), there has 
been a revival of interest stimulated by the reciprocal bootstrap. 
See the following recent references: T. Cook, C. J. Goebel, and B. 
Sakita, Phys. Rev. Letters 15, 35 (1965); V. Singh and B. Udgaonkar, 
Phys. Rev. 149, 1164 (1966); M. L. Whipp man, Phys. Rev, 152, 1269 
(1966). About formulas (2.1), (2.2), and (2.3), see A. O. Barut, The 
Theory of the Scattering Matrix (The Macmillan Co., New York, 
1967), p. 27. 
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where u is an arbitrary rotation in 3-dimensional 
isospin space. From (2.3), it is possible to define 
S-matrix elements that are eigenstates of the total 
isospin, and independent of its third component 
(isotropic S-matrix elements). 

A correspondingly simple situation can be achieved 
for angular momenta by imposing the following 
simplifications: 

1. All particles endowed with spin ("Baryons") 
have an infinite mass. The corresponding 

cosh (Xi/2) --* 1, sinh (X;/2) --* 0, 

and the D(S'(A') become independent of linear 
momentum. 

2. The other relativistic particles are spinless, 
giving factors D(O'(A') that are also obviously inde
pendent of momentum. 

3. Only baryon-meson interactions are retained. 
As a result of these restrictions, it is possible to carry 
out a partial-wave expansion in the common center-of
mass of each meson-baryon pair and introduce 
amplitudes of total angular momentum J. A complete 
set of 3-particle states is labelled by: (a) the absolute 
value of each meson momentum and its orbital 
angular momentum ; (b) the total angular momentum 
and isospin of a baryon-meson pair Ii = (J, I); and 
(c) the total angular momentum and isospin of the 
baryon-meson-meson system IX = (J, I). A concise 
notation is: 

I [[N 7Tkll1la 7Tkolola; ~~t>· 
(Practically, we shall take 11 = 12 = 1, since the 
Nucleon pole occurs in p waves only, at least in the 
static limit).6 A recoupling transformation between 
two possible coupling schemes taking into account the 
Bose character of the mesons is denoted by 

I[[N7Tk,z,lx7Tk21.]a; ~~t> = L ;.aa(J I [[N7Tk212]p7Tk,I,]a; ~~t>, 
(J (2.4) 

;.aa(J = ;.J 3j,;'lli" 

;.J JJ' = -( - )3+.7'[(2J + 1)(2J' + 1)]i{:: ; J}, 
L ;.aap;.ap(J = ba(J. 

i< 

• For p waves, we take p2(W) = (k/Rw)y(w), 

y(w) = [12w]-'k3F'(w), 

(2.5) 

where F(w) is the phenomenological static form factor. With this 
convention for p(w), an NNw vertex gives a factor 3g. [g'/4?T ~ 0.8; 
see E. Henley and W. Thirring, Elementary Quantum Field Theory, 
(McGraw·HilI Book Co., New York, 1962), Chap. 18.] The analytic 
structure of F(w) never appears and its presence in the phase space 
factors ofunitarity integrals ensures convergence. Note the conversion 
of summation over k = Ikl into energy integrals: 

1: -+ Rw-1 fro wk-'dw. 
k /l 

(R is the normalization radius). 

3. CLUSTER DECOMPOSITION OF THE S 
MATRIX A,ND 3-PARTICLE UNITARITY 

In accordance with general S-matrix theory 
principles, we exhibit the connectedness structure of 
the S matrix by removing all disconnected contribu
tions and factoring the energy-conserving b functions 
(Fig. 3). We also factor out a centrifugal barrier 
factor k(2I+l'/2 per meson line to insure the bounded
ness at threshold of the A amplitudes and a static 
phenomenological form factor F(w) per external 
meson line6: 

(3.1) 

S~;:'~2';k = 27Tib(w~ + w~ - w) 

X p(wDp(w~)p(w)Aaa.(w~; w), (3.2) 

S~i~,qk' = 27Tib(w' - WI - W2) 

X p(w')p(w1)p(w2)1\(Wl; w'), (3.3) 

S~;~~~';k,k2 = S~;":i~';k,k2(D) + 27Tib(w{ + w~ - WI - w2) 

X p(w~)p(wDp(w2)p(Wl)Aaa'(w~; w; WI)' 

(3.4) 

The disconnected part of the 6-point S-matrix 
element, according to Fig. 3 is 

Sa'a'a (D) J.a'cX·a k,'k2;k,k2 = uk,'k2;k,k2 

+ HOa'abk2k227TiO(w~ - W1)/(Wl)Aa(w1) + ... +}. 
(3.5) 

The dots stand for three other terms required by 
the Bose character of the ingoing and outgoing 
meson lines. The 3-particle Kronecker symbol is 

Using (3.1), (3.5) can be reexpressed: 

S~~":~~';k'k2( D) = H Oa'aSi,'k,Ok2k. + ;'~'aS~"k2bk2'k' 
+ ;':'aSt"k,Okl'k2 + L ;':'i<S~2'kiai<abkl'k.} 

i< 

(3.5') 

The Bose character of the mesons implies certain 
invariance properties of the 5- and 6-point amplitudes. 
For the production amplitudes, 

A:(w~; w) = L ;.aa(JA~(w - w~; w). (3.7) 
(J 

:w'-. =tf5u 
::{SF: • :::::::.t==i::: • ::0-: 

FIG. 3. Connectedness struc
ture of S-matrix elements. Note: 
the b function and kinematical 
factors in front of the connected 
parts are omitted. 
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Let us now define what is meant by a 3-particle 
unitary approximation to the S matrix. The "elastic" 
unitarity relations LkN S~~k,S~Nk = ()n are exact 
between 2- and 3-particle normal thresholds. A set 
of scattering amplitudes7 satisfying these relations in 
the whole physical range of energy and crossing 
symmetric is what we call an "elastic" approximation 
to the S matrix; it is an input for our purpose. 

In view of the importance of the second-normal 
threshold in the low-energy TTN system, it is natural 
to attempt breaking the S-matrix normal-threshold 
singularity structure after this extra singularity has 
been included. This leads one to consider the following 
four sets of coupled equations relating the 4-, 5-, and 
6-point S-matrix elements. 

(I) L S~,,~,S:"k + L L SO~2~';k,S~~i'~''';k = 0k'k' 
k" (t" kt"k." (3.8) 

(3.9) 

"" ~ tX"<X';rx* t1",cX;rx otX'cX;a: + L.. L.. Skl"k,';kl'k,Skl"k2';klk. = k l 'k2;klk.· 
rx" kl"k." (3.11) 

Again, the relations (I)-(IV) are exact between the 
3- and 4-particle normal thresholds. Their extension 
in the whole energy range above the 3-particle normal 
threshold constitutes the 3-particle unitary approxi
mation, a useful concept in physical situations where 
the 3-particle channel dominates the other inelastic 
channels (case of 7TN~ 7T7TN below 1 GeV). The 
difficulties encountered with respect to certain 
crossing symmetry properties by breaking the S
matrix singularity structure in that way, are discussed 
and partially resolved in the last section. 

When the connectedness structure (3.1)-(3.4) is 
substituted into (I)-(IV), the 3-particle unitarity 
equations take a form represented diagrammatically 
on Fig. 4. In the derivation, use has actually been 
made of the "protection" prescription in the form 
represented on Fig. 5; i.e., of the fact that, between 
the 3- and 4-particle normal thresholds in the total 
energy, the "protected" 4-point amplitudes can only 
have the 2-particle normal threshold. 

7 In the elastic approximation we have 

8~'k = on + 21Tio(w' - w)p'(w)A,,(w). 

J±[ -E . HE +:GIE:. Co} 

::ttL-E'= NB-~~ 
• g=,,:::e-- (x) 

-roo:: --FF = -"(+re:..-<tF0= 
.t --lit;:.::: f>:J 

=t1F-E-:· :IDB:':ffn=r-·: 
+l::;:B:·IN-:e,:::·( __ ;::~-__ : ~ 

FIG. 4, The 3-particie unita
rity relations in terms of A 
amplitudes. 

In the context of the 3-particle unitary approxima
tion defined above, the substitution in the whole 
energy range of the "elastic" approximation for the 
protected 4-point amplitudes becomes a conjecture 
justified only by our ability to produce in this way a 
class of solutions to (I)-(IV). 

The interpretation of the relations (I)-(IV) as read 
off of their diagrammatic representation (Fig. 4) will 
now be given. 

(I) implies for the scattering amplitudes the elastic 
and inelastic normal thresholds at Z = ft - iE, 
Z = 2ft - 2iE, respectively, in the total energy variable. 
(The total and subenergy variables wand WI are 
promoted to complex variables; the physical masses 
are given a negative infinitesimal imaginary part in 
accordance with Feynman's i€ prescription.) 

(II), for the production amplitudes besides the 
normal thresholds at Z = ft - iE, Z = 2ft - 2iE, 
implies a two-sheeted normal threshold at ft - i€ in 
the complex subenergy plane Zl and an extra branch 
point-also two-sheeted-at Z - ft + i€ arising from 
the redundant subenergy variable Z2' The physical 
region for the production amplitudes is W > 2ft, 
ft < W t < W - ft and is represented by the dotted 
real axes segments of the Zl and Z planes, respectively 
(Fig. 6). 

(III), unrepresented on Fig. 4, gives for the absorp
tion 5-point amplitudes a singularity structure com
pletely analogous to (II), except for the fact that the 
final-state subenergy variable is replaced by an 
initial-state subenergy variable. 

(IV) exhibits for the 6-point amplitudes 2- and 3-
particle normal thresholds in the total energy variable 
Z = ft - iE, Z = 2ft - 2iE; 2-particle normal thresh
olds in the final and initial subenergy variables 
Zt = ft - iE, Zl = Z - ft + iE, Z~ = ft - iE, Z~ = 
Z - ft + iE, and, finally, physical-region single
particle discontinuities at Zl = z~ and Zt = z~. 

These single-particle discontinuities originate in the 
cross-energy pole terms pictured on Fig. 7. The 

FIG. 5. Protected relation 
used in deriving the relations 
(IHIV) of Fig. 4. 
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1 

r' =:.:01~.:.-r-~~ 
._(-,€ .... 

FIG. 6. The singularity structure in the complex (Zl, z) planes implied by Eq. (II) or (Ill) and the physical region; the analytic continuation 
path of Sec. (IV) is also represented. 

complete contribution of these terms, 

2-1 {t A~'p,Ap'( W~)A~'ckD~+)Ack( WI) 

+ ! A~'p,Ap'(W~)A~'pD~+)Ap(W2)A~Pck 
pp' 

- Ack'(W~)D~-)Ack(Wl)A~'ck 

- Ack'(W~)Di-) t A:,pAi(2)A~M}' (3.12) 

can be split into two parts, using the discontinuity 
equation for the baryon propagators: 

Di±) = ~(w~ - Wl)-1 ± i7Tb(w~ - WI); 

D~±) = ~(W{ - ( 2)-1 ± imj(w{ - ( 2). (3.13) 

The first part, containing the pole terms proper, will 
be dealt with after (3.17); the second part, containing 
the energy-conserving b functions, is combined with 
the disconnected part (3.5') into a new "disconnocted" 
part bilinear in "protected" scattering S-matrix 
elements (see Fig. 8): 

S:~~~~';klk2(D') = t . {S~:'k2A:'ckS~'kl 
+ ! A:'pS~'k.A~MS~l'kl 

p 

+ S~;'kl! A:'pSt'k.Aa,l:X 
p 

+ ~,A:,p,se:'klA~,pS~l'k.A~p:x}. (3.14) 
1'1' 

The convenience of (3.14) arises from the fact that the 

-----~---~ 

~~--------
FIG. 7. Cross-energy pole present in the 

connected 6-point amplitude. 

S are simply given phase factors: 

S~t'kl = bk1'kl exp [2ib~(Wl)1, 

where the b~ are the elastic phase shifts. 
Returning to the production amplitudes, we now 

describe the single-particle intermediate states in the 
subenergy and cross-energy variables [Figs. 9(a) and 
(b)1 giving rise to unphysical region poles in the 
subenergy variable ZI in the static limit. The particular 
importance of these poles is due to the observation 
that the axes WI = 0, W2 = 0 frame the sector of the 
physical region in the diagram of Fig. 10; certain 
crossing symmetry properties must be satisfied on 
these lines that will be described in the last section. 

The analytic expressions of the final subenergy pole 
terms of Fig. 9(a), since they contain "unprotected" 
4-point amplitudes, are 

(3g/J2)w~-10:x,HA~( w); (3g/J2)w~-1 A~,HAa(w). 

(3.15) 

The cross-energy pole terms of Fig. 9(b), on the 
contrary, contain "protected" scattering amplitudes 
to be replaced by their "elastic" approximations; 
their analytic expressions are 

-(3g/J2)w{-1! A~iXP.It;iw)Aft,H; 
p 

-(3g/J2)w~-lAiw)A~,H' (3.16) 

------- ----IJ:X ---
___ ill _________ _ 

FIG. 8. New disconnected part of the 6-point S-matrix element. 
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FIG. 9. (a) Subenergy pole 
terms of the production ampli
tudes. Note the "unprotected" 
4-point amplitude. (b) Cross
energy pole term of the pro-
duction amplitudes. Note the FIG. 11. Initial subenergy-variable pole of the 6-point amplitudes. 
"protected" 4-point amplitude. 

Recapitulating, the driving pole terms of the pro
duction amplitudes in the Zl complex plane for fixed 
complex total energy are 

D:(z~; z) = d:(z)[z - Z{j-l + ~ Aa"p d;(Z)Z~-I, 
p 

(3.17) 

Similarly, the pole terms at Zl = 0 and Zl = Z of 
the connected parts of the 6-point amplitudes-as 
redefined by (3.14')~ontain the full production 
amplitudes in their residues (see Fig. 11): 

(3g/J2){O",H-zll + A:,U(Z - Zlrl}Aa".(z~; z). 

(Here we have chosen the ingoing subenergy variable, 
but, of course, a similar expression can be written for 
the outgoing subenergy variable with the full 5-point 
absorption amplitudes A~ appearing in the residues.) 

Finally, the pole terms in the Zl variable arising from 
(3.12) can be shown to give a vanishing total contri
bution to the connected part of the 6-point amplitudes. 
For instance, the residue of the pole at z~ = Zl is 

2-I {.t A:'pAp(Z 2)Aap"A,,(ZI) - A".(zD t A:,pAp(Z2);.ap,,}. 

When it becomes multiplied by the fundamental 
matrix solution (see next section) in the Zl plane 
expressing prescattering, the contributions of the two 
terms cancel out. [The proof is identical to the proof 
of identities (5.8) and (5.9) and will not be reproduced 
here.] 

FIG. 10. Complete singularity structure and crossing symmetry of 
the production amplitudes. 

4. THE HOMOGENEOUS RIEMANN
HILBERT PROBLEM 

Let us continue A~.(z~; z) analytically from a 
physical region point J at z~ = w~, z = W around the 
total-energy normal thresholds while keeping z~ = 
w~ fixed in its physical region. The analytic continua
tion path is represented on Fig. 6. It is observed that, 
in the process, the redundant subenergy branch point 
moves around fl - iE. The continued amplitude has 
only the last two unitarity discontinuity terms of (II) 
(see Fig. 12). Just such a discontinuity equation has 
been shown by Polkinghorne, Olive, and Landshoffl 

to hold in a certain energy interval even in the presence 
of triangle singularities.8 

The discontinuity of the production amplitudes or 
their analytic continuations in the z plane is given by 
the expression (Fig. 12) 

discro1'ER1Aa",(w~; w) 

= ~ 27TiO(w" - WDp2(W")A",(wDA ".(w~ - iO; w). 
k" 

This relation is true, irrespective of the relative 
positions of the RI and R2 cuts, i.e., of whether or not 
the analytic continuation has been performed [a 
consequence of Steinmann's relations, see Ref. 9]. 
A similar discontinuity equation can be written for R2 . 

Taking advantage of the "protection" assumption, 
they lead one to consider the following homogeneous, 
multidimensional Riemann-Hilbert boundary-value 
problem in the complex Zl plane1o : 

rf>:(w1 + iO; w) = exp [2io:(w l )]rf>:(WI - iO; w); 
WI ERI == [fl, 00], (4.1) 

I Aa"prf>'ft(w1 + iO; w) 
p 

= exp [-2iO:(w - wJ] I Aa"prf>'ft(WI - iO; w); 
p 

WI ER2 == [-00, w - fl]. (4.2) 

The dimension [i.e., the number of equation of (4.1) 

8 P. V. Landshoff, D. I. Olive, J. Polkinghorne, J. Math. Phys. 
7,1593 (1966). 

• D. I. Olive, Nuovo Cimento 37, 1422 (1965); see especially p. 
1429. 

10 The multidimensional homogeneous Riemann-Hilbert problem 
is treated for the case of closed contours by N. Muskhelishvili, 
Singular Integral Equations (P. Noordhoff Ltd., Groningen, The 
Netherlands, 1953). The case of discontinuous coefficients or open 
contours----{)f interest here-is treated by N. Vekua, Systems of 
Singular Equations (P. Noordhoff Ltd., Groningen, The Netherlands, 
1967). As far as the Hilbert problem is concerned, we confine our
selves here to the class of sectionally holomorphic (or meromorphic) 
functions with polynomial boundedness at infinity and whose 
boundary-values on the cuts satisfy a Holder condition. 
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FIG. 12. Subenergy-vari
able discontinuity term giv
ing rise to a Riemann
Hilbert boundary condition 
on Rl = [,Lt. 00]. 

or (4.2)] of "h" is equal to the number n of sub
channels Ii = (J, /) coupled to the scattering channel 
(X = (J, I). Again, the relations (4.1) and (4.2) are 
exact (with 0" substituted for o~) in the physical 
region when 2f-l < w < 3f-l (this condition restricts the 
overlap of R1 and R2); in the context of a 3-particle 
unitary approximation, we extend them to the whole 
R1 , R2 cuts, thus neglecting further thresholds at 
Z1 = 2f-l - 2i€, Z1 = W - 2f-l + 2i€, etc. Besides, our 
singularity structure is also incomplete in view of the 
crossing symmetry properties of the production 
amplitudes requiring, for instance, branch points at 
Z1 = -f-l + iE, Z1 = Z + f-l - iE, etc. The possibility 
of embedding the Riemann-Hilbert problem "h" 
into a larger Riemann-Hilbert boundary-value prob
lem "H", once these extra branch cuts are recognized, 
will be discussed in Appendix B. 

We proceed now with the construction of the most 
general solution of "h" having the correct driving 
poles (3.15). Quite generally, 

<l>~(Z1; z) = '¥~(Z1; Z)F~(Z1; z), (4.3) 

where '¥~(Z1; z) has no poles in the finite plane and 
satisfies (4.1) and (4.2) on R1 , R 2 , whereas P is 
meromorphic in the Z1 plane with poles at Z1 = 0, 
Z1 = z. 

By a theorem of Muskhelishvili,9 

non vanishing everywhere in the finite plane and the 
determinant of X, defined as 

be different from zero at infinity. 
2. A sectionally holomorphic solution of "h" is a 

linear combination with polynomial coefficients of the 
fundamental solutions; this is exactly the statement 
(4.4). 

Since the n matrix defined above is not unique 
and since it will be convenient to handle an n matrix 
with simple transformation property under the 
permutation of the two rescattering meson lines, we 
add to the properties 1 and 2 the following theorem, 
proved in Appendix A. 

Theorem: There exists one and only one funda
mental-matrix solution to "h" with the following 
property under exchange of the cuts R1 and R2 : 

L ;.a"lin;W(z - Z1; z) = n~(i)(Z1; z)ci • (4.5) 
Ii 

An immediate corollary is: the ci = ± 1 are the 
eigenvalues of the;' matrix, ,and the coefficients of the 
dominant power of n~( i) at infinity are the correspond
ing eigenvectors of ;.~. Indeed, 

L ;.a"liX;W(oo; z) = CiX~(i)(OO; z). (4.6) 
Ii 

Returning to the construction of <l>~(Z1; z), from (4.3) 
and (4.4), we have 

<l>~(Z1; z) = L n~(i)(Z1; Z)F~(Z1; z), 
(0 

'Y~(Z1; z) = L n~W(Z1; Z)Pi(Z1; z), 
(i) 

(4.4) F~(Zl; z) = f~(Zl; Z)Z1"1 + g~(Zl; Z)(Z1 - z)-l, (4.7) 

where the n~(i)(Z1; z), (i = 1, ... , n) form a fundamen
tal matrix of vector solutions of "h." We define 
briefly the fundamental-matrix solution of "h": Let 
n~(1)(Z1; z) be the sectionally holomorphic vector 
solution (n components labelled by Ii-), having 
lowest degree (- K1) at infinity in the Z1 plane; the 
dependence on z is parametric through the position of 
the end point of R2 • The second fundamental solution 
n~(2) (Z1; z) has the lowest degree at infinity (- K2), 
compatible with orthogonality to n~(O with poly
nomial weight functions. Proceeding successively, one 
can define exactly n such independent fundamental 
solutions, where n is the dimension of the Riemann
Hilbert problem "h." 

Among the other properties of the fundamental 
matrix used here, we note the following: 

1. A necessary and sufficient condition for n to be 
a fundamental matrix of "h" is that its determinant be 

and the It, gf are entire functions of Z1. Bose sym
metry in the final state gives a simple relation between 
li~ and gf. From (4.5) and 

<l>~(Z1; z) = L ;'~<xIi<l>;(z - Z1; z), (4.8) 
Ii 

we find that 
g~(Z1; z) = cJ~(z - Z1; z). (4.9) 

Besides, identification of the pole residues at Z1 = 0, 
Z1 = z with (3.15) imposes the conditions 

I n~(i)(Z1; z)g~(z; z) = d~(z), 
(i) 

L n~w(O; z)f~(O; z) = L ;.a<X!id; (z). (4.10) 
(i) Ii 

One relation is clearly redundant in view of (4.9). 
Since det II n~(i) (Z1; z) II ~ ° in the finite Z1 plane, 
(4.10) can readily be inverted, yielding the most 
general solution of "h" with the correct poles at 
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Z1 = 0, ZI = z and a prescribed degree N at infinity: 

<I>:(ZI; z) 

= L Q:W(ZI; z){c;z11 + (z - ZI)-I}[Q"(Z; Z)]ii~ d: (z) 
(i)/l 

+ L Q:W(ZI; Z)P;(ZI; z). (4.11) 

The 
(i) 

P;(ZI; z) = C;Z11[f~(ZI; z) - f~(O; z)] 

+ (z - Zlrl[f~(z - ZI; z) - f~(O; z)] 

(4.12) 

are polynomials in ZI of degree N + K; - 1 with 
arbitrary functions of z as coefficients. 

The representation (4.11) still involves considerable 
freedom, especially insofar as the z dependence is 
concerned. Crossing, of course, by relating the 
analytic structure and the asymptotic behaviors in the 
ZI and z complex planes is expected to restrict or 
eliminate this arbitrariness. But, of course, crossing 
also obliges us to take into account other branch 
points in unphysical regions that have not been in
corporated in our model. Then the P;(ZI; z) cease to 
be entire functions with finite degree at infinity (i.e., 
polynomials) in the Zl plane but are still regular 
across the cuts Rl and R 2 • 

Within our 3-particIe unitary model-with truncated 
singularity structure both in relation to higher 
unitary approximations and crossing symmetry-it 
will become apparent in the next section that it is 
impossible to satisfy (I)-(IV) with an ansatz based on 
(4.11) unless the analytic dependence in z of the 
P;(ZI; z) is the same as the one exhibited by the pole 
terms. 

The effective representation of the production 
amplitudes adopted here is thus 

A"( . ) _ '" "" ( . ){C;P;(ZI; z) + P;(z - Zl; Z)} 
il ZI' z - .4 U ilW ZI, Z 

(i)/l ZI Z - ZI 

X [Q"(z; z)]iif/ld;(z). (4.11') 

In our model, the functions P;(ZI; z) are poly
nomials of degree N + K; + 1 in the ZI plane such 
that P;(O; z) = 1; their coefficients are regular func
tions of z (with possibly a pole at z = 0 to be dis
cussed later); the branch point at z = 2ft comes 
entirely from the "unprotected" A"(z). If the funda
mental-matrix solution of "h" can be maintained in 
the presence of other singularities by enlarging the 
Riemann-Hilbert problem (a matter taken up in 
Appendix B), we expect the representation (4.11') still 
to be valid; the P;(ZI; z) are then to be free of the 
branch points at ZI = ft - i~, ZI = Z - ft + i~ in the 
ZI plane and z = ft - i~, z = 2ft - 2i~ in the z 
plane. (They cease being simply polynomials.) 

5. THE ANSATZ AND THE RECURRENT 
SOLUTION OF (I)-(IV) 

Let us first define the following convenient ex
pressions describing final-state rescattering and 
initial-state pre scattering : 

Y"ilP(W1 ; w) 

= 27Tit5(Wl + W2 - w)p(W1)P(W2)p-\w) J£.. 
Rw 

X '" "" ( • ){Pi(W2; w) CiP;(W1; W)} .4 ~"il(;) WI' W + --"--'-'----'..:.--'-
(0 W 2 WI 

·x [Q"(W; w)](i~pAp.H' (5.1) 

Z:(Wl; W) = L Y~p(Wl; w). (5.2) 
p 

The basic ansatz for the S-matrix elements is 

S~:;~';k = Z:,(w~; W)S;'k - L Y:,p'(w~; W)S~:k' 
.s' 

S~;~klk. = Z:(w1 ; W)S:'k - L Y"ilP(W1 ; W)S~'k' 
P 

(5.3) 

(5.4) 

(5.5) 

Substituting (5.3), (5.4), and (5.5) into (II), (III), and 
(IV), for (II) and (IV) we obtain successively 

L ~ 
cx"cx'ocx I &."'(1. + Sk "k''''k 'k ,(D )*Sk :'k "'k 1 2. 1 2 1 2. 

cx" kl"k2" 

(5.6) 

- S~:;~:;k L [Y:'/l(W~; w) exp (2it5;(w»]. (5.7) 
/l 

All undesirable terms cancel out and (I)-(IV) are 
recurrently satisfied [i.e., (II) and (III) are satisfied 
if (I) is, and (IV) are satisfied if (II) or (III) is], 
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FIG. 13. Motion of the subenergy-variable cuts depicting the effect 

of multiplication of Q by S(D)*. 

provided we can prove the two similar identities: 

" " SIX""';a (D')*" a (" ) Sf< 
£., £., kI"k";kI'k' £., Y" 'f< WI; W k"k 
IX" kI"k." 

= Z:,(W{; w)*bk'k' (5.8) 

2 2 S:::~/;kI'k2,(D')*Z:,,(w~; w) 
IX" kI"k,' 

= 2 [yIXa,pCw{; w) exp (2ib~(w»]*, (5.9) 
f< 

Proof of (5.8), (5.9): Multiplication by the phase 
factors in S(D)* affects the fundamental matrix 
O~'(i)(w~; w) by bringing the physical region point 
w; on the second sheet of both subenergy-variable 
cuts. This actuaily requires giving w = w; + w; also 
an infinitesimal, negative, imaginary part, as shown by 
the sequence of Fig. 13. On this figure, only the 
physical sheet cuts are represented; they are either 
visible or not, according to whether or not the sheet of 
the representative point is visible after application of 
each phase factor. The fundamental matrix of situation 
(d) obtained from (e) by an infinitesimal deforma
tion-and thus topologically equivalent to situation 
(e)-is O~(i)(w;; w)*. 

Analogously, the factor S~"k on the right of Y 
takes one on the second sheet of Rl (only one cut is 
operative at WI = w!) of [Oa(w; w)](i~f<' Finally, we 
obtain (since Pi = Pi) the complex conjugate of Z 
or Y, respectively, and (5.8) and (5.9) are established. 

6. THE INELASTIC BOUNDARY-VALUE 
PROBLEM FOR THE SCATTERING 

AMPLITUDES 

Having established that our basic ansatz for the 4-
5-, and 6-point S-matrix elements recurrently satisfies 
the four sets of 3-partic1e unitarity equation, we pro
ceed to substitute (5.3)-(5.5) into (I). Recalling [see 
Ref. 6] that yew) = k 3P(w)JI2rr, (I) is rewritten as 

Aa(w) - Aa(w)* 

= 2i{Y(W) IAa(wW + ~ . Lro-/1 dw~y(wDy(w - w~) 

x ~ IA~,,(w~; wW}. (6.1) 

Redefining Y~tI and Z~ to omit the kinematical factors 
kept in (5.1), we write 

A:,.(w~; w) = 2 Y:'p(W~; w)Ap(w) - Z~,,(w~;w)Aa(w) 
p 

= R~,,(w~; w) - Z~,,(w~; w)Aa(w). (6.2) 

From (6.1) and (6.2), the inelastic scattering ampli
tudes are found to satisfy the inhomogeneous non
linear boundary-value problem in the w plane on the 
right-hand cut (the index IX is omitted in this section 
from now on): 

(2i)-1[G(w)A(w + iO) - G*(w)A(w - iO)] 

= r(w)A(w + iO)A(w - iO) + C(w), 

wE R == Cu, 00], (6.3) 
with 

G(w) = 1 + 2irr-l
. Lro-/1dw~Y(Wny(w - wD 

X 2 R~,,(w~; w)*Z~,,(w~; w), (6.4) 
a" 

r(w) = yew) + rr- l
• 1"'-/1 dw~y(w~)y(w - w~) 

X 2IZ~,'(w~; w)1 2
, (6.5) 

IX" 

C(w) = rr- l
. dw~y(w~)y(w - w~) 2IR~,.(w~; wW. J

"'-/1 

/1 ,," 
(6.6) 

As a first step in studying (6.3), let us assume we do 
have a particular solution 1J!. Then let the most general 
solution be A = 1J! + X, where A and 1J! have identical 
discontinuities across all the-so far unspecified
left-hand cuts and the same poles with the same 
residues. On the right-hand cut, (6.3) splits into 

{

(2i)_1{ G1J!+ - G*1J!_} - r1J!+ 1J!- - C = 0, 

(2i)-1{X+[G - 2ir1J!_] - X_[G* + 2ir1J!+]) 

= r1J!+1J!-. 

(6.7) 

(6.8) 

The sectionally holomorphic X(z) has only the right
hand inelastic cut across which it satisfies the nonlinear 
but homogeneous boundary-value problem (6.8). 

We treat first the auxiliary linear boundary-value 
problem: 

(2i)-1{~~[G - 2ir1J!_] - ~~[G* + 2ir1J!+]) = 0, 

discL~' = 0. (6.9) 

This is a Riemann-type problem, i.e., a relation 
between the real and imaginary parts of a sectionally 
holomorphic function ~(z) on an open contour. It is 
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observed that 

A'(z) = exp {7T-1i'''' dw[w - zr1 

X arg [G*(w) + 2ir(w)1J!(w + iO)]} (6.10) 

certainly satisfies (6.9) on R and is bounded at 
thresholdY The point at infinity as an end-point of the 
cut R is best studied by performing the inversion 
u = Z-I. Considering 

A(u-I ) = exp {7T-1 roo du'[u' _ U]-1 
JI'-l 

x arg [G*(U,-I) + 2ir(U'-I)1J!+(U'-I)]} 

= exp {'P(u)}, (6.11) 

K = lim 7T-
1 'PCU) = lim 7T-

1[G* + 2ir1J!+]' (6.12) 
u~o u~o 

The index K so defined is certainly bounded but will, 
in general, be different from an integer; 'P(u) is 
assumed to belong to the class Ho; i.e., it belongs to 
the class H of HOlder functions everywhere on 
[0, ,u-I] except at u = 0, where it undergoes a dis
continuity of the first kind. Then, the limiting behavior 
of the Cauchy integral 'PCu) when u = 0 is approached 
is 
lim 'P(u-1

) = -7T-1arg [G*(oo) + 2ir(oo)1J!+(oo)] 
" .... 0 

x log u-1 + 'Po(u-1
) , (6.13) 

where 'Po(u-1) is regular when u -+ O. Hence 

lim A'(u-1
) = uKAMu-1

), 

" .... 0 
where A~ is bounded at u = O. (6.14) 

To achieve a weak singularity at u = 0, it is 
necessary to multiply by a power of u; let it be A such 
that -1 < A + K < + 1. The classification of the 
possibilities concerning u = o· is given by the short 
table: 

(1) "special" end (K integer): A + K = 0 solution 
bounded at origin; 

(2) "nonspecial" end 
(K -:;t. integer) 

Class I: A + K > 0, solution 

vanishing at origin; 

Class II: A + K < 0, solution 

weakly discontinuous at 

origin. 

uAA'(u-1) is the fundamental sectionally holomorphic 
solution in the u plane [for a given class in Case (2)]. 

11 The threshold is a "special end" in Muskhelishvili's nomencla
ture, since G*(z*) can be regarded as the continuation into the lower 
half-plane of G(z) around z = ft. 

Reverting to the z plane, the factor z--' would bring a 
pole or a zero at z = 0, and thus must be removed 
when constructing the fundamental solution in the 
z plane: 

A'(z) = exp {~rOO dw 
7T JI' w(w - z) 

x arg [G*(w) + 2ir(w)1J!+(w)]. (6.15) 

Let X = A'X' in (6.8); we get 

(2 ·)-1 d' [ ']-1 _ r IA'I r' 
l ISCR -X - == . 

IG - 2ir1J!_1 
(6.16) 

- [X' (Z)]-1 is a Herglotz function determined by its 
discontinuity across the real axis, up to a Wigner 
R function. Since the elastic approximation is re
covered by the limit r -+ y, A' -+ 1, G -+ 1, we reach 
the conclusion that there is a one-to-one correspond
ence between the elastic and inelastic scattering 
amplitudes.12 

We proceed now with an algorithm constructing a 
particular solution of (6.3). Since the purpose of a 
3-particle unitary approximation, as we see it, is to 
incorporate the second-normal threshold singularity, 
we take the discontinuities across the left-hand cuts 
over from the input crossing-symmetric elastic approx
imation. We thus have a Cauchy boundary-value 
problem on L (given discontinuity) and (6.3) on R, 
and we will worry later about reestablishing crossing 
symmetry for the inelastic scattering amplitudesP 

Let us first solve the auxiliary problem of finding 
the effect of a small perturbation given as a density 
function satisfying the Holder condition on R: 

(2i)-1[1J!+CC + e)G - 1J!_(C + e)G*] 

= r1J!+(C + e)1J!_(C + e) + [C + e]. (6.17) 

We write 1J!(C + e) == 1J! + ~ with discL 1J!(C + e) = 
disc L 1J!( C) or disc L ~ = O. The perturbation ~ satisfies 
the boundary-value problem on R: 

(2i)-I{~+(G - 2ir1J!_(C» - L(G* + 2ir1J!+(C»} 

= r~+L + e. (6.18) 

In the limit e -+ 0 uniformly, we have the trivial 
particular solution ~ == O. For this particular solution 
r ~+~_ = O( e2

), and the problem is linearized to order 

12 This issue was obscured in the second sector of the Lee model 
and the charged scalar theory by the fact that two successive in
versions of an analytic function were necessary to obtain a Herglotz 
function whose discontinuity across the cut is known [see M. Fein
roth, Ph.D. thesis, The Massachusetts Institute of Technology, 
1967 (unpublished)]. The procedure applicable in these two special 
cases does not extend to the more general situation considered here. 

13 In principle. an iteration scheme in the z plane can be set up 
using the inelastic amplitudes resulting from this section to compute 
the left-hand cut discontinuities in the first approximation. 
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E2. Let 

A(z; C) = exp {!.. (00 dw 
7T JII w(w - z) 

X arg [G* + 2ir1p+(w; C)J}, (6.19) 

1p(z; C + E) = 1p(z; C) + A(z; C). - --1 fOO dw 
7T II w-z 

X E{W) . (6.20) 
IA_(W - iO; C)[G* + 2ir1p+(C)]I 

This defines 1p(z; C + E) = .,7[1p(z; C); E] as a func
tional of 1p(z; C) and E(W). 

We now partition the inhomogeneous term C(w) 
into N (for instance) equal Holder density functions 
on R:E(W) = N-IC{W), and recall that discL 1p(z; C = 
0) = discL 1p(z; C). Provided E(W) is well behaved, 
we have 

1p(z; C) = lim .,7N[1p(z; C = 0); CfN]. (6.21) 
N-+oo 

The homogeneous boundary-value problem on R 
satisfied by 1p(z; C = 0) is 

(2i)-I[1p+(C = O)G - 1p_(C = O)G*] 

= r1p+(C = O)1p_(C = 0), (6.22) 

i.e., actually a particular case of (6.8). According to 
our general method, let 

1p(z; C = 0) = A(z) . X(C = 0), 

A(z) = exp {7T-1Z I2~ dw[w(w - Z)]-I arg G*(W)}, 

(2i)-l disCR [-X-I(C = 0)] = riAl = r'(c = 0) 
IGI 

(Note: r' = y for {.t < W < 2{.t). (6.23) 

Let disc L 1p-I( C = 0) = disc L 1p;1; then 

1p-\C = 0) = A-~. ( ~ A discL 1p;1 
2m JL W - Z 

_ A-I. (Rr'(C = 0) dw 
7T Jj W - Z 

- A-I X Wigner R function. (6.24) 

Since A --->- 1, r' --->- y in the elastic approximation, the 
one-to-one correspondence between elastic and in
elastic scattering amplitudes is quite apparent from 
(6.24). 

In conclusion, given a set of crossing-symmetric 
elastic-unitary amplitudes, we can, in principle, (a) 
construct a particular set of inelastic scattering 
amplitudes belonging to a 3-particle unitary S matrix 
through (6.20), (6.21), and (6.24), and (b) construct 
the most general of such amplitudes by adding the 

solution given by (6.15) and (6.16) ofthe homogeneous 
'·boundary-value problem (6.8). 

7. CROSSING OF PRODUCTION AMPLITUDES 

It is obvious that our construction of a 3-particle 
unitary S :matrix violates many crossing-symmetry 
requirements. This is, of course, due to the fact that 
we have confined ourselves to physical region sin
gularities and those singularities that frame the 
physical region, i.e., the poles at WI = 0 and W2 = o. 

However, re .. establishing crossing-symmetry invari
ance of the production amplitudes is not wholly a 
question of recognizing the existence of further un
physical region cuts with their boundary-value con
ditions. Some subtle points arise in connection with 
the "protection" prescription that enabled us to solve 
the 3-particle physical unitarity equation. 

Let us first enumerate the complete "a priori" 
crossing-symmetry structure of the exact production 
amplitudes. 

A. Substitution Law-Type Crossing Relations 

A set of n-point amplitudes whose arguments are 
taken in the physical region is related by a linear 
substitution to the same set of n-point amplitudes in 
an unphysical region. The:scattering amplitudes obey 
only crossing relations of this type: 

(7.1) 

The corresponding substitution laws of the production 
amplitudes are 

with 

A«/1 = (2fJ + 1){1 i r:t.} 
~ 1 & fJ 

= (21/1 + 1)(2J/1 + l){~ ;'" 
for 

Such crossing relations involve the crossing of two 
meson lines and preserve the "protected" character 
of rescattering blobs in unitarity discontinuity 
formulas (Fig. 14). 

The substitution law (6.2) combined with Bose 
symmetry in the final state generates an invariance 

CROSSING 2 MESON LINES 

FIG. 14. Substitution law-type crossing. The protectedness of the 
rescattering blob is preserved. 
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group of the production amplitudes isomorphic to 
the permutation group of three objects. The elements 
of this invariance group in matrix notation are 

Symmetry with respect to axis WI = W2: 

A(W1W2; w) = [A]A(W2W1; w); (7.4) 

Symmetry with respect to axis W = - WI : 

A(W1W2; w) = [A]A(W1, -w; -(2); (7.4') 

Rotation of -21T/3 in diagram of Fig. 10: 

A(W1W2; w) = [AA]A( -WW1; -(2); (7.4") 

Rotation of +21T/3 in diagram of Fig. 10: 

A(W1W2; w) = [AA]A(W2' -w; -WI); (7.4/1') 

Symmetry with respect to axis: 

A(W1W2 ; w) = [AAA]A( -WW2; -WI)' (7.4'''') 

Closure arises from the identity [AAA] = [AAA], 
itself a consequence of 

L (2y + 1){~ 1 el}{l t ~}{(3 P I} 
y ellyty(3yt 1 

= {~ ~ ~}. (7.5) 
el el 1 

B. Transfer-Type Crossing Relations 

These are crossing relations connecting through a 
linear substitution set of n-point amplitudes to 
another set of n-point amplitudes whose kinematic 
variables are taken in an unphysical region, for 
instance, production five-point amplitudes to absorp
tion five-point amplitudes through crossing of one 
meson line. This type of crossing does not conserve 
the "protected" or "unprotected" character of 4-point 
blobs appearing in unitarity discontinuity formulas, as 
exemplified by Fig. 15. 

Crossing of one meson line thus transforms a 
subenergy-variable normal threshold into a total
energy variable normal threshold for an amplitude 
related to the original one by time reversal. In the 
process, the total and subchannel indices (el, Ii) 
exchange their roles. Crossing symmetry with respect 
to the axis W 2 = 0, if A denote the absorption ampli
tudes, is written as 

A~(W1W2; w) = f(li, el)A~(w, -W2; WI), (7.6) 

c.>,,"" I/J,d.. '" - ... f>I 
"'ll'..sC.~I=-:--:'O--= (o}\"=~m--"®--- ~ ~.:"@---®:::Co\,cI 

CROSSING 1 MESON LINE 

FIG. 1 S. Transfer-type crossing. The protectedness of the rescattering 
blob is altered. 

where f(li, el) plays the role of a raising or lowering 
operator for the channel indices. [Every time it is 
feasible, the lower index Ii = (J,I) denotes the sub
channel, and the upperscript el = (J, I) denotes the 
total channel.] 

f(li, el) can readily be determined by observing that 
Bose symmetry for the production amplitudes in the 
physical region implies 

f(li,el)A~(w, -W2; WI) = LA<Zlx.pf(P,el)A~(w, -W1 ;(2), 

p (7.7) 
i.e., 

A<Z&.pf(P, el)j-\Ii, el) = A~tJ. 

Exchanging the numerical values of (Ii, el), we see 
thatf(li, el) = f(li)f-l(el), i.e., 

fCel) = (- )J+I[(21 + 1)(2/ + l)]t. 
Hence the useful relations 

A~P = A&.apf«(3, el), A&'<zp = A~(Jf(el, (3). (7.8) 

The adjunction of a new symmetry with respect to 
the axis W 2 = 0 in the diagram of Fig. 10 generates two 
new symmetries in view of the invariance group of (i): 

(I) Reflection with respect to axis WI = 0: 

A~(WIW2; w) = L A<Zlx.pA~Pf(P, (3)AjC -WIW; ( 2). (7.9) 
p,p 

Proof: 

A~(W1W2; W) = L A<Z&.pA~(W2Wl; W) 
P 
~ '-p = "'" A<Z&.pf«(3, el)Aa(w, -WI; ( 2) 
tJ 
~ . p-p = k A<Z&.pf«(3, el)A <zpAp( -W1W; +(2). pp 

Finally fromfCP, el) = f(P, (3)f«(3, Ii) and 

fC(3, el)AP"'fi = A~fi, 
(7.9) follows. 

(2) Reflection with respect to axis W = 0: 

A~(W1W2; w) 

= L A~PAP&.pA~Yf(P, Y)A~vAe( -W2, -WI; -w). (7.10) 
ppyv 

Proof' 

A~(WIW2; W) 

= LA~PA~(Wl' -w; -(2) 
P 

= L A~PAP&.pA~Yf(P, y)A~( -WI' -W2; -w). 
ppy 

Hence (7.10). It is worth noting that the last relation 
of the proof gives the symmetry operation with 
respect to the origin in the diagram of Fig. 10. 

If time-reversal invariance holds-and we have 
assumed that it does in our basic ansatz-the relations 
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(7.6), (7.9), and (7.10) become new symmetry prop
erties of the production amplitudes. The complete 
invariance group represented on Fig. 10 is reminiscent 
of the crystallographic 2-dimensional point group 
labeled (6 mm). We have the following negative 
statement : (a) exact and complete crossing symmetry; 
(b) time-reversal invariance, and (c) 3-particle physical 
region unitarity-as defined earlier-are incompatible 
because a reflection with respect to W 2 = 0, for 
instance, would generate a 3-particle normal threshold 
in the subenergy variable WI' Such a discontinuity 
term represented on Fig. 16 is clearly relevant to the 
4-particle unitary approximation. Such a difficulty 
in arbitrarily breaking the S-matrix normal threshold 
singularity structure was, of course, absent in the 
elastic approximation, due to the circumstance that it 
involved only amplitudes with an equal number of 
ingoing and outgoing lines. 

However, a certain type of approximate crossing is 
implied by our basic ansatz for the production 
amplitudes. It is recalled that in (5.3) and (5.4) com
pensating structures (the second terms) were needed to 
satisfy 3-particle unitarity. To understand the origin 
of these terms, we note that the difficulty mentioned 
above does not appear, provided we add the pre
scription that for each meson line crossed, the "pro
tection" character of the 4-point blobs be changed. 
Then, the discontinuity term of Fig. 16 is not generated 
and it is possible to reconcile 3-particle unitarity with 
this "approximate" crossing invariance. The physical 
meaning of the compensating terms in (5.3) and (5.4) is 
then understood: they are required by an "approxi
mate crossing symmetry" on the demarcation lines 
WI = 0, W 2 = 0 between the physical region sector 
(Fig. 10) and the crossed regions sectors. Indeed, from 
f(ek, OC)A~.U = -A~.H' we have 

f(ek, oc)d~(w) = (3gIJ2)A~,H[A"(w) - Aiw)l-- d:(w), 

(7.11) 

by changing the protected ness of the 4-point ampli
tudes. 

It can also be checked explicitly that all pole terms 
"approximately" cross into each other when the pole 
term at w = 0 of Fig. 17 is added: 

--~~=~rJT\--
~ 

(7.12) 

FIG. 16. This subenergy discontinuity 
term is obtained by crossing one meson 
line in a 3-particle unitarity total
energy discontinuity term; it appears in 
the 4-partic1e unitarity relations. 

FIG. 17. The pole term at w = 0 in the z plane. 

In Appendix B, an "approximately" crossing
symmetric homogeneous Riemann-Hilbert problem 
(of dimension n2) is set up that includes the unphysical 
region cuts at Zl = -I-' + iE and Zl = W + I-' - iE, 
but yields the n Riemann-Hilbert problems of Sec. 
IV (labeled by oc) when the cuts L I , L2 are neglected. 

However, since the boundary conditions on LI and 
L2 make use of the inelastic phaseshifts, an "approxi
mately" . crossing symmetric representation of the 
production amplitudes built in this way cannot be 
useful except in an iteration scheme (somewhat 
analogous to the N/ D method for the scattering 
amplitudes). 

An approximate calculation vf the Pit inelasticity 
parameter in 1TN scattering using the framework set 
up here will be described elsewhere. 
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APPENDIX A 

Theorem: There exists one and only one funda
mental matrix solution with the following property 
under exchange of the cuts Rl and R2 : 

Proo/' Let O~(;)(ZI; z) be any fundamental matrix 
solution of "h." The individual vector solutions have 
degree - Ki at infinity (Ki : "individual indices" such 
that Kl ~ K2 ~ ••• ~ Kn K = Ii K i , total index). 
Now, III A~P~(;)(z - Zl; z) is readily seen to satisfy 
exactly the Riemann-Hilbert problem as O~{i)(Zl; z). 
It also has the same degree at infinity in virtue of a 
theorem by Sugawara and Kanazawa14 [indeed, 
lexp (2ib,,(w»1 = 1, so that O~(il(Zl; z) is bounded by 
the same power of ZI in the upper and lower half
planes]. By application of the fundamental theorem 

14 M. Sugawara and A. Kanazawa, Phys. Rev. 123, 1895 (1961). 
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(4.4), we have successively 

I ;"~lXilnCX(1)(Z - ZI; z) = n~(l)(ZI; Z)C1, C1 ~ 0, 
il (AI) 

I ;,.cxlXiln p(2)(Z - ZI; z) 
il 

= n~(1)(ZI; z)P"'_"n(ZI) + n~(2)(Z1; Z)C2, (A2) 

= n~(1)(ZI; z)P",_",.(ZI) + ... + n~(n)(Z1; Z)Cn , 

Cn ~ o. 
The first relation is in the desired form. Substituting 
(z - ZI) for Z1 in (A2), we have 

C21 I ;"~lXilnfi(2)(ZI; z) 
il 

= C21n~(1)(z - ZI; Z)P"'_"'(Z - Z1) 

+ n~(2)(Z - ZI; z). 

Combining this last relation with (AI) and (A2), we 
have 

(c 2 - C21)n~(2)(ZI; z) 

+ {P"'-"2(ZI) + C1C2P",_".(z - Zl)}n~(1)(Z1; z) = O. 

Because of the linear independence-with arbitrary 
polynomial coefficients-of the fundamental vector 
solutions, no such relationship can be satisfied unless 

C2 = C21; P ",_".(Z1) + C1C2P "'_I<,(z - Z1) = o. (A3) 

This stringent restriction on the polynomial P".-".(Z1) 
allows us to define a new fundamental vector solution: 

n~~2)(ZI; z) = n~(2)(Z1; z) + 2-1c2P"'_I<.(Z1)n~(1)(ZI; z), 

such that 

I ).alXiln~~2)(Z - Z1; z) = C2n~~2)(ZI; z) 
il 

[explicitly using (A3)]. 
One proceeds similarly to construct the other 

n~(il(ZI; z), i > 2. 

APPENDIX B: THE ENLARGED RIEMANN
HILBERT PROBLEM 

As is apparent on Fig. 18, approximate crossing 
symmetry-i.e., maximal crossing symmetry compati
ble with the 3-particle unitarity approximation-re
qUires two extra branch points in the ZI plane at ZI = 
-11- + i€ and ZI = Z + 11- - i€, respectively. These 
two branch points are mapped by crossing-with 
[AU] = [)'A)'] and [A] as substitution matrices, 
respectively-on the branch point at z = 11- - i€ in 

"II , 

o l""" <.."'" 

..:J -eli ~rt'+i.t. _;.\0).:.., "::'-:.I:!M=:I':':=.-=I!o_=-::!i"~-~ 
• It ,- -

() ~.i4 

FIG. 18. The enlarged Riemann-Hilbert problem in the z, and z 
planes. 

the z plane. The phase relation on this total energy 
branch cut is 

A~(Wl; W + iO) = exp [2i15!w)]A~(Wl; W - iO), (B1) 

where the scattering phaseshift belongs to the 3-
particle approximation, since the total energy pre
scattering blob is "unprotected." The application of 
the crossing substitution laws (7.4') and (7.4'''') then 
generates the· boundary conditions on Ll and L 2 • 

The complete n2·dimensional resulting homogeneous 
Riemann-Hilbert problem in the ZI plane is then 

"H" 

rP~( WI + iO; w) = exp [2i15~( WI) ]rP~( WI - iO; w) 

for (WI E R1), 

I A~PrP~(WI + iO; w) 
P 

= exp [2i15~(WI - w)] I A~PrP~(WI - ;0; W) 
fJ 

L [;"A;"]~rP~(WI + iO; w) 
ilP 

for (WI E L 2), (B2) 

= exp [-2i15!( -w)] L [)'A).]~rP~(WI - iO; w) 
tJfJ 

for (WI ELI). (B3) 

Since the matrix). and the phase factor commute in 
the last relation, we can write (B3) with [A),] instead 
of [)'A)'] = [A)'A]; this corresponds to the fact that 
the thresholds WI = -11-, W = 11- are also interchanged 
by a rotation of (-271/3) in the diagram of Fig. 9. 
Let n~(.)(ZI; z) be a (n2 X n2

) fundamental matrix 
solution of "H," where the index s runs from 1 to n2• In 
the limit 15!(w) -+ 0, i.e., when the cuts Ll and L2 are 
neglected, n~(s) degenerates into n diagonal blocs, the 
n fundamental matrix solutions of the n smaller (n
dimensional) Riemann-Hilbert problems on Rl and 
R2 labeled by IX. 

Since the boundary conditions on Ll and L2 are 
exchanged by Bose symmetry just the way Rl and R2 
were exchanged in the small problem, we can still 
apply the theorem of Appendix A to construct a 
fundamental matrix solution with simple Bose sym
metry property. By the way this new fundamental 
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matrix is constructed, the index (s) splits into (i,j) 
with i,j = 1, ... ,n: 

~ 1. na<i)( .) naw( . ) IX (B4) 
£.., 1\ &.i3;:'''i3(i) Z1' Z = ;:'''<x(i) Z - Z1' Z C(i). 

i3 

Let us now turn to the large Riemann-Hilbert 
problem in the Z plane also represented on Fig. 16. 
Let n~(z; Z1) be its fundamental matrix solution; it 
depends only parametrically on Z1 through the end
point positions of some cuts. Since crossing maps the 
point at infinity in the z plane onto itself, by the 
theorem of Appendix A there exists a unique funda-

JOURNAL OF MATHEMATICAL PHYSICS 

mental matrix solution satisfying 

n:(z; Z1) = L A~n~(Z1 - z; Z1)' (B5) 
P 

It is readily verified that the ansatz 

n:(z; Z1) = L [AAA]~n~(-z; -Z1) 
i3P 

satisfies (B5) and hence we reach the conclusion that 
the large n~~~~(z; Z1) gives us the solution of the 
homogeneous Riemann-Hilbert problems in both the 
Z1 and z planes (trivially, also Z2)' 
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. An intrinsic spinor formalism is developed by extending the axiomatic approach of a previous paper 
[J. Math. Phys. 9, 284 (1968)] in which abstract tensor techniques in Minkowski space were discussed. 
Comparable notational and calculational advantages are achieved, and, in particular, the cumbersome 
spinor indices are not required. The advantages and practicality of the method are evidenced in a discus
sion of the Dirac equation and a novel derivation of the two- and four-dimensional spinor representations 
of the homogeneous Lorentz group. 

1. INTRODUCTION 

In a previous paper, 1 (hereafter referred to as I) 
we described an abstract formalism for tensor analysis 
in Minkowski space and demonstrated its notational 
simplicity and calculational advantages by applying it 
to several problems in special relativity. The purpose 
of the present paper is to show how a corresponding 
intrinsic spinor formalism entailing similar advantages 
can be developed. A notable feature of this formalism 
is that the cumbersome manipulations associateo with 
spinor indices can be avoided, a fact which results in 
considerable algebraic simplification. 

To begin, we give in Sec. 2 the basic definitions and 
axioms of the two-dimensional spinor space and its 
conjugate space in intrinsic notation. Dyadics attached 
to the spinor space and their operations are then 
defined, and the procedure for relating the intrinsic 
formalism to the conventional one in terms of com
ponents2 is established. 

1 C. P. Luehr and M. Rosenbaum, J. Math. Phys. 9, 284 (1968). 
We note that in this paper four-vectors in Minkowski space were 
denoted by underlined boldface (Roman) type. 

2 See, for example, E. M. Corson, Tensors, Spinors and Relativistic 
Wave-Equations (Blackie and Son Ltd., London, 1953); E. Cartan, 
The Theory of Spinors (The Massachusetts Institute of Technology 
Press, Cambridge, Mass., 1966); J. Rzewuski, Field Theory 
(Panstowowe Wydawnictwo Naukowe, Warsaw, 1958), Part I. 

In Sec. 3, unimodular linear spinor transformations 
are discussed and proven to be always expressible in 
exponential form. In Sec. 4 it is shown that by merely 
defining an appropriate scalar product in the space of 
Hermitian spinor dyadics, it becomes isomorphic to 
Minkowski space. Thus, world vectors and Hermitian 
spinor dyadics become intrinsically identical entities, 
and can therefore be denoted by the same symbol. 
It is only their alternate representations, either in 
terms of an orthonormal Minkowski basis or a spinor 
basis, that are distinct. It is also shown that in the 
conventional component notation, the matrices 
connecting world vectors with spinors are simply 
hybrid components of the unit dyadic for Minkowski 
space. 

Section 5 deals with the two-dimensional spinorial 
representation of the restricted homogeneous Lorentz 
transformation, following an approach that is different 
from others appearing in the literature.3 Essentially, 

3 See, for example, W. L. Bade and H. Jehle, Rev. Mod. Phys. 
25, 714 (1953), and references therein; P. Roman, Theory of 
Elementary Particles (North-Holland Pub!. Co., Amsterdam, 1961), 
second ed; J. L. Synge, Relativity: The Special Theory (North
Holland Pub!. Co., Amsterdam, 1965), second ed., p. 102; A. J. 
Macfarlane, J. Math. Phys. 3,1116 (1962); I. M. Gel'fand, R. A. 
Minlos, and Z. Ya. Shapiro, Representations of the Rotation and 
Lorentz Groups and Their Applications (Pergamon Press Ltd., 
Oxford, 1963). 
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we arrive at the double-valued homomorphism 
straightforwardly by taking advantage of one of the 
basic forms of the Lorentz transformation derived in 
I, which, when rewritten in terms of a spinor basis, 
can then be factored into a tensor product of spinor 
transformations. 

Section 6 is devoted to a discussion of the Dirac 
equation, making use of intrinsic spinor techniques. 
The Dirac r ll appear as symmetric spinor dyadics 
formed from the basis vectors of Minkowski space, 
and their anticommutation relations are easily derived. 
It is also shown how the different matrix representa
tions may be obtained. In addition, we give a concise 
derivation of the continuity equation for the Dirac 
field expressed in spinor form. Section 7 contains an 
interesting method of extending the results of Sec. 5 
to obtain explicit four-dimensional intrinsic spinor 
representations of the homogeneous restricted Lorentz 
transformations. 

Finally, in Sec. 8, we extend our results to cover 
the full homogeneous Lorentz group by including 
intrinsic spinor representations for the inversions. 

2. INTRINSIC SPINOR ANALYSIS 

Let 82 denote a two-dimensional symplectic space, 
i.e., a linear vector space over the field :T of complex 
numbers in which there is a nondegenerate skew
symmetric bilinear inner product U· v. Explicitly, 
given any u, v, WE 82 , and Il( E:T, then: 

U· v = -v· U, (Ia) 

(Il(u), v = Il(u· v), U· (Il(v) = Il(u, v), (I b) 

(u + v) • W = U· W + V· W, 

U • (v + w) = U • v + U • W, (I c) 

u·v = 0 for all v E 82 implies u = O. (ld) 

For any basis hI' h2 in 82 , the reciprocal basis 
bI , h2 is defined to satisfy 

(2) 

where 0: is the ordinary Kronecker delta. If we now 
require that 

(3) 
then 

(4) 

In terms of these bases, any vector III 82 can be 
written as4 

(5) 

where ua and Ua are contravariant and covariant 
components of u, tespectively. From Eq. (2) it 

4 The summation wnvention on repeated indices is always implied 
unless stipulated otherwise. 

readily follows that 

and 

ua = ha • U = -u· ba , 

Ua = U • ha = - ha • U, 

u • v = uavoha • hb = uavbo~ = !laVa, 

U • V = UaVbha • bb = -uavbo! = -uava. 

(6) 

(7) 

The antilinear operation of complex conjugation, 
which maps 82 onto the conjugate5 space 82 , can now 
be defined axiomatically by the rules 

(u + v) = Ii + ii, 
(Il(u) = -;Xu, 

(u • v) = Ii . ii, 
(8) 

= 
u= u. 

Accordingly, the complex conjugate of Eq. (5) gives 

(9) 

where the components ua and ua are usually denoted 
in the literature by the "dotted indices": 

In I, we reviewed dyadic algebra in Minkowski 
space. Similar definitions and operations6 can be 
considered in 82 , Thus, the tensor product (written as 
uv or u <29 v) of two vectors u, v in 82 constitutes a 
dyad. 7 A dyadic8 is a sum of dyads: 

K = !UIVI . 
I 

The two products of K with a vector W E 82 are 

K· W = (t UIVI) • W = t utCvl ' w), 

w·K=w· (tUIVI) =t(w,uI)v/, (10) 

Additional operations are: 
1. The scalar of K, denoted by Ks: 

Ks = (! UIVI) =! Ul ' VI' (11) 
I s I 

2. The transpose of K, denoted by K or KT : 

it == KT = ! (UIVI)P = ! VIUI . (12) 
I I 

5 We will use a bar to denote complex conjugation of spinors and 
spinor components. A star will be reserved for complex conjugation 
of complex four-vectors. 

6 Care must be exercised, however, in carrying out this analogy, 
since there are some concepts in .A(,. (such as the vector of a dyadic 
and "cross products") which do not apply to 8,. 

7 This is what is called in some of the literature an affine tensor 
attached to the vector space 8,. See, e.g., A. Lichnerowicz, Elements 
a/Tensor Calculus (Methuen and Co. Ltd., London, 1962). 

8 Spinor dyadics will be denoted by boldface capital Roman type 
and boldface Greek type. 
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3. The product of K with another dyadic M = 
Lk WkYk' which yields a new dyadic: 

N = K· M = (t UIVI) • (f WkYk) 

= L L (VI' Wk)UIYk· (13) 
I k 

4. The double product of two dyadics, which yields 
a scalar: 

K: M = (t UIVI) : (f WkYk) 

= L L (ul • Wk)(VI • Yk). (14) 
I k 

5. The exterior product of two vectors U and V in 
82 : 

U " V = uv - vu. (15) 

6. The complex conjugate of a dyadic 

K = (~UIVI) = t lilvl · (16) 

Observe that by making use of Eqs. (la), (10), 
and (12), one obtains 

K·u=-u·K, K·u=-u·K. (17) 

Also note that, from Eqs. (11) and (14), we have 
\ 

(K • M). = (K . M). = K : M. (IS) 

In terms of its contravariant, covariant, and mixed 
components, a dyadic in 82 can be written in the 
following alternate ways: 

K = Kabhahb = Kabhahb = Kabhahb = K/hahb, (19) 

from which we find that 

Kab = hahb: K = _ha. K. hb, 

Kab = K : hahb = - ha • K . hb' 

Ka b = ha • K . hb' 

Kab = ha • K . hb. 

(20) 

The previous definitions enable 
product (K· u) as 

us to express the 

(K· u)a = ha • K· hbUb = KabUb = _Kabub , 

(K· u)a = -ha • K· hbub = -Kabub = KabUb. (21) 

The identity, or unit dyadic 12 , which is defined to 
satisfy the equation 

12 • U = U • 12 = u, (22) 

for all u E 82 , can be written as 

12 = haha = -haha. (23) 

Note that the unit dyadic is antisymmetric, i.e., 

12 = -12, (24) 

The metric in 82 is defined in terms of the components 
of 12 • Thus, by Eq. (20), we have 

wab == (12)ab = 12 : hahb = -ha • 12 , hb = -ha • hb' 
Wab == (12)ab = hQhb: 12 = _ha .12 ' hb = _ha • hb, 

and using Eqs. (3) and (4) results in 

W12 = W12 = -1, W21 = W21 = 1, 

W ll = W 22 = wll = W 22 = O. 

(25) 

(26) 

We can now derive the rules for raising and lowering 
indices: 

Ua = ha • u = ha • hbub = -Ubhb. ha = UbWba, 

ua = U· ha = ubhb' ha = -ha • hbUb = Wabub. (27) 

In the next section we will make use of the deter-
minant IKI of a dyadic K in 82 , which can be defined 
according to 

(K· u) " (K· v) = /K/ u" v. (2S) 

That this is indeed equivalent to the usual definition 
in terms of components can be seen from the following 
considerations. 

First take the scalar of Eq. (2S) and note that 
(u" v)s = 2u • v. Hence, 

(K· u) • (K· v) = /K/ U· v (29a) 
or 

-(u· K) . (K • v) = /K/ U· 12 , V. 

Since u and v are arbitrary, we must have 

K . K = - /K/ 12 , 

(29b) 

(30) 

The fact that K· K must be proportional to the 
identity 12 can be verified by taking the transpose 
ofK' K: 

(K' Kh = -K . K = -K . K, 

and noting that there is only one independent anti
symmetric dyadic. Taking the scalar of Eq. (30) yields 

(K • K). = K : K = 2 /KI, (31) 

where we have made use of Eq. (IS), and 

(12). = -2. 

In terms of components, Eq. (31) becomes 

/K/ = -tKabKab = (t)KabKCdWacwbd. (32) 

Q.E.D. 

The gradient operation D in 82 can be defined by 
the infinitesimal relation 

dF = -du' DF = -duaha • DF, (33) 

where F(u) is an arbitrary function of u. Regarding F 
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as a function of the components ua, we can alternately 
write 

dF = duaaaF = -du . haaaF, (34) 
where 

Oa == %ua. 

Since du and F are arbitrary, we find by comparison 
of Eqs. (33) and (34) that 

D = haoa' (35) 

Note that in the case ITI ¥= ° anyone of the multiple 
values of m is permissible. Equation (42a) implies 
that either cos m = IX, or -cos m = IX. Accordingly 
we can choose r to satisfy 

r cos m = IX. (43) 

Defining 

M = rmT = rmT 
(IT!)! sin m 

(44) 

and substituting into Eq. (39) together with (43) gives This expression leads immediately to 

Oa = - ha . D = D • ha. (36) 'S = r[(cos m)12 + (sin m)m-1M]. (45) 

3. TRANSFORMATIONS OF SPINORS 

In this section we shall consider those linear trans
formations S(u) of 8 2 into itself which preserve the 
inner product. Given any such S(u), let S be the dyadic 
which realizes the transformation, i.e., 

S· u = S(u). 

The preservation of the inner product can then be 
expressed as 

In the special case where m = 0, Eq. (45) is to be 
understood in the limiting sense as m ---+ 0, i.e., 
(sin m)m-1 ---+ 1. Finally, by observing that 

i.e., m-1M behaves like the imaginary unit i, we can 
immediately write Eq. (45) as 

(47) 

(S • u) • (S . v) = u . v, (37) which is our desired result. 

for all u and v in 82 , By comparison of Eq. (37) with 
(29a) we can immediately infer that lSI = 1, i.e., Sis 
unimodular. Thus fromEq. (30) we have 

S . S = - 12 , (38) 

We will now show that S can be stated in the 
exponential form 

where r has one of the values ± 1, and M is a sym
metric (M = M) dyadic. To this end, first note that 
since any dyadic can be expressed as a sum of an 
antisymmetric and a symmetric dyadic, we can write 

S = (X12 + T, 

where T = T. From Eq. (30) we have 

(39) 

T· T = T· T = - ITI 12 , (40) 

and substituting Eq. (39) into (38) together with (40) 
yields 

(X2 + ITI = 1. 

This last result suggests the identification 

(X2 = cos2 m, 

ITI = sin2 m, 

(41) 

(42a) 

(42b) 

where m is generally a complex number. A value of m 
satisfying Eq. (42) is 

m = {sin-1 (ITI!), ~f IT! ¥= 0, 
0, If ITI = 0. 

In the ensuing sections, the exponential form of S, 
together with some of our results given in I, will be 
particularly useful for attaining a different and more 
direct approach than others appearing in the literature, 
for establishing the homomorphism of the homo
geneous restricted Lorentz group 1::1' to the group C2 

of two-dimensional unimodular transformations. 

4. CONNECTION BETWEEN FOUR-VECTORS IN 
MINKOWSKI SPACE AND SPINOR DYADICS 

Consider the tensor product space 82 ® 82 generated 
from dyads of the form il ® u with real multipliers. 
Equivalently, 82 ® 82 is the space of all Hermitian 
dyadics, i.e., dyadics satisfying 

(48) 

The double product of any two dyadics in this space 
is real, as can be seen from 

K : M = Kr : MT = Kt : Mt = K : M. (49) 

Furthermore, with a scalar product K 0 M in 

82 ® 82 defined by 

KoM= -K:M, (50) 

the space becomes isomorphic to .A{,4 (Minkowski 
space). To show this, it is sufficient to find a set of 
dyadics Ell having the scalar products 

(51) 
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where gllv is the Minkowski metric 

gu = gZ2 = gaa = -goo = 1, 

gllv = 0 (ft 'F- v). 

It is readily verified that the following set satisfies 
the above conditions: 

EO = -Eo = -(2)-i(hI-@ hI + h2-@ h2) 

= -(2)-i(hI-@ hI + h2-@ h2), 

EI = EI = -(2)-i(hI-@ h2 + h2-@ hI) 

= (2)-t(hI-@ h2 + h2-@ hI), 

E2 = E2 = -i(2)-!(iiI @ hz - hz @ hI) (52) 

= i(2)-!(hZ @ hI _ hI @ hZ), 

a -t - -E = E3 = -(2) (hI @ hI - hz @ hz) 

= (2r!(hi @ hI _ hZ @ h2). 

Thus we have the isomorphism: 

EIl~~1l 

A = AilEI' +-t ~ = all~I" with all = All, (53) 

where ~Il is an orthonormal basis ~Il • ~v = gllv) in .,1(,4' 

In order to relate these results with the component 
formalism conventionally used, note that a dyadic 

Hence, Eqs. (54) and (55) become 

All = -(r4tabAab 
and 

(59) 

(60) 

respectively. All other possible combinations with 
covariant, contravariant, and mixed indices can be 
obtained from Eqs. (59) or (60) by the usual rules for 
raising or lowering indices of four-vector and spinor 
components. In particular, it is interesting to note that 
the hybrid covariant components of 14 , which are 
explicitly given by 

(14)O~b = (2)-!(~ai~bl + ~~2~bZ)' 
(14)Iab = (2)-!(~ai~b2 + ~a:i0bI)' 
(1 4)2ab = (2)-!( - i~~i~b2 + i~~2~bl)' 
(l4)aab = (2)-i(~ai~bl - ~a2~bz)' 

(61) 

are proportional to the identity and the three Pauli 
matrices. 

As an additional remark which is of interest here, 
we show how the equations of stereographic pro
jection can be obtained from our spinor formalism 
in a rather straightforward way. To this end, consider 
any Hermitian dyadic 

A in 82 @ 82 can be expressed in terms of the Minkow- A = A~biia @ hb' A~b = (Aba)* (62) 
ski basis Ell or Ell as and let 

A = AIlEIl = AIlEIl V = AaIha , Hi = Aa2ha • 

or, alternately, in terms of spin or bases as in Eq. (19): 

A = Aab hahb = Aabha hb = .... 

Consequently, making use of Eqs. (51) and (50), we 
find 

All = Ell 0 A = Ell 0 hahbA~b = -(Ell : j,aJ,b)A~b' 

(54) 
Conversely, 

A~b = A: hahb = AIl(EIl : hahb)' (55) 

Now observe that the identity9 in .,1(,4' 

Then, 
(63) 

Since a stereographic projection maps a null vector 
into a spinor, we add the further requirement that 
A 0 A = O. But 

A 0 A = -2(v . W)(hi • hz) = -2(v. w). 

Therefore, 
v' W = 0, 

which implies that v and ware proportional, i.e., 

w = cxv. 
(56) Thus, 

can be expressed in terms of a hybrid of four-vector 
and spinor components 

with 

(57) Furthermore, from the Hermiticity requirement. 
where 

(58a) 
and 

(58b) 

• Note that dyadics in.AL. are tetradics in 8 2 , They will be denoted, 
as in I. by sans serif type or boldface Greek capitals. 

At=s@v=A=v@s, 

it follows that v and s must be proportional: 

v = ps, p = p. 
Consequently, 

A = pi@s. 

(64) 

(65) 
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Note that by making use of the first equation in (52), 
we have 

EO 0 A = (2)-!{J(SISI + S2S2), 

which means that A is on the future (past) sheet of the 
null cone if {J > 0 «(J < 0). For our purposes, we shall 
restrict attention to the case fJ > O. Then let u = 
({J)!s, so we can write 

A=u@u. (66) 

In terms of components, Eq. (66) can be displayed 
as 

AI' = -(l4yab Aab = -(l4)"abU<iUb' (67) 

Explicitly, adopting the notation ~ = Uu ij = U2 , 

Eqs. (67) become 

../2 AO = ~~ + ijr], ../2 Al = ~r] + ij~ 
../"2 A2 = -i(~1j - ij;), ../2 A3 = ~; - ij1j. (68) 

Within a proportionality factor, the above are the 
equations of stereographic projection usually appearing 
in the literature.1o 

5. TWO-DIMENSIONAL SPINORIAL 
REPRESENTATION OF THE RESTRICTED 

HOMOGENEOUS LORENTZ GROUP 

It was shown in I [Eqs. (106), (121), and (125)] 
that a restricted homogeneous Lorentz transforma
tion can be written in the form 

L = exp (a x 13 + ~o A b) 

where 
T = ±l, 
q = t(a - ib), 

Ek = ~k • E = i~k X 13 - ~o A ~k' 
and 

(q • E) . (q* . E*) = (q* • E*) . (q. E). 

(69) 

(70) 

(71) 

(72) 

Making use of these results, together with the intrinsic 
spinor formalism of the preceding sections, we will 
show how the transformations 

exp (-iq . E) and exp (iq* . E*) 

are directly related to the spin or operators (which were 
introduced in Sec. 3) S = exp (M) in S2, and S = 
exp (M) in S2, respectively. 

As a short digression intended to attain further 
algebraic simplification, we introduce the following 
additional operations on tetradics: 

(vwyz)~ == - vywZ, 

(vywZ) <> ItU == [(vy)' It][(wz) . U], 

(vw) t;::. (yz) == vwYz - yzvw. 

(73a) 

(73b) 

(73c) 

10 See, for example, V. I. Smirnov, Linear Algebra and Group 
Theory (McGraw-Hill Book Co., Inc., New York, 1961); B. 
Kursunoglu, Modern Quantum Theory (W. H. Freeman and Co., 
San Francisco, 1962). 

From these definitions and Eq. (50), we have the 
useful result 

(vwyz) 0 uu = -(vwyz) : UU= (vwyz)~ <> liu. (74) 

Returning to the main theme of this section, and 
following the formalism of I, we denote a Lorentz 
transformation of a four-vector! in .A(,4 by 

X' = L·x. - -
Moreover, because of Eqs. (50) and (52), this may be 
written as 

X' = LoX, (75) 

where X is now a Hermitian dyadic in 82 @ S2, and L 
is a tetradic operating by means of the product 
defined in Eq. (50). 

It will be convenient to have Eq. (75) expressed in 
the form 

X' = L! <> X, (76) 

where use has been made of Eq. (74). In our present 
notation, Eq. (69) becomes 

L = 7' exp (- iqkEk) 0 7' exp (iq:E:), (77) 
where 

Ek = iEk X 13 - Eo A Ek = iEIc X EIEI - Eo A Ek , 

E: = -iEk x EIEz - Eo A E k • (78) 

Performing the operation defined by Eq. (73a) on the 
above expression for L yieldsll 

L+ = T exp (-iqkEi) <> T exp (iq:E::t). (79) 

It is now a straightforward matter to write EI explicitly 
in terms of the spinor bases by making use ofEqs. (52). 
Thus, for Ei, we have 

EI = - iE2 A E3 - Eo A EI 

= HC hI h2 - h2hl) t;::. (hI h] - h2h2) 

+ (hlhl + h2h2) t;::. (hlh2 + h2h 1)] 

= -(hlh2) t;::. (h2h2) - (ir2hl) t;::. (h1h1) 
- - --

= -hlh2h2h2 + h2h2hIh2 - h2hlhlhl 

+ h1h1h2h1 ; 

Ef = hI hzh2h2 - h2hI h2hz 

+ h2hlhIhi - hlh2hlhl 
-- --

= (hIh2 - hzhl )(hzh2 - hIhl ) 

= I 2( hI hI - h2h2)' 

(80a) 

11 Note that the exponentials in Eqs. (77) and (79) are respectively 
defined by means of the two series 

exp (T) = I. + T + O{2!)(T 0 T) + (l{3!)(T 0 TOT) + ... , 
exp (Tt) = It + T~ + (l{2!)(T~ 0 Tt) 

+ (l{3!)(Tt 0 Tt 0 T:t) + .... 
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Similarly, one finds that 

1:; = 12(-ih1h1 - ih2h2), 

1:; = i 2( -h1h2 - h2h1), 

E:t = (hi'l - h2h2)12' 
1:~t = (ih1h1 + i h2h2)12' 

Ett = (-h1h2 - h2h1)12. 

Making the identifications 

and 

we obtain 

01 = h1h1 - h2h2' 

02 = -ih1h1 - ih2h2' 

0 3 = -h1h2 - h2h1' 

(80b) 

(80c) 

(8Ia) 
(81b) 

(8Ic) 

(82) 

E~ = i 20k == i 2 @ Ok' Ek*t = 17kl 2 == 17k @ 12 , (84) 

Note that the components 

(Ok)\ = ha • Ok • hb (85) 
and . - -

(17k)ai, = ha • 17k • hb = [(ok)ab]* (86) 

are the right-handed and left-handed Pauli spin 
matrices, respectively. 

Substituting Eq. (84) into (79) results in 

Lt = T exp (-iqkI2 @ Ok) 0 T exp (iq~17k @ 12) 

= T exp (iq:17k) @ T exp (- iqkOk) = S @ S, (87) 

where 
(88) 

Furthermore, since any four-vector can be written as 
a sum of two null vectors, each of which in turn can 
be put in the form of Eq. (66), we can express any 
four-vector X as 

X = <xu @ u + {lv @ v. (89) 

Hence, the Lorentz transformation of X, given by 
Eq. (76), becomes 

Lt 0 X = (S @ S) 0 (<Xu @ u + {lv @ v) 

= <x(S • ii) @ (S. u) + {l(S • v) @ (S, v). 

(90) 

From Eq. (90), we see that to an arbitrary restricted 
homogeneous Lorentz transformation L, there corre
sponds a spinor transformation S, operating in 82 , 

which is defined up to a sign by Eq. (88), i.e., 

L ~ T exp (-iqkEk) ~ S = T exp (-iqkOk)' (91) 

Referring to Eqs. (82), we see that Ok = Ok' and that 

any symmetric dyadic attached to 82 may be written as 

(92) 

Hence all elements of the set C2 of unimodular 
transformations described in Sec. 3 can be generated 
from Eq. (88) by varying the parameters qk' which 
were defined in terms of the Lorentz transformation 
parameters by Eq. (70). 

In addition, observe that if 
L1 ~ S1 , L2 +-t S2 , 

then 

L; 0 L; = (Sl @Sl)0(82@S2) = (Sl' 8 2)@(S1 ,S2) 

= (Sl • S2) @ (S1 . S2), 
i.e., 

(93) 

Thus, finally, we can conclude that Eq. (91) establishes 
a double-valued homomorphism of the restricted 
homogeneous Lorentz group onto the group C2 of 
two-dimensional unimodular transformations. 

In closing this section, we emphasize the over-all 
notational simplicity and calculational advantages of 
our basic procedure, which was made possible by the 
combined use of the intrinsic tensor formalism of I 
together with the intrinsic spinor formalism of the 
preceding sections of this paper. These advantages 
become even more apparent when comparing our 
results with the usual component formalism appearing 
in the literature. 2•3 In particular, we have arrived at 
the familiar homomorphism realized by Eq. (91) in a 
different and direct manner involving essentially two 
simple steps: The application on L of the transposition 
operation defined in Eq. (73a), followed by a mere 
change of basis. 

6. SPINORIAL FORM OF THE DIRAC 
EQUATION 

In Sec. 2, we introduced the spaces 82 and 82 , in 
each of which an antisymmetric scalar product was 
defined. Up to now, however, there was no need to 
define a scalar product between an element in 82 

and an element in 8 2 , In order to discuss the Dirac 
equation, we shall define such a product by 

u' ii = 0, (94) 

for all u E 82 and v E 82 , 

Thus, in the direct-sum space 82 + 82 , the product 
of any two elements (u + v) and (w + y) is 

(u + v) . (w + y) = U' W + V • y. (95) 

Making use of the above definitions and our intrinsic 
spinor formalism, we can now easily show that the 
Dirac equation in its customary form is equivalent to 
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the set of linear equations: i.e., 

0" q; + ki= 0, 

O' i + kq; = 0, 

Ell . EV + :itv • Ell = O. 

(96a) Consequently, Eq. (103) becomes 

where q;CX) E 82 and X(X) E 82 are functions of the 

coordinate four-vector X E 82 @ 82 (f--+ .A{(4)' and the 
four-gradient operation 0 is defined by the infini
tesimal equation 

df(X) = dX 0 Of(X) 

as was done in I. To start with, note that in view of 
the identity, 

o = EIlEIl 0 0 = Elloll , all == a/axil, 

Eqs. (96a) become 

Ell . ollq; + ki = 0, 

Ell. olli + kr/> = o. (96b) 

Moreover, because of Eqs. (94) and (95), Eqs. (96a) 
can be combined to give 

(0 + D) . 1p + k1p = 0, 

where 1p = q; + X. Similarly, Eqs. (96b) yield 

(Ell + Ell) • oll1p + k1p = O. 

If we now make the identifications 

k = mc/«2)! tz), \ 

r ll = i(2)t (Ell + Ell), 

Eq. (98) can be written as 

r ll . oll1p + i(tzrImc1p = o. 

(97) 

. (98) 

(99) 

(100) 

(101) 

It only remains to show that the four quantities r ll 

satisfy the anticommutation relations 

{rll, rV} == r ll . r v + rv . r ll = -2gIlV(I2 + i 2). 

(102) 

A simple proof, which makes use of Theorems 1 and 2 
of the Appendix, together with Eqs. (94) and (100), 
follows: 

J:'1l • r v + rv . r ll 

= -2[(EIl + Ell). (EV + EV) + (EV + EV). (Elt + Ell)] 

= _ 2(EIl . EV + Ell . EV + EV • Ell + v. Ell) 

= -2[EIl. E" + :itv . Ell + (Ell. EV + EV 
• Ell)]. 

Consider separately the following cases: 

Casel:f.1~v. 

(Ell. E V
)., = Ell : E V = - Ell 0 EV = O. 

Therefore, by Theorem 1 of the Appendix, 

Ell. E V = (Ell. EVh = _Ev. Ell; 

(103) 

Case 2: f.1 = V. 

CEIL. Ellh = -Ell. Ell. 

By Theorem 2 of the Appendix, 

Ell. Ell = -HEll. EIt)sI2. 
But 

(Ell. EIt). = Ell: Ell = -Ell 0 Ell = _gltll. 

Hence, 
Ell • Ell = tgltllI2' 

and substituting into Eq. (103), with f.1 = v, yields 

(l05) 

Finally, combining Eqs. (104) and (105) gives the 
anticommutation relations of Eq. (102). Q.E.D. 

Thus Eq. (101) is indeed the custo~ary form of the 
Dirac equation, and the set of Eqs. (96a) is its equiv
alent spinorial form. 

In order to relate our work with the conventional 
matrix formalism12 of the Dirac ylt, the four quantities 
r ll , which were defined intrinsically by Eq. (100), 
must be expressed with respect to a particular basis. 
A simple choice is 

11 = hI, 12 = h2' 13 = /'1, 14 = /,2. (106a) 

The corresponding reciprocal basis, defined to satisfy 

[a.lp = t5p (!X, fJ = 1,2,3,4) (107) 
is given by 

- -
f1 = hI, [2 = h2 , 13 = -hI' 14 = -h2 • (106b) 

In terms of Eqs. (106a) and (l06b), we write 

r ll = (rIlYP/alfJ, (108) 

and from Eqs. (100) and (52) one readily finds that: 

(rO)13 = (rO)24 = -(rO)3I = -(rO)42 = i, 

(r1)\ = (rl)23 = (rl)32 = (rl)\ = i, 

(r2)1.t = -(r2)23 = (r2)32 = -(r2)\ = 1, (109) 

(r3)13 = -(r3)24 = (r3)31 = -(r3)42 = i, 

and all other components are zero. 
Similarly, it is a simple matter to show that the 

most frequently used representation of the r ll (known 

12 R. H. Good, Rev. Mod. Phys. 27, 187 (1955); S. S. Schweber, 
An Introduction to Relativistic Quantum Field Theory (Row, Peterson 
and Co., Evanston, 111., 1961). 
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as the Dirac representation) is obtained 
following basis: 

m1 = (2)-!(h1 - {j,I), 

m2 = (2)-!(h2 - (j,2), 

ma = -(2)-!(hi + ihI), 

m4 = - (2)-!(h2 + ih2). 

from the 

(I lO) 

We next give a concise derivation of the continuity 
equation for the Dirac field expressed in intrinsic 
spinor form. We begin by multiplying Eq. (97) on the 
left by ip = ip + X to obtain 

ip. (0 + [I) . tp + kip. tp = O. (111) 

Observing that i5 = 0 (because Ell is Hermitian), 
and taking the complex conjugate of Eq. (111), 
results in 

tp • (0 + D) . ip + ktp • ip = o. (112) 

Adding the above two equations gives 

-(0 + eJ): (iptp) = 0 
or 

DO (iptp + tpip) = O. (113) 

Furthermore, recalling Eq. (94), one sees that Eq. 
(113) is equivalent to 

o 0 J = 0, (114) 
where 

J =iprp + XX (115) 

is proportional to the current density. 
In terms of components, Eq. (115) yields 

JIl = E" 0 J = E" 0 (iprp + XX) = E" 0 (iptp + tpip) 

= (ip • E" • tp + tp • E" • ip) 

= ip • (E" + E") . tp 

adjoint Dirac spinor. Examples of bases fulfilling the 
above conditions are the ones given in Eqs. (106a) 
and (1lO). 

7. FOUR-DIMENSIONAL SPIN 
REPRESENTATION OF THE 

RESTRICTED HOMOGENEOUS 
LORENTZ GROUP 

In Sec. 5 we have shown how the intrinsic spinor 
formalism can be used to obtain a double-valued two
dimensional spin representation of the restricted 
homogeneous Lorentz group. We will now show how 
these results can be extended to the direct-sum space 

82 + 82 in order to obtain a four-dimensional 
homomorphism. The calculational advantages and 
aesthetic appeal of the method become even more 
evident here, and the expressions for the transforma
tions in terms of the Dirac r" emerge in a most 
natural and direct way. 

To begin with, for every restricted homogeneous 
Lorentz transformation, we define a corresponding 
spinor transformation on tp = rp + X by 

tp' = S· rp + is· X, (121) 

where S is given by Eq. (88). Moreover, since S . X = 
o and is . rp = 0, Eq. (121) becomes 

tp' = A· tp, (122) 
where 

A = S + S = T exp (-iqiik) + T exp (iq:Ok). (123) 

Now, noting that 

and recalling Eq. (70), we can write 

A = T exp (-iqkOk + iq:Ok) 

= -i(2)-!(ip • r" . tp). (116) = T exp [-iiak(ok - Ok) - ibiok + Ok)]. (124) 

As a final remark, which serves to relate ip to the 
conventional adjoint Dirac spinor, note that, for any 
basis na , 

(ip)(J = ip • n(J = -( tp • nana) • n(J = (tpa)*iia • n(J . 

(117) 
Furthermore, if the basis is chosen to satisfy 

then 
- A- -
na • n(J = {jan; . • n(J = n a • nAnA • n(J 

= na 
• (irO) • n(J = (irOt(J· 

In this case we can write 

(118) 

(119) 

(120) 

To express this result in terms of the Dirac r ll , 

we first make use of the property 

12 : 12 = (12' 12). = -(12), = 2 
to write 

Ok = i(Ok ® 12) : 12 = i1::1: : 12 = -i1:: <> 12 , 

(125) 

where Eq. (84) has been used. Substituting from Eq. 
(78), this last expression takes the form 

Ok = -i(i€k,mE,Em - EoEk + EkEo) <> 12 

= i(i€k'mE, • 12 . Em - Eo • 12 • Ek + Ek • 12 • EO) 

= tCi€k'mE' • Em + EO . Ek - Ek . EO). (126) 

which is the conventional matrix definition of the Combining the above equation with its conjugate, 
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given by This last expression establishes the desired two-valued 

ak = H -iEklmEI • Em + EO. Ek _ Ek. EO), (127) homomorphism L ~ A. 

we now obtain 

a - a - .1[-iE (El. Em + El • Em) k k - 2 kim 
_ (EO' Ek - EO . Ek) 

+ (Ek • EO _ Ek • EO)] 

= HtiEklmrl • rm + (12 - 12) 

. [(Eo. Ek + EO . Ek) 

_ (Ek • EO + Ek . EO)]} 

= HtiEklmrl • rm - HI2 - 12) 

. (ro• r k - r k . r O)] 

= HtiEklmr l • rm - (12 - 12) • r o . rk]. 

(128) 

Similarly, adding Eqs. (126) and (127) gives 

a + a- - .1[iE (El. Em - El • Em) k k - 2 kim 

+ (EO' Ek + EO . Ek) 

_ (Ek • EO + Ek • EO)] 

= HtiEklm(12 - 12) • r l • rm - r o . ric]. 

(129) 

In order to obtain further simplification, we com
pute the quantity r 5 defined, in analogy to the usual 
way, by 

r 5 = r o . r l • P • r3. (130) 

To this end we make use of Eqs. (52) and 

r ll • r v = -2(EIl . EV + Ell. EV
), (131) 

which when substituted into Eq. (130) result in 

r 5 = 4(EO . EI . E2 . E3 + EO . EI . E2 . E3) 

= i(12 - 12), (132) 

Thus we have, with the help of Eq. (102), 

- (12 - 12) • r o . ric = i r 5 • r o . r k 

= tiEklmrl • rrn, (133) 

and multiplying Eq. (133) by (12 - 12) immediately 
yields 

ro. r k = -tiEklm(12 - 12) • r l • rm. (134) 

Finally, inserting Eqs. (133) and (134) into Eqs. (128) 
and (129), respectively, we obtain 

ak - ak = tiEklmrl. r m , (135) 

a
k 
+ ak = - r o . rk. (136) 

With the use of the above results, Eq. (124) becomes 

A = T exp (!akEklmrl • rm + tbkro . rk). (137) 

8. FOUR-DIMENSIONAL SPIN 
REPRESENTATION OF THE IMPROPER 

HOMOGENEOUS LORENTZ 
TRANSFORMATIONS 

The double-valued homomorphism derived in Sec. 
5 gave us the law of transformation of spinors 
for proper homogeneous Lorentz transformations. 
Furthermore, we saw that this correspondence ex
hausted all possible spinor transformations satisfying 
the requirements: 

(1) S is linear; 
(2) S maps S2 into itself; 
(3) §. S = -12, or equivalently, S preserves inner 

products. 
Thus, in order to represent improper transforma

tions, we must somehow relax the above conditions. 
The following generalizations are plausible: 

(1') S is allowed to be either linear or anti linear ; 
- . 

(2') S maps S2 either into S2 or S2; 

(3') § . S = -12 or, equivalently, the linear factor 
A of S (i.e., A = S if S is linear, or A = SC if S is 
antilinear, where C is the antiunitaryI3 complex 
conjugation operator defined by Cu = ii, Cit = u) 
preserves inner products. 

In view of the above generalizations, it is clear that 
Lt cannot always be written in the form of Eq. (87), 
i.e., L t = S @ S. The following possibilities must also 
be taken into consideration: 

Lt = -s @ S, 

Lt = PI3S @ S, 

L+ = -PI3S @ S. 

(138a) 

(138b) 

(138c) 

The permutation operator PI3 on a tetradic, which 
transposes the first and third elements according to 

PI3(UVWZ) = WVUZ, 

arises as a consequence of condition (2'). The minus 
signs occur in the case of nonorthochronous Lorentz 
transformations. This can be simply seen by recalling 
the argument preceding Eq. (66), where it was shown 
that a dyadic of the form u @ u must be on the future 
light cone. Thus, rjJ(P and 

13 @ 8 <) ipep = (8· ep) @ (S . ep) (if S2 -4 S2), 

P13S @ S <) ipep = (8 . ep) @ (S . ep) 

= (13 • ip) @ (13 • ip) (if S2 -4 82) 

are all on the future light cone. Therefore, the minus 

13 A. Messiah, Quantum Mechanics (North-Holland Publishing 
Company, Amsterdam, 1962), Vol. II. 
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sign is necessary to reverse the sense of time. Con
sequently, nonorthochronous transformations of 82 

and 82 must have opposite signs, i.e., 

cp ---+ S . cp, 

i---+-S·x. (139) 

Since the full homogeneous Lorentz group is obtained 
by adjoining the inversions to the restricted group, 
it only remains to consider the spin or representations 
of the space inversion;!" the time inversion t;, and the 
total inversion J. 

A. Space Inversion 

The dyadic in .A(,4 representing the space inversion 
(or parity operator) is 

L(;!') = - EkEk + EoEo. (140) 

Substituting into this equation the expression for Ell 
given in Eqs. (52), and performing some straight
forward algebra, we obtain 

L(;!') = -(h1hii2h1 + h2hJilh2 + hlhlhlhl + h2h2h2h2) 

and 
L(;!,)~ = (h1h2h2h1 + h2h1h1h2 

+ h1h1h1h1 + h2h2h2h2) 

= P1a(h1h1 + h2h2)(hlhl + h2h2) 

= 2Pu EoEo. (141) 

Thus, L(;!')+ is of the form of Eq. (l38b). Moreover, 
since the parity operator preserves the position
momentum commutation relation [r, p] = illIa, it 
must be a linear operator. Consequently, in view of 
condition (3'), S(;!,) is defined within a sign by 

S(;!,) = -V2TEo, (r42) 

with T = ±l. 
Note that under this transformation a spinor in 82 

is mapped into a spinor in 82 , i.e., 82 is not invariant 
under S(;!,). Hence, there is no two-dimensional 
representation for parity. Going to the direct sum 
space 82 + 82 , we obtain the four-dimensional 
representation of parity by noting that in this case 

tp' = S(;!,) . cp + S(;!') . i = A(;!,) . tp, (143) 
where 

A(;!,) = S(;!') + S(;!') = - V2 T(EO + EO) = iT roo 
(144) 

B. Total Inversion 

A vector in .A(,4 transforms under space-time 
inversion according to 

L(J) = -14 = -EIlEIl. (145) 

Proceeding as in the previous case, we substitute the 
expressions in Eqs. (52) to obtain 

L(J) = -h1h2h2h1 - h2h1h1h2 + hlh1h2h2 + h2hiilh1 

and 

L(J)~ = -(h2h1 - h1h2)(h2h1 - h1h2) = -1212 • 

(146) 
Thus, 

L(J)~ 0 Ii 09 u = -(T'12· Ii) 09 (T'12 · u), (147) 

where T' = ± l. 
Noting, however, that the total inversion J must be 

an anti linear operator (to preserve the commutation 
relation [r, p] = ilila), we write the above equation as 

i.e., 

L(J)~ 0 Ii 09 u = -(T'i2C . u) 09 (T'12C . Ii) 

= -P1a[(T'12) 09 (T'12)] 

o [(Cil) 09 (Cu)] 

== - P 13[ (T'12C) 09 (T'12C)] 

o (il 09 u), 

L(J)~ = -P13[(T'12C) 09 (T'12C)]. (148) 

Equation (148) is of the form of (138c), with 

S(J) = T'12C, 

S(J) = T'12C, (149) 

and the two-dimensional spinors transform according 
to Eq. (139). As in the previous case, 82 is not invari
ant under S(J), and there is no two-dimensional 
representation for total inversion. The four-dimen
sional representation in 82 + 82 is obtained by 

tp' = S(J) • cp - S(J) . i = A(J) . 1p, (150) 
where 

A(J) = S(J) - S(J) = - T' (12 - i 2)C = iT'rsC. 

(151) 
C. Time Reversal 

Since time reversal is simply given by 

L(t;) = EkEk - EoEo = L(;!') 0 L(J), (152) 

we immediately obtain the four-dimensional spinor 
representation 

A(t;) = A(;!,) • A(J) = T"r5 • roc, (153) 

where T" = ± l. 
It is apparent from Eq. (153) that A(t;) is antilinear. 

Furthermore, in contradistinction to the previous 
cases, there is also a two-dimensional spinor repre
sentation for t;. It is easily derived by noting that 

A(t;) = h(;!,) . A(J) = [S(;!') + S(;!')] • [S(J) - S(J)] 

= S(;!') . S(J) - S(;!') . S(J) 

= set;) - S(t;), (154) 
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where 

S('b) = S(~) . S(J) = -Y2 TEo. T'12C 

= -T"y2 Eoc, 

for some constant oc. Then 

A = ocl2 + M, 

where M is the symmetric part 

(A3) 

S('b) = S(~) . 8(J) = - v'2 TEo. T'I2C 

= -T"y2 EOC. 
M=HA+A)=M. 

(155) If we now make use of the identity 

(A4) 

Thus 82 and S2 are invariant under S('b) and S('lJ) 
and transform according to 

gJ ---+ -T"y2 Eoc . gJ, 

j ---+ +T"y2 EOC . j, 

in agreement with Eq. (139). 
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APPENDIX 

In this appendix we prove two theorems which 
apply to dyadics attached to 82 , 

Theorem 1: For any dyadic A, if its scalar is zero 
(A. = 0), then A is symmetric (A = A). 

Proof; First write A as the sum of an antisymmetric 
and a symmetric term; 

A = HA - A) + leA + A). (AI) 

Since 12 is the only independent anti symmetric dyadic 
attached to 82 , we have 

(A2) 

(M). = -(M) .. (A5) 

which is valid for all dyadics, then it follows from 
(A4) that 

(M). = - (M). , 

i.e., 
(M). = 0. (A6) 

Consequently, after recalling that (12). = - 2, the 
scalar of Eq. (A3) yields 

As = -2oc. (A7) 

Thus if As = 0, then oc = 0, and 

A=M. Q.E.D. (AS)-

Theorem 2: Any antisymmetric dyadic (A = -A) 
can always be written as 

(A9) 

Proof" Since A is anti symmetric, then M in Eq. (A3) 
vanishes and we have 

A = ocI2 • (AlO) 

Substituting for oc from Eq. (A7) -immediately gives 
Eq. (A9). Q.E.D. 

We can summarize the above results in the useful 
identity; 

(All) 
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In a calculation of the intensity of small-angle x-ray scattering from dilute suspensions of noninteracting 
randomly oriented particles with uniform electron density, the effect of the particle shape can often be 
conveniently described by a. function G(M) called the intersect distribution. An intersect is defined to be a 
line which has both ends on the boundary of the particle and which passes through a given point in the 
particle. For an intersect with length M, the intersect distribution G(M) is the probability-density function, 
averaged over all allowed orientations of the intersect and over all points of the particle through which an 
intersect with length M can bedrawn. Then G(M) dMrepresents the probability that an intersect has a length 
between the valuesMandM + dM. SincethecalculationofG(M) fora three-dimensional particle appeared 
too complicated for the first part of an investigation of the properties of G(M), the intersect distribution has 
been studied for the simpler case of a randomly oriented plane lamina with a smooth convex boundary. 
Emphasis has been given to a determination of the properties of G(M) which affect the intensity of 
small-angle x-ray scattering in the outer part of the scattering curve. In this angular region the intensity 
is determined by the behavior of G(M) at small M and in the neighborhood of M values at which G(M) 
or its derivatives are discontinuous. An approximate expression for G(M) for small M has been obtained. 
Discontinuities of G(M) are found to be associated with some special values of the function M(I" t.), 
which gives the length M of the intersect as a function of the two boundary points at which the ends of 
the intersect are located, with the end points being specified by the arc length Ii along the boundary from 
a fixed reference point to the end point i. When M(I" t.) has a maximum, a saddle point, or a double 
point, G(M) has been found to be discontinuous. [The fUnction M(I" t.) can have no minima.] For a 
maximum of M(I

" 
t.), G(M) has a finite discontinuity, while the discontinuity is logarithmic for a saddle 

point. For two types of double points which have been studied, G(M) has discontinuities proportional 
to \D - M\-l and \D - M\-t, where D is the value of M at which M(t

" 
I.) has the double point. For a 

plane lamina, the approximate expression for G(M) shows that the form of G(M) for small M has no 
effect on the outer parts of the scattered intensity curve. [For three-dimensional particles, the small-M 
behavior of G(M) does affect this part of the scattering curve.] The effect of the discontinuities in G(M) 
on the outer portion of the scattering curve has been calculated. An expression is developed for G(M) 
and the scattered intensity for an eJlipticallamina, and the results of this calculation verify the properties 
of G(M) for a plane lamina with an arbitrary smooth convex boundary. 

1. INTRODUCTION 

The determination of the dimensions and shape of 
colloidal particles in dilute suspensions is one of the 
most important and frequent uses of small-angle 
x-ray scattering. This information is obtained from 
the scattering data by use of equations from small
angle x-ray scattering theory The relation between the 
measured intensity and the dimensions and form of a 
colloidal particle is so complex that a complete, 
exact treatment of this question is not yet possible. 
However, a number of approximate expressions have 
been obtained, and certain special cases, such as the 
scattering from particles with simple shapes like 
ellipsoids and right circular cylinders, can be treated 
in detail. These results have been found to be sufficient 
for analysis of almost all data obtained from dilute 
colloidal suspensions. 

Nevertheless, fUl ther investigation of the theory of 

• Work supported by the National Science Foundation. Further 
details of this investigation are contained in a thesis presented by 
H. Wu in partial fulfillment of the requirements for the Ph.D. 
degree, University of Missouri (1967). (Copies available from 
University Microfilms, Ann Arbor, Michigan.) 

t Present address: Physics Department, Southeast Missouri 
State College, Cape Girardeau. Missouri. 

small-angle x-ray scattering is important, since a 
better understanding of the theory can broaden the 
range of applicability of small-angle x-ray scattering 
techniques and increase the amount of information 
obtainable by analysis of the data from a given 
experimental investigation. 

In this discussion, the colloidal suspension will be 
assumed to satisfy several conditions. First, the 
suspension will be considered so dilute that inter
particle interactions will not affect the observed 
scattering. The intensity scattered by N identical 
particles is then N times the intensity scattered by a 
single particle, and so only tpe scattering from a 
single particle need be considered in a study of the 
theory of the small-angle x-ray scattering from a 
dilute suspension of identical colloidal particles. 
Also, the particles can be assumed to be randomly 
oriented, and the measured scattering is the scattering 
averaged over all particle orientations. Finally, at 
small angles, the atomic and molecular structure does 
not affect the small-angle x-ray scattering,l and so the 

1 A. Guinier, G. Fournet, C. B. Walker, and K. L. Yudowitch, 
Small Angle Scattering of X-Rays (J. Wiley & Sons, Inc., New York, 
1955), p. 4. 
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particles can be considered to have a uniform electron 
density and to be suspended in a solvent with a con
stant, though different, electron density. 

Thus, the sample will be assumed to be a dilute 
suspension of independent randomly oriented par
ticles with uniform electron density, suspended in a 
solvent with uniform electron density. Under these 
assumptions, a discussion of the theory of small
angle x-ray scattering need consider only the scattering 
from a single randomly oriented particle with uniform 
electron density. 

The scattered intensity l(h) then can be expressed 
as2 

l(h) = NI.(h)P(h), (1) 

where h = 4rrA-1 sin (¢>/2), A is the x-ray wavelength, 
¢> is the scattering angle, N is the number of particles 
in the sample, le(h) is the intensity that would be 
scattered by a single electron under the same experi
mental conditions, 

-- . r Dmax sin hr 
P (h) = 4rrp2VJo r2Yo(r) ~ dr, (2) 

p is the difference between the electron densities of the 
particle and the solvent in which the particle is 
suspended, V is the particle volume, yo(r) is a function 
called the characteristic function (which is determined 
by the dimensions and form of the particle), and 
Dmax is the length of the longest straight line that can 
be contained in the particle. The quantity Dmax will 
be referred to as the maximum diameter. The charac
teristic function yo(r), which, at least in principle, can 
be obtained from the experimental data by Fourier 
transformation, contains all information about the 
particle obtainable by x-ray studies. An investigation 
of the relation between the x-ray scattering and the 
dimensions and shape of the particle thus need 
consider only the connection between yo(r) and the 
particle shape and dimensions, and the problem 
therefore reduces to a study of the effect of the 
particle size and shape on the characteristic function 
yo(r). 

The function yo(r) represents the probability, 
averaged over all particle orientations and over all 
points of the particle, that if one point is in a particle, 
a second point at a distance r from the first point is 
also in the particle.3 

While the characteristic function can be calculated 
explicitly for relatively simple shapes, such as spheres 
or ellipsoids of revolution, a general discussion of the 
characteristic function should, when possible, be 
concerned with properties of yo(r) which can be 

2 Reference 1, p. 7, and p. 12, Eq. (21). 
3 Reference 1, p. 12. 

obtained without assumption of a specific particle 
shape. 

Porod4 has shown that information equivalent to 
that obtainable from yo(r) can also be found from a 
function G(M), called the intersect-distribution func
tion. An intersect is defined to be a line with length M 
passing through a given point in the particle and with 
both ends terminating on the particle boundary. The 
intersect distribution G(M) is the probability density, 
averaged over all orientations of the intersect and 
over all points of the particle through which an 
intersect with length M can be drawn. Thus G(M) dM 
represents the average probability that an intersect 
will have a length in the interval between M and 
(M + dM). 

Porod4 has shown that for a three-dimensional 
particle 

yo(r) = (M)_JDmax dM(M - r)G(M), (3) 

where 

_ iDmaxMG(M) dM 

M = LDmaxG(M) dM . 
(4) 

The intersect distribution is assumed to satisfy the 
normalization condition 

1 = JoDmax G(M) dM. 

By differentiation of (3) and use of the normalization 
condition, 

From (3), 
M = -l/y~(O). 

y~(r) = (Mr1G(r). 

(5) 

(6) 

Thus, if either the characteristic function or the 
intersect distribution is known, the other function 
can be calculated. 

Since both ends of an intersect lie on the particle 
surface, the intersect-distribution function is more 
directly connected with the properties of the boundary 
than is yo(r). As this property seemed to simplify the 
calculations, our recent studies have dealt with the 
intersect distribution, rather than with the character
istic, function. 

Many of our investigations of small angle x-ray 
scattering theory5-9 have been primarily concerned 

• G. Porod, in Proceedings of the Conference on Small Angle 
Scattering of X-Rays, H. Brumberger, Ed. (Gordon and Breach 
Science Publishers, New York, 1968), pp. 1-15. 

s P. W. Schmidt, in Proceedings of the Conference on Small Angle 
Scattering of X-Rays, H. Brumberger, Ed. (Gordon and Breach 
Science Publishers, New York, 1968), pp. 17-3J. 

6 P. W. Schmidt and R. Hight, Jr., J. App!. Phys. 30, 866 (1959). 
7 A. Miller and P. W. Schmidt, J. Math. Phys. 3, 92 (1962). 
8 P. W. Schmidt, J. Math. Phys. 6, 424 (1965). 
• P. W. Schmidt, J. Math. Phys. 7, 1295 (1966). 
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with the form of the scattered intensity for relatively 
large values of h. (Even though h is relatively large, 
the corresponding scattering angles are no greater 
than a few degrees.) The scattered intensity is a Fourier 
transform and, according to the theory of the 
asymptotic expansion of Fourier transforms,lO the 
intensity at large h is determined by the form of 
the characteristic function and thus by the behavior of 
G(M) near M = 0 and in the neighborhood of the 
points at which G(M) or its derivatives are discon
tinuous. A calculation of the scattered intensity at 
large h thus requires knowledge of G(M) for small M 
and in the neighborhood of M values at which the 
intersect distribution function or its derivatives are 
discontinuous. 

Because of the complexity of the calculation, we 
have investigated the intersect distribution for a con
vex-plane lamina instead of considering the more 
complex three-dimensional case. (A convex particle 
is defined to be a particle for which the entire length 
of every intersect lies within the particle.) In a previous 
publicationll we have described some general prop
erties of G(M), and G(M) has been calculated for a 
circle and also for small M for an arbitrary convex 
plane lamina. 

Below, we make a higher-order approximate calcu
lation of G(M) for small M for a convex-plane 
lamina. The form of G(M) in the neighborhood of its 
discontinuities is also considered. These results are 
then verified for an elliptical lamina, and the form of 
the intensity scattered by a plane lamina is calculated 
for large h. 

2. THE METHOD FOR CALCULATING G(M) 

In analogy to the expression (2) for three dimensions, 
for a plane lamina with area A the particle structure 

factor P(h) can be written 

where f3o(r) is the characteristic function for a plane 
lamina. For a plane lamina, (4) is valid, and the 
analog of (3) iSH 

f3oCr) = CM)-JDmax dM(M - r)G(M). (8) 

Thus 
p~(r) = (M)-lG(r). (9) 

In Ref. 11, a method is developed for calculating 
G(M) for a plane lamina. 

10 A. Erdelyi, Asymptotic Expansions (Dover Publications, Inc., 
New York, 1956), p. 49. 

11 P. W. Schmidt, J. Math. Phys. 8, 475 (1967). 

Let p be a vector from a fixed origin to a point in 
the lamina, and let M be the length of an intersect 
passing through this point, which will be called 
"point p." This intersect will make an angle 8 with a 
fixed axis. The first step in the calculation of G(M) is 
to express (j as a function of M for a given point p. 
For a plane lamina, there will, in general, be more 
than one solution of the equation giving 8 in terms of 
M. (Usually, there are two solutions.) 

The longest possible intersect will have a length 
equal to Dmax. For a given value of M in the interval 
o S M S D max , an intersect with a given length M 
will not pass through all points of the lamina. For 
example, when M is small, the intersect will pass only 
through points near the boundary. 

After 8 has been expressed as a function of M, 
d(j/dM can be evaluated at point p. Also, the distance 
R(p, M) from point p to one end of the intersect can 
be calculated. The distance from point p to the other 
end of the intersect thus is M - R(p, M). Thenll 

3M j J I d8 I G(M) = -- 2 dA - P;(p, M), 
27TMAi~1 A dM i 

(10) 

where 

P (p M) = 1 _ 2[M - Ri(p, M)]Rlp, M) (11) 
i , M 2 ' 

In (10) and (11), jd8jdMji' Pi(p, M), and Ri(p, M) 
are the values of these quantities for solution i of the 
j possible solutions of the equation giving 8 as a 
function of M. The surface integration in (10) extends 
over all points p through which it is possible to pass 
an intersect with length M. 

3. THE INTERSECT DISTRIBUTION FUNC
TION FOR SMALL M 

In the evaluation of (10), points on the boundary 
will be specified by giving the arclength from a refer
ence point on the boundary. The boundary point for 
which this arclength equals t will be teferred to as 
"point t." For the calculations it is convenient to 
construct a Cartesian coordinate system with its 
origin at a point T on the boundary, with the positive 
y axis lying along the inward normal at point T, 
and with the positive x axis corresponding to the 
direction of increasing t. 

The vector p defines a point which will be referred to 
as "point p." Point T is chosen so that point p lies on 
the positive y axis. Then point p can be described by 
giving the value of T and the distance b between point 
p and point T, and point p has the coordinates 
(0, b). 

The intersect, which has a length M, passes through 
point p, and the ends of the intersect lie on the boundary 
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at points t2 and 11' which are labeled so that t2 ~ 
T ~ 11' The Cartesian coordinates (X2, Y2) and 
(Xl' Y1) of points t2 and t1 can be expressed by the 
seriesl2 

Xi = (ti - T) + R(T)X;. 

_ (ti - T)2 R(T)}:; 
Yi - 2R(T) + i, 

(12) 

where i = 1, 2, R(T) is the radius of curvature at 
point T, and 

X. = _1_ ~ C (T)(t. _ T)n+3 
, R(T) f:o n' , 

y:. = _1_ ~ D (T)(t. _ T)n+3 
• R(T) n~o n, , 

C (T) _ _ 1 
o - 6[R(T)]2 ' 

D (T) _ _ R'(T) 
o - 6[R(T)]2 ' 

D (T) = _ 1 + R(T)R"(T) - 2[R'(T)]2 
1 24[R(T)]3 

The higher-order coefficients in these series, which were 
developed in a study of the small-angle x-ray scattering 
from filaments,S can be calculated by the Frenet
Serret equations,13 

For all three points (X2,Y2), (0, b), and (X1,Y1) to 
lie on the intersect, we must have 

Yi - b = X; tan e, (13) 

where i = I, 2, and e is the angle between the inter
sect and the X axis. 

For each value of i, (12) and (13) give 

o = (ti - T)2 - 2 tan eR(T)(ti - T) 

- 2bR(T) + 2Q,[R(T)]2, 
where 

Qi = Y; -Xi tan e. 
The above equation for (fi - T) can be put in the 
form 

fi - T = R(T) tan e + (-lYE;, (14) 
where 

Ei = {2bR(T) + [R(T»)2 tan2 e - 2 [R(T)]2Qi}!' 

Points 12 and 11 satisfy the condition 

X2 - Xl = M cos e. 
Thus, from (12) and (14), 

M cos e - R(T)(X2 - Xl) 

= (t2 - T) - (11 - T) = E2 + E1 • 

12 Reference 5, pp. 21-22. 
18 D. V. Widder, Advanced Calculus (Prentice-Hall, Inc., Engle

wood Cliffs, N.J., 1947), p. 84. 

By rearrangement of this equation, one obtains the 
expression 

{
I + M2 } tan2 () 

4[R(T)]2 

M2 - 8bR(T) 
= 4[R(T)]2 + Q1 + Q2 + W, (15) 

where 
M2 tan4 () W=--_..c..::_--

4[R(T)]2[1 + tan2 0] 

M(Xz - Xl) (Xz - X1)2 
--'--''------'~-;- + ""---''"------''''--
2R(T)(1 + tan2 0)! 4 

+ (Q2 - Q1)2 

{[M/R(T)](1 + tan 2 Or! - (X2 - X1W . 

When (15) is substituted in the Ei in (14), the latter 
equation becomes 

ti - T = R(T) tan 0 

+ (_I)i{!M2 + [R(T)]2Vi}!' (16) 

where 
. M2 2 v.. = -( -1)'(Q2 - Q1) + W - tan 0. 

, 4[R(TW 

Equations (15) and (16) can be used to calculate a 
sequence of successive approximations for () and 
(ti - T). 

According to (15) and (16), M, 0, (t2 - T), and 
(11 - T) are all of the same order of magnitude. In 
the discussion below, the "nth-order approximation" 
is defined to the approximation obtained by neglecting 
alI terms in (15) with magnitude Mi for whichj > n. 

In the second-order approximation, W, the Vi' 
and the Qi can be neglected in (15) and (16). Then 

ti - T = R(T) tan 0 + (-I)i(M/2), 

[M2 - 8bR(T)]! 
0= ± 2R(T) . 

(17) 

(18) 

Equation (18) is equivalent to the approximate 
expression for 0 obtained in Sec. IV of Ref. 11. 

In (16), Vi is of the same order or magnitude as 
(ti - T)3 and M3. Consequently, Vi /M2 is of the 
same magnitude as M. By use of this result, (16) can 
be approximated by the expression 

ti - T = R(T) tan () + (_I)i 

X M {I + 2 V;[R(T)]2 _ 2 [R(T)]4[V;]2 + ... }. 
2 M2 M4 

(19) 
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Equation (19) can be used to obtain a "third-order" 
expression for evaluating the (ti - T) in the Qi in (15); 
the (t i - T) in Win (15) and in the Vi in (19) can be 
obtained from (17), since for these terms a lower
order approximation is sufficient. 

When all terms with order higher than four are 
dropped, (15) becomes 

02 = C + 2g00 + 2g20
a + 2ga04, (20) 

where 
go = -R'(T)M2/8[R(T)]2, 

g2 = -R'(T)/6, 

ga = -{5 + R(T)R"(T) + [R'(T)]2}J24, 

2 
c=--

R(T) 

M2 4 9 - 3R(T)R"(T) + [R'(T)]2 
-- - b + M -----'---'---'--~----=-----'---'-"-
8R(T) 1152[R(T)]3 

X 2 1 - RCT)R"(T) + [R'(T)J2 
1 - M --...:........:-'-----'---:--=---'---'--"-

8[R(T)]2 

The solution of this equation is given by Eq. (AI6) 
of Appendix A and can be written in the form 

where 

Oa = -R'(T)[M2 - 2bR(T)]/6[R(T)]2, 

o = ±[2(bm - b)]! 
b R(T) 

[ 
15 + 3R(T)R"(T) - 2[R'(T)]2 

X 1 + b 36R(T) 

(21) 

2 3 - 21R(T)R"(T) + 38[R'(T)]2] 
+ M 288[R(TW ' 

M2 4 9 - 3R(T)R"(T) + 10[R'(T)]2 
bm = 8R(T) + M 1152[R(T)t 

(22) 

In (21), real solutions for 0 exist only for 0 ::;; b ::;; bm • 

Thus, for small M, the region of integration in (10) 
does not extend over the entire lamina but instead is 
limited to a narrow band extending a distance bm 

inward from the boundary. 
The function pep, M) in (10) can be expressed 

2Xl X 2 sec2 0 
pep, M) = 1 + M2 ' 

since the coordinate system has been chosen so that 

R(p, 0) = -Xl sec 0, 

M - R(p, 0) = X2 sec O. 

From (12), (17), and (18), 

X 1X2 sec2 0 = (tl - T)( t2 - T) sec2 0 

X 1- + ... { 
(tl - T)2 + (t2 - T? } 

6[R(T)]2 

~ (tl - T)(t2 - T) 

{ 
M2 4 b } 

X 1 + 12[R(T)]2 - "3 R(T) . 

In a fourth-order approximation, from (19) and the 
definition of the Vi given below (16), we have 

(t2 - T)(tl - T) ~ -2bR(T) 

{ 
2[R(T)]2 (tl - T)Q2 - (t2 - T)Ql}-l 

X 1 + . 
M (t2 - T)(tl - T) 

When the ti - T and 0 are expressed in terms of M, 

P(p, M) = P2 + P3 + P4 , (23) 
where 

P
2 

= 1 _ 4bR(T) 
M2 ' 

Pa = ±4bR'(T)[M2 
- 8bR(T)]!J3M2, 

P = 2(b/M)2 _ bR"(T) [M2 - 6bR(T)] 
4 3M2 

+ 2b[R'(T)]2 [M2 + 6bR(T)]. 
9R(T)M2 

By differentiation of (21), 

I ~ 1- ± MR'(T) + M(l + D2) 
dM - 3 [R(T)]2 4R(T)[2R(T)(bm - b)]! ' 

(24) 
where 

D = M2 45 - 75R(T)R"(T) + 154[R'(T)]2 
2 288[R(T)]2 

b 9 + 45R(T)R"(T) - 78[R'(T)]2 
+ 36R(T) . 

In (10), a convenient choice of the area element dA is 

dA = [1 - b/R(T)] db dT. 

The two signs shown for the first term on the right 
side of (24) and for Pa in (23) correspond to the two 
possible solutions for 0 in terms of M. These two 
solutions give the two terms in the sum in (10). In the 
expressions for IdO/dMI and pep, M), one sign corre
sponds to each value of j in the sum. 

When (23) and (24) are substituted in (10), the 
expressions for G(M) become 

G(M) = 3M! dT - 2 JL 
27TMA 1=1 0 

X (b
m

db [l - _b_] I ~ I Pip, M), (25) Jo R(T) dM 1 

where L is the total arclength of the boundary. 
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After the integration in (25) is carried out, one 
obtains 

G(M) = MML(!)2 + MM
3
L(1)4 _ llMM4 

47TA R 327TA R 2407TA 

X + dT. 
i

L R"(T) dT 79MM3iL [R'(T)]2 
o [R(T)]3 n07TA 0 [R(T)]4 ' 

where 

(l)n 1 rL dT 
R = i Jo [R(T)t' 

By partial integration, 

= 3 dT . 
i

L RI/(T) dT i L [R'(T)]2 
o [R(T)]3 0 [R(T)]4 

The expression for G(M) can therefore be written 

G(M) = AlLM(l)2 + MLM
3

(1)4 
47TA R 327TA R 

AlLM
3

[ d ( 1 )J2 
- 367TA dT R(T) ,(26) 

where 

[
d ( 1 )J2 1 rL [R'(T)]2 

dT R(T) = i Jo dT [R(T)]4 . 

4. DISCONTINUITIES OF G(M) 

As mentioned in the Introduction, the scattered 
intensity at large h is determined in part by the form of 
G(M) in the neighborhood of M values at which G(M) 
or its derivatives are discontinuous. 

Jones and Kline14 have developed a procedure for 
asymptotic expansion of double Fourier integrals. 
Even though the calculation of the scattered intensity 
from a plane lamina is equivalent to evaluation of a 
fourfold Fourier integral (rather than a double 
integral), many of the results obtained by Jones and 
Kline can still be expected to be applicable to the 
scattering from a plane lamina. 

In particular, the work of Jones and Kline suggests 
consideration of the function M(tl' t2), which gives 
the length M of the intersect which has its ends at 
points t1 and 12 on the lamina boundary. Discontinui
ties of G(M) or its derivatives can be expected for M 
values at which M(tl' t2) satisfies the conditions 

oM/otl = 0, 

oMjot2 = o. 

Our calculations have verified that G(M) will have 

14 D. S. Jones and M. Kline, J. Math. & Phys. 37, 1 (1958). 

discontinuities for M values equal to the values of 
MCtl' (2) satisfying the above conditions-that is, 
when M(tl' t2) has a maximum, a saddle point, or a 
double point. [The function MCtl, t2} can be shown to 
have no minimum.] Analogous to the conclusions of 
Jones and Kline, we will assume that discontinuities 
occur when and only when M(t1' t2) has a maximum, 
minimum, or double point. The investigation of the 
discontinuities of G(M) thus involves a study of 
M(tl' t2) for points tl and 12 in the neighborhood of 
points where M(tl' t2) has maxima, saddle points, 
and double points. 

Let Tl and T2 be two points such that M(Tl' T2) = 
D represents a maximum, a saddle point, or a double 
point. Let 'i be the vector from point Ti to a nearby 
point ti on the boundary, and let D = doD be the 
vector from point Tl to point T2 • Then 

M = ID + f2 - fll 

= D[l + 2 do' (f2 - f1) + If2 - fll2Ji. (27) 
D D2 

The origin of the coordinate system is chosen to 
be at point T l , with the x a'xis in the direction of 
increasing t and with the y axis directed inward, along 
the vector D. Without loss of generality, the points 
designated as Tl and T2 can be selected so that 
R(T1} ~ R(T2}. When M(tl' t2) has a maximum, a 
saddle point, or a double point, the unit vector do is 
normal to the boundary at Tl and T2 (see Ref. 5, p. 24). 
From (12) we obtain 

r
i 

= (_l)i+l 

{ [
(ti - r;y J} x e[(t; - '4) + RiXi ] + do 2Ri + Ri¥; , 

(28) 

where R; = R(Ti } and e is a unit vector in the direction 
of positive x axis. The Xi and Yi are evaluated at 
point T;. The coordinate system has been chosen so 
that do is directed along the positive y axis. Since 
1'2 - '11 « D, M(tl, 12) can be approximated by the 
expression 

M(t t) = D + [(t2 - T2) + (tl - T1W 
1, 2 2D 

(tl - 7;.)2 (t2 - T2)2 - - + .... (29) 
2Rl 2R2 

According to (29), M(T!, T2) is a saddle point when 
D - (Rl + R2) < O. When D - (Rl + R2) > 0, 
M(T!, T2) will either be a minimum or a maximum. 
Further study shows that there can be only a maxi
mum, since the existence of a minimum requires that 
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both the inequalities R1 > D and R2 > D be satisfied. 
Since R1 , R 2 , and D are always positive, these two 
inequalities can never be fulfilled when D
(R1 + R 2) > O. Therefore when D - (Rl + R2) > 0, 
M(T1' T2) cannot be a minimum and thus will be a 
maximum. 

When D = R1 + R2, M(T1' T2) is a double point. 
In the approximation represented by (29), for a 
double point the boundary is made up of arcs of two 
concentric circles with radii R1 and R2 • In this case, 
(29) is not sufficient for determining the region of 
integration in (10), and a higher-order approximation 
for M(/1' (2) is required. 

For a plane lamina with a finite area and a con
tinuous boundary, there must be a maximum value of 
M. Let A and B represent the respective values of TI 
and T2 for which this maximum value of M occurs. 
Then, by symmetry, there will also be a maximum 
for 11 = Band 12 = A. If L is the total length of the 
boundary, maxima of M will then be obtained for 
II = A + mL and t2 = B + nL and also, by sym
metry, for 11 = B + mL and t2 = A + nL, where m 
and n are any integers. Along the lines 12 = t1 ± mL, 
M(t1' t2) = O. From the values of II and 12 at which 
M(t1' (2) has maxima and at which it is zero, one can 
expect that, ordinarily, the number of saddle points 
will equal the number of maxima. 

When D = R1 + R2, there is a double point and 
higher-order terms must be considered in (28) and in 
(27). For a double point, M(t1, 12) has the form 

D(1.2 
M=D---

2RIR2 

1 [R' ( )3 R~ ( )3J + 6 (R1)2 II - T1 + (R
2
)2 t2 - T2 , (30) 

where 

(1. = [R2(t1 - T1) - R1(t2 - T2)]/D. 

If R'(T1) and R'(t2) are both zero, an even higher
order expansion must be used instead of (30). Then 

M = D _ D(1.2 + D (R1)2 - RIR2 + (R2)2 (1.4 
2R1R2 24R:R~ 

+ 1.. [R;(t1 - Tl)4 + R~(t2 - T2)4] (31) 
24 (R1)2 (R2)2' 

where R; = R"(Ti ), with i = 1,2. 

5. MAXIMA AND SADDLE POINTS 

The angle () will be near 90° for a maximum, saddle 
point, or double point, unlike the calculation for 
small M, when () is small. Let (Xi' Yi) represent the 

Cartesian coordinates of point Ii. Then, for the co
ordinate system which has been selected for the 
discussion of the form of G(M) for this case, with 
(28) one obtains 

Xl = (tl - T1) + R1X1, 

X 2 = -(12 - T2) - R2X2' 

Y1 = [(t1 - T1)2J2R1l + R1 YI , 

Y2 = D - [(t2 - T2)2J2R21 - R2 Y2 • 

(32) 

For all the points (x, y), (Xl' Yl), and (X2 , Y2) to lie on 
a straight line, we must have 

(Yi - Y) cot () = Xi - x. 

From (32), 

t1 - T1 = X - Y cot () + RI(l';. cot () - Xl) 

+ [(t1 - Tt)2j2R11 cot (), 

t2 - T2 = -x - (D - y) cot e + R2(Y2 cot e - X2) 

+ [(t2 - T2)2j2R2] cot e. (33) 

When the lowest-order approximations from (33) 
are substituted in (29), one obtains an approximate 
equation expressing () in terms of M: 

where 

( ) Rl + R2 [ RID ] 2 RIR2D ay = y- + . 
D - Rl - R2 RI + R2 R1 + R2 

(35) 

When M is in the neighborhood of a maximum, 
saddle point, or double point of M(tl, (2), the region 
of integration is restricted to points in the neighbor
hood of the Y axis, and () is always near 90°. By 
differentiation of the expression for cot () obtained by 
solving (34), for D ;F: R1 + R2 one obtains 

I :~ I ~ I d ;: () I 

= { [2( D - M) 2J}! . D(D - R1 - R2) D a(y) - x 

(36) 

In the weighting function pep, M) in (10) for points 
near the Y axis, the quantities R(p, M) and M can be 
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approximated by Y and D, respectively, giving 

pep, M) ~ 1 - (2y(D - y)/ D2). (37) 

In the sum in (10) there will be two terms correspond
ing to the two solutions of (34). According to (36) and 
(37), both terms in the sum have the same value. 
Then (10) can be written 

G(M) R::i 3M (R1R2)! 
7TDA D 

[
1 - 2y(D ;- y)] 

XfdA D 

A { [2(D - M) J}i . (D - R1 - R2) D a(y) - x2 

(38) 

For the integration in (38), it is convenient to let 
dA = dx dy. In this approximation the integration 
over y extends over the interval 0 ~ y ~ D, and the 
limits for x are given by the condition 

When M is in the neighborhood of a maximum, 
D - R1 - R2 is positive, and, according to (35), a(y) 
is positive when D - R1 - R2 > O. Thus there are 
no allowed values of x for M > D. (This condition 
merely states that there are no M values greater than 
the maximum value D.) For D > M, the limits for x 
are given by 

where 

_ [ZeD - M) ( )J1 Xm - a y . 
D 

Therefore, from (38), for D > M, 

for a small forbidden region in the neighborhood of 
the y axis. This forbidden region is determined by the 
condition x2 ~ x;., where 

xm = [2(D;; M) a(y)r, (D - M)a(y) ~ 0, 

Xm = 0, (D - M)a(y) ~ 0. 

I t is convenient to write 

where Gc(M) is a function that is continuous at 
M = D, while GiM) is discontinuous. The function 
Gc(M) need not be evaluated, since it does not contrib
ute to the asymptotic expansion of the intensity at 
large h. If X is greater than the largest value of IXml 
throughout the entire interval 0 ~ y ~ D, there will 
be no contribution to GiM) from x values for which 
Ixl > X. Let X be chosen so that, although X2 > x;., 
X is still small enough that the approximations used 
when D was a maximum can also be made for the 
saddle point. Then, from (38), the contribution to 
G(M) from x values for which Ixi ~ X is 

- ! 
G (M) G (M) 6M [ R1R2 ] 

d + c1 R::i 7TDA D(R1 + R2 _ D) 

X lD dY[ 1 - 2Y(~;- y)}1(y), 

where Gc1(M) is a continuous function of M at 
D = M, and 

Ix dx 
II(Y) = . 

Xm {x 2 
- [2(D - M)/D]a(y)}f 

The integraIII(y) can be written 

[I(Y) = IIX - [1m' 

where 

G(M) = 2M [ R1R2 J!, 
A D( D - R1 - R2) 

(40) [IX = loge {X + [X2 - 2 D ~ M a(y)r} 

while for D < M, G(M) = O. Thus G(M) has a 
finite discontinuity when D is a maximum of M(tl' t2). 

When D is a saddle point, R1 + R2 - D > 0, and, 
according to (39), the allowed values of x are given by 
the condition 

X2 _ 2(D;; M) a(y) ~ O. 

Thus, unlike the region of integration when D is a 
maximum, for which the allowed x values are restricted 
to a small region near the y axis, for a saddle point 
the integration extends over the entire lamina, except 

and 

[1m = loge {Xm + [(Xm)2 - 2 D ~ M a(y)r}. 

The quantity Xm is defined so that 

\D-M\ [1m = t loge D + i loge [2 la(y)IJ, 

regardless of whether or not Xm is different from zero. 
Since [IX is continuous at D = M and log. 12a(y) I is 
independent of M, the discontinuous part GaCM) of 
G(M) can be obtained by considering only the term 
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-! log.I(D - M)/DI in 110'). Thus 

Equation (41) shows that when D is a saddle point, 
G(M) has a logarithmic discontinuity for M = D. 
The integrals in Gc1(M) need not be evaluated, since 
G c1 (M) does not affect the intensity at large h. 

6. DOUBLE POINTS 

When D = R1 + R2 , (34) can be written in the 
form 

(42) 

where 

oto = x + (R1 - Y) cot O. 

For double points, the value of I dO/dM I calculated 
from (42) is independent of x, and so the existence of 
real values of this approximation for IdO/dMI can
not serve as a condition defining the region of inte
gration in (10). A higher-order approximation is 
therefore needed for finding IdO/dMI for a double 
point. 

When R~ and R; are not both equal to 0, (30) can be 
used to compute IdO/dMI for a double point. The 
approximations for (t1 - Tl) and (t2 - T2) obtained 
from (33) for the maxima and saddle points can 
also be used in (30). The resulting expression is 

R:R{(otoY - R1X)3 + R~R~[(D - y)oto - R2X]3 
3DR1R2(R l 

_ y)3 
(43) 

This equation is too complicated for an exact solution. 
It can be solved approximately by noting that the 
term proportional to x3 must have an appreciable 
effect on the solution of (43) if the existence of solu
tions of (43) is to determine the region of integration 
in (10). If this term is to be one of the dominant terms 
in (43), it must be of the same order of magnitude as 
(D - M) and otg. Then oto and x are proportional to 
ID - Mli and (D - M)!, respectively The magni
tude of the other terms in (43) can then be determined. 
If only terms with the same magnitude as (D - M) 
are retained in (43), one obtains 

From the solution of this quadratic equation for 1X0, 

I dO I 1 I doto I 
dM R:f IRI - yl dM 

= (3R1R2)i [6(D _ M) + RlR{ + R2R~ x3J-i. 
IRI - yl (Di) (Rl _ y)3 

(44) 

The allowed values of x in the surface integration in 
(10) are determined by the condition that IdO/dMI 
must be real. 

Just as in the discussion of G(M) for M in the neigh
borhood of a saddle point, for a double point, G(M) 
can be written as the sum of a continuous function 
Gc(M) and a function GiM) which is discontinuous 
for M = D. Since Gc(M) does not contribute to the 
asymptotic expansion of the scattered intensity, only 
GiM) need be evaluated explicitly. Let Xbe a positive 
quantity small enough that, for Ixl < X, all approxi
mations needed to obtain (44) are valid, but with X 
large enough that 

I RlR{ + R2R~ I X 3 > 61D - MI· 
(R

l 
_ y)3 

Then in (to), only x values for which Ixl :::;; X will 
contribute to GiM), and only these values of x need 
be considered in the calculation of GiM). Just as in 
the study of the form of G(M) for M in the neighbor
hood of a saddle point, the integration limits Y = 0 
and Y = D can be used for a double point. 

In (10) the integral has the same value for both 
values of the summation index, and therefore by 
analogy with (40), one can write 

GiM) + Gcl(M) 

3M (3R1R2)i CD dy 
= 1TDA ---v- Jo IRl - yl 

[ 
2y(D - y)] 

i
"'2(Y) dx 1 - D2 

x (45) 
"'l(Y) [6(D _ M) + RlR{ + R2R~ x3Ji ' 

(Rl - y)3 

where Gcl(M) is continuous at M = D, and where the 
x,(Y) are determined from the conditions that x2(Y) ~ 
xl(Y) , Ixi(y)1 :::;; X, and 

6(D - M) + R1R{ + R2~~ x3 > O. 
(Rl - y) -

In approximating GiM), it is convenient to make the 
change of variables 

(Rl - y)[6(D - M)]! 
x = ! t. 

[RlR{ + R2R~] 
(46) 
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The discontinuous part GtJ.(M) of G(M) is then found 
to be expressible in the form 

- t 
G (M) _ ~ (3R1R2) 

d - 7TA(Dt) (61D - Ml)t(lR1R{ + R2Rm! 

X (47) JOO dt 

-1(1 + ta)! 
for D - M> O. Similarly, for D - M < 0, 

G (M) _ 2M (3R1R2)f 
d - 7TA(Dt) (61D - Ml)t(lR1R{ + R2Rm! 

J
-1 dt 

x -00 (-1 _ ta)!· (48) 

The integrals in (47) and (48) can be expressed in 
terms of gamma functions. By introducing the function 

.J3[ x] 1[ x] Ka(x) = - 1 + - + - 1 - - , 
2 Ixl 2 Ixl 

the results for D - M > 0 and D - M < 0 can be 
combined to give 

- t r 1 

) 
M(R1R2) ret) (s)Ka(D - M) 

GaCM =! f t r 
7T A(D )(6ID - MI) (IR1Ri + R2R~) 

(49) 

When there is a double point for which R~ = R; = 0 
but R;R; + R;R; .= 0, (31) must be used to find 
IdOjdMI and the region of integration in (10). The 
approximations used for the (ti - T;) in (30) are not 
sufficient for (31), which requires higher-order 
approximations from (33). For (31), the (Ii - Ti) can 
be obtained from the relations 

(50) 

where 

fJ = x - y cot 0, 

r = x + (D - y) cot O. 

When Eqs. (50) are substituted in (31), a quartic equa
tion for cot 0 is obtained, which can be simplified by 
a method analogous to the technique used to obtain 
the approximation of (43). The resulting equation is 

Then 

I dO I 1 I dIXo I 
dM ~ IRI - yl dM 

(R1R2)! 
=------------~~~------------~ 

IR - yl {2D[D - M + X4 RiRl + R:R~J}! 
1 24(Rl _ y)4 

(52) 

As in previous calculations, only the discontinuous 
part of G(M) need be evaluated. Let X be a positive 
number such that X is small enough to permit the use 
of all approximations employed previously and satis
fying the condition 

ID - MI + IRiRl + R:R!, X4 > O. 
24(R1 - y) 

Then the part GiM) of G(M) that is discontinuous at 
M = D will come from the region of the surface 
integration in (10) for which Ixl S X. Since (52) is an 
even function of x, the integral for negative x values 
in (10) is equal to the integral for x > 0, and so only 
positive x values need be considered in the approxi
mate evaluation of (10). Let Gc1(M) be the continuous 
function contributed by x values for which Ixl S X. 
Then 

GiM) + Gc1(M) 

6M (R1R2)! rD 
dy 

= 7TDA 2D Jo IR1 - yl 

dX[1 - 2y(D - y)] 

j "'2(1/) D2 
X (53) 

"'1(Y) [(D _ M) + R;Rl + RiR; X4Jt· 
24(R1 _ y)4 

The integration limits x2(Y) and x1(Y) are determined 
by the conditions that: (a) X 2 x2(Y) 2 Xl(Y) 2 0, 
and (b) the integration over x in (53) must extend over 
all x values for which the integrand is real. A calcula
tion then shows that 

- 6 ! 
GiM ) = M ( RIR2) 

7TA 7TD 

[fC.l)]2K (D - M R2R" + R2R") x 4 4 , 1 1 2 2 (54) 
(24IR;Rl + R~R;IID - Ml)t ' 

where 

Kix, y) = 1.[.J"2(1 +~) (1 + L) 
4 Ixl Iyl 

+ (1 - ~) (1 + L) 
Ixl Iyl 

+ (1 + .£) (1 - L) ] 
Ixl Iyl· 
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Equation (49) indicates that for a double point for 
which R~ and R; are not both equal to zero, G(M) has 
an infinite discontinuity proportional to ID - MI-t. 
According to (54), when R~ = R~ = 0 but RiR~ + 
R~R; ~ 0, the discontinuity is proportional to 
ID - MI-!. 

7. THE INTERSECT DISTRIBUTION FOR 
AN ELLIPSE 

The characteristic function (3o(r) for an ellipse with 
semimajor axis va and semiminor axis a (thus v > 1) 
is given by Eq. (B7) of Appendix B. The intersect 
distribution function G(M) for an ellipse can be 
obtained by substituting (B7) in (9). The resulting 
expression is 

2 -
G(M) = 32a v~M 

7T 

J
2av dx 

X XDO X3[X2 __ (2a)2]t(x2 _ M2)t[(2av)2 _ X2]t ' 

(55) 
where 

X(M) = 2a, 0 ~ M ~ 2a, 

X(M) = M, 2a ~ M ~ 2va. 

For small M, (55) can be approx\mated by 

G(M) = MM I. + MM3 17 (56) 
7T

2a3v4
" 87T

2a5v6
" ' 

where 

In the neighborhood of the maximum values M = 
2va, (55) has the approximate form 

M 
G(M) ~ t' (57) 

7Ta
2v2(v2 

- 1) 

There is a saddle point at M = .2a, and the discon
tinuous part GiM) is given approximately by 

GiM) ~ - vM t loge I M -- 2a I. (58) 
7T

2a2(v 2 
- 1) 2a 

When the boundary of the ellipse is expressed in terms 
of the Cartesian coordinates x and y, the radius 
of curvature R is given by 

[aV - (v 2 
- 1)X2]~ 

R = . (59) 
a2v4 

Also 

where T is the arclength measured from the point 
with Cartesian coordinates (av, 0). Thus 

IdR/dTI = 3(v2 - 1) Ixl (a2v2 - x2)t/a2v3. (60) 

The maximum value M = 2va corresponds to the pair 
of points with Cartesian coordinates (va,O) and 
(-va, 0), while the saddle point at M = 2a occurs for 
the points (0, a) and (0, -a). For the maximum for 
an ellipse, Rl = R2 • At the saddle point, the two 
radii of curvature also are equal. Equations (57) and 
(58) verify the results obtained by substitution of (59) 
into (40) and (41). 

From (59), (60), and (26), for small M, G(M) can 
be written 

MM MMs MM3 
G(M) = --23-:J-"- + ~ III -- --251iJa, (61) 

7r a v 2 87T a v 2 7T a v 
where 

Since 

Ia = (v 2 _ 1)2[1 u
2
(l -- u

2
)t du 11' 

Jo [1 -- (1 - v-2)u2r2 

I -21 2(n + 1)(v2 
- 1)2 

n+t = V n+% -- i 4 
V 

i 1 u2(l -- u2)t du x , 
o [1 -- (1 __ v-2)u 2]n+t 

Eq. (61) is equivalent to (56). The approximations for 
G(M) calculated from the exact expression for the 
scattered intensity from an ellipse are thus in agree
ment with the approximate expressions obtained for 
the plane lamina with a convex boundary. 

8. THE SCATTERED INTENSITY FOR 
LARGE h 

For a randomly oriented plane lamina, the scattered 
intensity can be expressed1s 

I(h) = 27T~p2 [1 -- T(h)], (62) 

where 

1 lDmax 
T(h) = -=- G(M) sin hM dM. 

Mh 0 
(63) 

[Equations (62) and (63) use a different notation from 
that employed in Ref. 15. The quantity G(r) in Ref. 
15 is (3o(r) in Eq. (7), and the variable of integration in 
(63) has been changed to M. Also, the quantity (] in 
Ref. 15 corresponds to p in (62).] 

According to (62) and (63), the form of the intensity 
for large h is determined by the asymptotic form of the 
Fourier integral (63). For large h, T(h) can be approxi
mated by use of Errlt!lyi's theorem for asymptotic 

16 Reference 6, Eq. (9). 
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expansion of Fourier integralslO and the theorem of 
Jones and Kline16 for asymptotic expansion of Fou
rier integrals with logarithmic discontinuities. 

Erdelyi's theorem states that if a function 4>(t) is N 
times continuously differentiable for IX ~ t ~ (J, and 
o < A ~ I, 0 < p, ~ 1, then 

1'1 eild(t - 1X);"-1«(J - t)1l-l4>(t) dt 

= BN(X) - AN(X) + O(x-N) 
as x -+ 00, where 

AN(x) = _Nil r(n + A) eli"(n+).)x-(nH) 
n=O n! 

X ei"!(J. d~: [«(J - 1X)1l-14>(1X)], 

BN(x) = 11 r(n + p,) e!i"(n-ll)x-(n+Il) 
n=O n! 

X ei#l d~nn [«(J - 1X),,-14>«(J)], 

and where O(X-N) may be replaced by o(x-N) if 
A = p, = 1. [The order symbols O(y) and o(y) are 
explained in Ref. 10, p. 5.] 

According to Erdelyi's theorem, (26) makes no 
contribution to the asymptotic expansion of T(h). 
The first terms in the approximate expression for 
G{M) for small M thus do not affect the scattered 
intensity for a plane lamina with a convex boundary. 

The asymptotic expansion of T(h) will consist of a 
sum of terms corresponding to the values of M at 
which G(M) is discontinuous. If there is a maximum 
at M = D;, according to Erdelyi's theorem and (40), 
there will be a term 

_ ~ [ Rl ,R2i J1 cos hDi (64) 
A DiD; - Rl , - R2;) h2 

in T(h), where Rl; and R 2; are the values of Rl and R2 
corresponding to the maximum value D;. The terms 
in T(h) resulting from saddle points at M = D;, 
which can be evaluated from (41) and the theorem 
of Jones and Kline,I6 are found to be 

+ ~ [ R 1;R2• J! sin hDi . (65) 
A Di(R1; + R2; - Di ) h2 

Erdelyi's theorem can be employed to find the terms in 
T(h) resulting from double points. When the discon
tinuity is given by (49), the corresponding term in 
T(h) has the form 

2(R1R2)lrH) sin (hD
1

:- 1T/4). (66) 

A(1TD)16!(IRIR~ + R2Rm* he 

16 Reference 14, p. 27. 

For a discontinuity given by (54), there will be a term 

sin (hD - :!! - v) 
(R1R2)!6tr(t) 8 

A(1TD)l(IR~R~ + R~Rmt ht 

in T(h), where 

v = 1T/4, R:R~ + R~R;; < 0, 

v = 0, R:R~ + R:R;; > O. 

(67) 

From (62), (63), (57), and (58), the asymptotic 
expression for the scattered intensity from an elliptical 
lamina is' 

J(h) ~ 21T
2
a

2
vp2[1 _ 1 

h2 1T(V2 - 1)! 

X (v
3 

sin 2ha - cos 2hva) + ... J. 
(hva)2 

9. DISCUSSION 

Equations (62) and (63) show that for a plane 
lamina with a smooth convex boundary, the form of 
the scattered intensity for large h is determined by the 
asymptotic expansion of the Fourier integral T(h). 
The terms in this expansion can be calculated when the 
form of G(M) is known for small M and in the neigh
borhood of points where G(M) or its derivatives are 
discontinuous. The first step in finding the asymptotic 
expansion of T(h) thus is an examination of the 
function M(tl , t2) to determine its maxima, saddle 
points, and double points. After these points have been 
located, the radii of curvature can be evaluated and 
substituted in (64)-(67), which give the least rapidly 
vanishing terms in the asymptotic expansion of T(h). 

More terms in the expansion could be obtained by 
developing a higher-order approximation for G(M) 
in the neighborhood of its discontinuities. This 
calculation, however, would almost certainly be quite 
complicated. 

For every boundary curve, M(tl' tJ can be expected 
to have maxima and saddle points, and so terms with 
the form of (64) and (65) should always appear in 
T(h). In the less frequent cases when there are double 
points, their contribution to T(h) can be obtained 
from (66) and (67). 

As has been mentioned previously, the terms given 
in (26) in the approximation for G(M) for small M 
do not contribute to the asymptotic expansion of T(h). 
In a higher-order approximation than (26), only 
coefficients of even powers of M will appear in the 
asymptotic expansion of T(h). As (26) contains only 
odd powers of M, very possibly there will be no even 
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powers of M in a higher-order approximation of 
G(M) for small M, and consequently the form of 
G(M) for small M may have no effect on the asymp
totic expansion of T(h). 

It is interesting that this result is quite similar to 
the behavior of the asymptotic expansion of the 
scattered intensity from filamentsY Calculations 
strongly suggest that, for a filament in the form of a 
loop without bends or points where the filament 
crosses itself, the analog ofthe asymptotic expansion of 
T(h) will contain no nonoscillatory terms. 

While the possibility of unforeseen complications 
cannot be excluded, the methods used for obtaining 
(26) appear to be applicable to finding higher-order 
approximations of G(M) for small M. 

The coefficients of the terms in (26) are relatively 
simple, while considerably more complicated ex
pressions appear in intermediate steps of the develop
ment of (26). This simplification of the final result, 
after a fairly long and complex calculation, quite 
strongly suggests that there must be a simpler way to 
approximate G(M) for small M. However, our efforts 
to simplify the calculation have been unsuccessful. 

Kirste and Porodls have found (Jo(r) for small r for 
polygons. Their expression for (Jo(r) indicates that for 
a polygon the first term in the approximation of 
G(M) for small M will be a constant instead of being 
proportional to M, as in (26). Consequently, for 
polygons Erdelyi's theorem shows that T(h) will 
contain a term proportional to h-2 , which arises'from 
the behavior of G(M) for small M. Since the boundary 
of a polygon has sharp corners and thus is not smooth, 
the calculation of Kirste and Porod suggests that, in 
order for T(h) to be unaffected by the behavior of 
G(M) for small M, the boundary must be smooth and 
cannot have sharp corners. In principle, the presence 
of corners on the boundary thus could be detected 
by measurements of the intensity of scattering for 
large h. 

When the boundary is a circle, the procedure used 
for finding () as a function of M when M is in the 
neighborhood of a maximum, a saddle point, or a 
double point cannot be used, and at M = D the 
discontinuity in G(M) for a circle is different from the 
discontinuities for maxima, saddle points, and double 
points. An exact calculationll shows that when M is 
in the neighborhood of the diameter D of the circle, 
G(M) is proportional to (D - M)-i for M < D, 
and G(M) = 0 for M > D. Thus G(M) has a sharper 
discontinuity for a circle than for the other cases 
which have been considered. 

17 Reference 5, pp. 30-31. 
,. R. Kirste and G. Porod, Kol1oid-Z. 184,4, (1962). 

For a double point the boundary can be considered 
to approach a circular boundary more closely than for 
a saddle point or a maximum. Moreover, the boundary 
for a double point for which R~ = R~ = 0 is more 
nearly like a circle than the bou,ndary for the case of a 
double point for which both of these quantities are not 
zero. The degree of similarity to a circular boundary 
for these two types of double points is reflected in the 
exponents of ID - MI in GiM). Thus, in (54) the 
exponent of ID - MI is closer to the value for a circle 
than in (49), and the boundary approaches a circle 
more closely in the former case than in the latter. 

The results of this investigation of G(M) probably 
have little direct application to the analysis of experi
mental data, since it is not possible to prepare a 
suspension of colloidal particles which are identical 
thin platelets with a convex boundary. Nevertheless, 
the information about G(M) which has been obtained 
has some important consequences for the theory of 
small-angle x-ray scattering. 

First, the expressions for the form of the intensity 
for large h indicate, in a qualitative way, the type of 
information that can be obtained from measurements 
of the outer part of the small-angle x-ray scattering 
curve for any type of suspension of identical particles. 
In the expression for the intensity at large h, there will 
be damped oscillatory terms resulting from the M 
values at which G(M) or its derivatives are discon
tinuous. In addition, the intensity will contain non
oscillatory terms proportional to negative powers of 
h, and from the coefficients of these terms, information 
can be obtained about some properties of the particles. 
Although for a plane lamina with a smooth convex 
boundary the asymptotic expression for the intensity 
at large h will probably contain only one nonoscillatory 
term, for three-dimensional particlesI9 more non
oscillatory terms will appear in the expression for the 
intensity at large h and therefore more information 
will be obtainable in a study of the outer part of the 
scattering curve from three-dimensional particles than 
from plane laminas. 

Second, the approximate expressions for G(M) 
can be used in previously developed relations7- 9 

giving the scattered intensity for cylinders with 
arbitrary cross section. In these expressions, the 
intensity from the three-dimensional cylinder was 
given in terms of (Jo(r), the two-dimensional character
istic function of the cross section. When these calcu
lations were made, sufficient information about (Jo(r) 
was not available to permit complete evaluation of 
the expressions for the scattering from the cylinders. 
The properties of G(M) which have now been obtained 

19 Reference 6, Eq. (2). 
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give enough information to evaluate the first terms in 
the asymptotic expansions for scattering from three
dimensional cylinders. These expressions can now be 
used for analysis of experimental data. 

Finally, the methods developed for studying G(M) 
for a plane lamina will be useful in finding procedures 
for attacking the more important, but also more 
complex, calculation of G(M) for a three-dimensional 
particle with a smooth convex boundary. For example, 
preliminary investigations indicate that some of the 
results for a plane lamina can be directly used as a 
starting point for approximations of G(M) for a 
smooth convex three-dimensional particle. 
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APPENDIX A: APPROXIMATE SOLUTION 
OF AN EQUATION 

The calculation of G(M) for small M requires an 
expression giving e as a function of M. This expression 
is obtained by solving Eq. (15) for e. This equation can 
be put in the form 

x 2 = 2g(x) + e, (Al) 

where e is a constant and g(x) is a monotonically 
increasing function of x such that g(O) = 0, g" (0) = 0, 
and g'(O) > O. The assumption is made that g(x) can 
be expanded in a power series 

00 

g(x) = Z gnxn+l, (A2) 
n=O 

which converges for all x values needed for the solu
tion of the equation. If (Al) is to have a single root at 
x = x m , the curve y = x 2 must be tangent to the 
curve y = 2g(x) + e at x = x m • The condition de
fining Xm then is 

xm = g'(xm), 

and e must satisfy the condition 

e = em = x;' - 2g(xm)· 

If e > em' the equation can have two real roots. 
Equation (AI) can be written 

(
X _ x )2 = 1 - B(xm) A2 

m 1 - B(x) , 

(A3) 

(A4) 

where 

A2 = C + 2g(xm) - x;' . 
1 - B(xm) 

(A6) 

The expression for A2 in (A6) is obtained by making 
use of (A3). The assumption is made that B(x) « 1. 
From (AS), 

B(xm ) = g"(xm )· 

Equation (A4) can be written 

x - Xm = ±A[l - B(Xm)]*. 
1 - B(x) 

(A7) 

(AS) 

Since B(x) has been assumed to be small compared to 
I, the quantity [l - B(x)]-! in (AS) can be expanded 
in a power series. Then 

00 

x - Xm = ±A Z bn(x - xm)n, (A9) 
n=O 

where 

Since B(x) « 1, and since, according to (AS), B(x) 
can be expanded in a Taylor series about X m" the 
Taylor series expansion (A9) must converge. 

Equation (A9) can be used to express (x - x m) as a 
sum of powers of ±A. In this series, both A and the bn 
depend on X m', and from (A3) Xm can be expressed in 
terms of the gn in (A2). By this procedure, a solution 
of (AI) is obtained. 

Let 
n+l 

b:' = Z bib~+i-i' (AIO) 
j=O 

for k 2: 1, and 

b~ = 1, 

b~ = 0, n 2: 1. 

Since bo = 1, (A9) can be written 

x = Xm ± A ± [A(X - xm) Job~(X - xm)n] 

1 

= Xm + Zb~(±A)k+l 
k=O 

00 

+ (±A)2(X - Xm) Z b~(x - Xm)n. 
n=O 

Similarly, by induction, for j 2: 1, 

x = Xm + [Ib~(±A?+1J + A j , 
k=O 

(All) 

where 
ro 

Aj = (±A)i Z b~(x - xmt+1
• 

n=O 
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The quantity Aj in (All) is proportional to (±A)i+! 
and thus is smaller than any of the terms in the sum 
in (All). When A is small enough that (All) is a 
convenient approximation for x, the value of j is 
chosen to be large enough that Ai can be neglected. 
The resulting approximate expression for x then has 
the form of a series in powers of ±A. 

From (A2) and (A3) 
00 

Xm = go + 2 (n + 3)gn+2(Xm)n+2 (AI2) 
n=O 

because the condition g"(O) = 0 implies that gl = O. 
Since Xm will be assumed to be small, a rough approxi
mation to the solution of (A3) is Xm = go. This 
approximate result suggests that the exact solution 
can be conveniently written 

00 

Xm = 2 an(go)n+!, 
n=O 

with ao = I. Let 
00 

(xm)k = 2 a~(go)n+k. (A13) 
n=O 

Then a~ = an and 

(A14) 

When (AI3) is substituted in (AI2), 
00 00 n 

2 an(go)n = I + 2 (got+! 2(n + 3 - j)gn+2_ j aj+2-i. 
n=O n=O j=O 

Thus 
n 
'( + 3') n+2-i an+! = k, n - ] gn+2-ia j • (AI5) 
i=O 

Equations (AI4) and (AI5) can be used for successive 
calculation of the an' After the a j have been evaluated 
for j :::;; n, an+! can be obtained from (Al5). According 
to (AI4), the a~ can be found when the aj are known 
for 0 :::;;j:::;; n. 

Thus, for example, 

a l = 3g2 , 

a2 = 4ga + 18(g2)2. 

When go and c are of the same order of magnitude, 
and when terms with magnitude less than (go)! can be 
neglected, 

x = Xm ± bgA + b~A2 ± b~Aa + ... , 
Xm~ go, 

bg = 1, b~ = bi = g2' 

b~ = b2 + (bl )2 

1 B"(xm) 5 [B'(X m )]2 = - + - ----"-~~=-----
4 1 - B(xm) 8 [1 - B(xm)]2 

~ ga + (!)(g2)2, 

A ro-J (c + g~)![1 + 3g2g0]. 

Thus 
x ro-J go ± (1 + 3g2g0)(c + g~)! 

+ cg2 ± [ga + (!)g;]c~. (AI6) 

APPENDIX B: THE SCATTERED INTENSITY 
FOR AN ELLIPSE 

The average structure factor F2(h) for a randomly 
oriented elliptical lamina with uniform electron 
density p, semimajor axis va, and semiminor axis a 
is given by the expression20 

F\h) = - dcp drx sin rx[A(b)]2, - 1 121r 1" 
47T 0 0 

(Bl) 

where 
b = [i sin rx cos cp + j sin rx sin cp + k cos O(]h, 

J
a Jv(a'-x')! 

A(b) = p dx • dyei(b.r), 
-a -v(a'-x )t 

(B2) 

r = xi + yj, 

and where i, j, and k are unit vectors in a Cartesian 
coordinate system with the x and y axes coinciding 
with the semi minor and semimajor axes of the ellipse, 
respectively, and with the z axis perpendicular to the 
plane of the ellipse. The quantity A(b) is proportional 
to the scattering amplitude for an arbitrary orientation 
of the ellipse, and (Bl) states that the intensity is the 
average of [A(b)]2 over all orientations. 

When the integration over y in (B2) is carried out 
and use is made of an integral relation between Bessel 
functions,21 A(h) can be expressed as 

(b) 2 
2 JI[ha sin rx(cos2 cp + v2 sin2 a)!] 

A = 7Tpa v ! 
ha sin rx( cos2 cp + v2 sin2 rfo) 

where JI(x) is the first-order Bessel function of the 
first kind. Let 

K(2 ) - l,i"d . [2JI (X sin rx)] 2 x - 2 rx sm rx . . 
o x sm rx 

Then,22 

8 1"/2 dO( frr/2 

K(2x) = -2 -. - dfJJ2(2x sin 0( cos fJ). 
7TX 0 sm rx 0 

Let 

fJ = cos-1 [~]. 
sm 0( 

Then 
8 J"/2 drx lSina duJ2(2xu) 

K(2x) = - --
7TX2 0 sin rx 0 (sin2 rx - u2)! 

20 Reference I, p. 10. 
21 W. Magnus and F. Oberhettinger, Formulas and Theorems 

for the Functions of Mathematics Physics (Chelsea Pub!. Co., New 
York, 1954), p. 30. 

•• Reference 21, p. 28. 
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Thus By integration by parts, 

K(2x) = _8_[1 _ 2J!(2X)]. 
(2X)2 2x 

(B3) 32 fX K(hx) = -2-4 dU(X2 - u2)![1 - cos hu] 
7Th x 0 

From (Bl) 

(B4) 

32 fX fU = --4 dU(X2 - u2)! dr sin hr. 
7Thx 0 0 

Thus 

where 16 IX sin hrfx 1 K(hx) = 24 27Tr dr -- dU(X2 - u2). (B6) 
7T x 0 hr r 

By a change of the variable of integration, 

When (B6) is substituted in (BS) and the order of the 

x and r integrations are interchanged, £2(h) can be 
written 

(BS) 

The two-dimensional characteristic function (Jo(r) 
will now be obtained. By use of an integral representa
tion23 for J1(x), K(hx) can be written in the form 

• s Reference 21, p. 26. 

F2(h) = 7Tp2a2v 27Tr dr -- (Jo(r), 
-- I2

va sin hr 
o hr 

(B7) 

x(r) = 2a, 0 ~ r ~ 2a, 

x(r) = r, 2a ~ r ~ 2va . 
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Transmission Properties of an Isotopically Disordered 
One-Dimensional Harmonic Crystal 

ROBERT J. RUBIN 
National Bureau of Standards, Washington, D.C. 

(Received 1 March 1968) 

The amplitude bN(W) of a wave of frequency W which is transmitted by a disordered array of N 
isotopic defects in a one-dimensional crystal has been investigated in the limit in which N ->- 00 while the 
over-all concentration of the defects in the array remains fixed. The transmitted amplitude bN(W) is pro
portional to the reciprocal of the magnitude of an Nth-order determinant whose elements depend 
explicitly upon the spacings between defects, the incident frequency w, and the relative mass difference 
Q = (M - m)/m between the defect particles and the particles of the host crystal. "l>.N(w) is represented as 
exp [-Nr:J..N(w, Q, C)], where C is the over-all fractional concentration of defects; two types of estimates 
of r:J.N(W, Q, C) are obtained. First, assuming that the spacings between nearest-neighbor pairs of defects 
are independent random variables, upper and lower bounds are obtained on cx.N(w, Q, C) which are 
independent of N. Provided that C is sufficiently small, the lower bound is positive. Second, Monte Carlo 
estimates of r:J..N(w, Q, C) are obtained in the cases Q = I, C = 0.1 and Q = I, C = 0.5, for arrays of 
3 x 10' defects. These Monte Carlo estimates are compared with the previously obtained bounds. It is 
also shown that at the special frequencies of Matsuda and for Q :2: Qcrlt, the limiting value of 
r:J..N(w, Q, C) is positive in the entire concentration range 0 < C < 1. Explicit upper and lower bounds 
are obtained on r:J.(sin (,../4), I, C). 

1. INTRODUCTION 
This paper is devoted to the study of the transmis

sion characteristics of a disordered array of isotopic 
defects substituted in an otherwise perfect one
dimensional harmonic crystal. The transmitted ampli
tude of a wave of frequency w incident on a segment of 

crystal containing N defects is shown to be the recipro
cal of the magnitude of an Nth-order determinant. 
The determinantal expression for the transmitted 
amplitude is investigated in the limit in which the 
number of defects in the disordered region approaches 
infinity while the over-all concentration of defects 
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where 16 IX sin hrfx 1 K(hx) = 24 27Tr dr -- dU(X2 - u2). (B6) 
7T x 0 hr r 

By a change of the variable of integration, 

When (B6) is substituted in (BS) and the order of the 

x and r integrations are interchanged, £2(h) can be 
written 

(BS) 

The two-dimensional characteristic function (Jo(r) 
will now be obtained. By use of an integral representa
tion23 for J1(x), K(hx) can be written in the form 

• s Reference 21, p. 26. 
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o hr 
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J 0 URN A L 0 F MAT HEM A TIC ALP H Y SIC S VOL U M E 9, N U M BE R 12 0 E C E M BE R 1 968 

Transmission Properties of an Isotopically Disordered 
One-Dimensional Harmonic Crystal 

ROBERT J. RUBIN 
National Bureau of Standards, Washington, D.C. 

(Received 1 March 1968) 

The amplitude bN(W) of a wave of frequency W which is transmitted by a disordered array of N 
isotopic defects in a one-dimensional crystal has been investigated in the limit in which N ->- 00 while the 
over-all concentration of the defects in the array remains fixed. The transmitted amplitude bN(W) is pro
portional to the reciprocal of the magnitude of an Nth-order determinant whose elements depend 
explicitly upon the spacings between defects, the incident frequency w, and the relative mass difference 
Q = (M - m)/m between the defect particles and the particles of the host crystal. "l>.N(w) is represented as 
exp [-Nr:J..N(w, Q, C)], where C is the over-all fractional concentration of defects; two types of estimates 
of r:J.N(W, Q, C) are obtained. First, assuming that the spacings between nearest-neighbor pairs of defects 
are independent random variables, upper and lower bounds are obtained on cx.N(w, Q, C) which are 
independent of N. Provided that C is sufficiently small, the lower bound is positive. Second, Monte Carlo 
estimates of r:J..N(w, Q, C) are obtained in the cases Q = I, C = 0.1 and Q = I, C = 0.5, for arrays of 
3 x 10' defects. These Monte Carlo estimates are compared with the previously obtained bounds. It is 
also shown that at the special frequencies of Matsuda and for Q :2: Qcrlt, the limiting value of 
r:J..N(w, Q, C) is positive in the entire concentration range 0 < C < 1. Explicit upper and lower bounds 
are obtained on r:J.(sin (,../4), I, C). 

1. INTRODUCTION 
This paper is devoted to the study of the transmis

sion characteristics of a disordered array of isotopic 
defects substituted in an otherwise perfect one
dimensional harmonic crystal. The transmitted ampli
tude of a wave of frequency w incident on a segment of 

crystal containing N defects is shown to be the recipro
cal of the magnitude of an Nth-order determinant. 
The determinantal expression for the transmitted 
amplitude is investigated in the limit in which the 
number of defects in the disordered region approaches 
infinity while the over-all concentration of defects 
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remains fixed. The nearest-neighbor spacings between 
defects are assumed to be independent, identically 
distributed random variables. Bounds are then ob
tained on the logarithm of the Nth root of the trans
mitted amplitude, a quantity which is the average 
attenuation of the incident wave per defect. In Sec. 7, 
Monte Carlo estimates of this attenuation constant 
are compared with the attenuation constant of an 
array of independently scattering defects. 

From an abstract point of view, the problem in
vestigated in this paper is equivalent to the one
dimensional problem of wave propagation in stochastic 
medial and to the problem of the transmission charac
teristics of statistically inhomogeneous waveguides.2- 4 

In all of these problems a functional equation for 
the transmission or reflection coefficient plays a central 
(ole. The functional equation is an "addition" law 
relating the coefficient for a combination of two 
inhomogeneities to the coefficients for the separate 
inhomogeneities. The functional equation for the 
reflection coefficient is well known in transmission
line theory and network theory.5-8 Bellman and 
Kalabal propose two different methods for investi
gating the properties of the reflection coefficient which 
are based on its "addition" law: The first is a Monte 
Carlo method; the second is a method based on the 
derivation of a functional equation for the distribution 
function of values of the reflection coefficient. Using 
essentially the second method, Gertsenshtein and 
Vasil'ev2•3 have given an elegant solution of the 
inhomogeneous waveguide problem in a Brownian
motion limit by assuming that the reflection coefficient 
of individual inhomogeneities is infinitesimal and that 
their number is infinite. In this paper, we obtain 
Monte Carlo estimates of the transmission coefficient 
of an isotopically disordered crystal and obtain con
ditions sufficient to ensure that the transmission coeffi
cient is an exponentially decreasing function of the 
number of defects. In a future publication we will 

1 R.Bellman and R. Kalaba in Electromagnetic Wave Propagation, 
M. Desirant and J. L. Michiels, Eds. (Academic Press Inc., New 
York, 1960), p. 243. 

• M. E. Gertsenshtein and V. B. Vasil'ev, Radiotekhn. i Elektron. 
4, 611 (1959) [English trans!.: Radio Eng. Electron. USSR 4, 74 
(1959)]. 

• M. E. Gertsenshtein and V. B. Vasil'ev, Teoriya Veroyatnostei 
Primeneniya 4, 424 (1959) [English trans!.: Theory Probability 
App!. USSR 4, 391 (1959)]. 

• F. I. Karpelevich, V. N. Tutubalin, and M. G. Shur, Teoriya 
Veroyatnostei Primeneniya 4, 432 (1959) [English trans!.: Theory 
Probability App!. USSR 4,399 (1959)]. 

• R. M. Redheffer, Technique of Microwave Measurements, 
C. G. Montgomery, Ed. (Massachusetts Institute of Technology 
Radiation Laboratory Series, McGraw-Hill Book Co., New York, 
1947), Vol. 11, Chap. 10. 

oR. M. Redheffer, J. Math. & Phys. 28, 237 (\950). 
7 R. Redheffer, J. Math. & Phys. 41, 1 (1962). 
8 N. G. Parke, J. Math. & Phys. 28, 131 (1949). 

treat the problem of deriving and numerically solving 
the functional equation for the distribution function 
of values of the transmitted amplitude. This functional 
equation is an analog of the functional equations 
obtained by Dyson,9 Schmidt,lO and Deanll in deter
mining the frequency distribution function of iso
topically disordered crystals. 

The problem treated in this paper is an example of 
a large class of problems concerned with multiple 
scattering by an array of elementary scatterers in one, 
two, and three dimensions. There is an enormous 
literature on this subject.12 Recently Kay and 
Silvermanl3 and Bazer14 have considered one-dimen
sional multiple-scattering problems which are similar 
to the one considered in this paper. In both investi
gationsl3.14 the Neumann series solution of the integral 
equation for the scattering problem plays a central 
role. Kay and Silvermanl3 noted that the radius of 
absolute convergence of their series for the trans
mission (or reflection) coefficient was proportional to 
N-l, the reciprocal of the number of elementary 
scatterers. In this paper, by dealing directly with the 
exact determinantal expression for the transmission 
coefficient, we are able to treat the limit N ...... 00. 

2. MODEL AND FORMAL SOLUTION 

We consider an infinite, one-dimensional harmonic 
crystal with nearest-neighbor interactions. The par
ticles are labeled consecutively by the index r, - 00 < 
r < 00; and all particles have the mass m, except for N 
isotopic defect particles at random lattice positions 
r = A j ,j = 1, ... , N. The mass of each of the defect 
particles is M. It is assumed that Al = 0, that all 
other defect particles lie to the right of r = 0, and that 
the subscriptj on Aj specifies the order of the defects, 
i.e., ° = Al < ... < Aj < ... < AN' The spacings 
between adjacent pairs of defects are assumed to be 
independent, identically distributed random variables. 
The nearest-neighbor force constant is assumed to be 
equal to f everywhere in the crystal. The transmission 
coefficient of the array of N defects is determined by 
solving the following initial-value problem: A semi
infinite wave of frequency OJ and unit amplitude IS 

• F. J. Dyson, Phys. Rev. 92, 133\ (1953). 
10 H. Schmidt, Phys. Rev. lOS, 425 (1957). 
11 P. Dean, Proc. Phys. Soc. 73, 413 (\959). 
12 We list several papers, which contain extensive bibliographies or 

compare classes of approximations: M. Lax, Rev. Mod. Phys. 23, 
287 (\95\) and Phys. Rev. 88, 621 (1952); V. Twersky, J. Res. Nat. 
Bur. Std. D64, 715 (1960) and D68, 500 (1964); J. B. Keller, Proc. 
Symp. Appl. Math. Am. Math. Soc. 13,227 (1960) and 16,145 (1964); 
u. Frisch, Ann. Astrophys. 29, 645 (1966) and 30, 565 (1967); P. 
Lloyd, Proc. Phys. Soc. (London) 91, 678 (1967). 

13 I. Kay and R. A. Silverman, Nuovo Cimento Suppl. 9, 626 
(1958). 

14 J. Bazer, J. Soc. Ind. Appl. Math. 12,539 (1964). 
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incident from the left on the array of defects; the 
asymptotic value (in time) of particle amplitudes to 
the right of the defect at AN is, by definition, the 
transmission coefficient of the array. 

In this section we obtain the exact formal solution 
to the foregoing time-dependent problem. The solu
tion could also be obtained by treating the time
independent problem and using the method of transfer 
matrices.5-8.1O.15 However, our method of solution 
of the time-dependent problem is a simple generaliza
tion of that used in a one-defect model16 and is also 
applicable to the analogous two- and three-dimensional 
transmission (scattering) problemsY The equations 
of motion of the one-dimensional crystal are 

(mr/m)xr/r, T) 

= Hx(r - 1, T) - 2x(r, T) + x(r + 1, T)], 

- w < r < 00, (1) 

where x(r, T) is the displacement of particle r from its 
equilibrium position and mr is the mass of the particle 
at lattice site r. In Eq. (1), T is a dimensionless time, 
T = 2U/m)!/, and each subscript T denotes differentia
tion with respect to T. The initial values of the particle 
positions and velocities corresponding to the initial 
condition in which a semi-infinite wave of frequency 
w moves from left to right with its front initially at 
lattice site - R < ° are the real parts of 

{
O, r> -R, 

x(r,O) = 'k where R >'0, 
e-' r, r ~ -R, 

{
O, 

xT(r,O) =. 'k lwe-' r, 

r> -R, 

r ~ -R. 

(2) 

The relation between frequency wand wavenumber 
k is the perfect lattice expression 

w = sin (k/2). (3) 

As a first step in obtaining the solution of (1) for 
the initial conditions (2), we determine the solution of 
(1) for the initial condition in which only particle n 
is in motion and all particles are at their equilibrium 
positions: 

x(r,O) = 0, all r, 

{
I, r=n, 

xT(r, 0) = 0, for n-:;6-A j ,j=I,···,N. 
r -:;6- n, 

(4) 

15 H. A. Kramers, Physica 2, 483 (1935); H. M. James, Phys. Rev. 
76, 1602 (1949); J. M. Luttinger, Philips Res. Rep. 6, 303 (1951); 
H. M. James and A. S. Ginzbarg, J. Phys. Chern. 57, 840 (1953); 
E. H. Kerner, Proc. Phys. Soc. (London) 69, 234 (1956); J. Hori and 
T. Asahi, Progr. Theoret. Phys. (Kyoto) 17,523 (1957); H. Matsuda, 
Progr. Theoret. Phys. (Kyoto) Suppl. 23, 22 (1962). 

16 R. J. Rubin, J. Math. Phys. 1, 309 (1960). 
17 Although the method of solution is applicable in the two- and 

three-dimensional problems, the formal result cannot be simplified 
significantly. 

Introduce the generating function 
00 

G(rp,T) = L x(r,T)ei 4>r with -TT ~ rp ~ TT, (5) 
T=-OO 

by multiplying the equation 'of motion for the rth 
particle, Eq. (1), by ei4>r and summing the entire set of 
equations with respect to r, one obtains the following 
second-order inhomogeneous differential equation: 

N 

GTrC rp, T) + Q! XTT(A j , T)ei<PA; 
j=1 

= -tel - cos rp)G(rp,T), (6) 

where Q = (M - m)/m. Now take the Laplace 
transform of Eq. (6) to obtain 

p2r( rp, P) - GT( rp, 0) - PG( rp, 0) 
N 

+ p 2Q L $(Aj, P)ei 4>A; 
1=1 

= -t(1 - cos rp)r(rp, P), (7) 
where 

r( rp, P) = Loo e-PTG( rp, T) dT, 

~(A, P) = Loo e-PTx(A, T) dT, 

and where, for the initial condition (4), 

and 
G(rp, 0) = ° 

GrC rp, 0) = ei 4>n. 

Solving Eq. (7) for r(rp, P), one obtains the following 
implicit equation for the N unknown quantities 
$(Aj,P): 

N 
ei4>n _ QP2 L ~(Aj, P)ei4>Ai 

r( rp, P) = j=1 
p 2 + t(1 - cos rp) 

(8) 

Multiplying Eq. (8) by the factor (2TT)-1e-i4>A
k and 

integrating with respect to rp between the limits -TT 
and TT, one can obtain N independent linear equations 
involving the unknown ~(Ak' P)'s: 

N 

~(Ak' P) + QP2 !,(A j - Ak , P)~(Aj' P) 

= ,en - Ak , P), k = 1, ... ,N, (9) 
where 

,(A, P) = 1- (" e
i
4>A drp 

2TT J-u p 2 + tel - cos rp) 
= p-1(p 2 + 1)-![p + (P 2 + l)!]-2 IAI. (10) 

The solution of Eqs. (9) is 

HA j , P) = p-1(p2 + l)-! DjJ'(P)/ DN(P), 

j = 1, ... ,N, (11) 
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where DJ$l(P) and DN(P) are N X N determinants. 
The denominator DN(P) is the determinant of the 
matrix of the coefficients of the $(Ak , P)'s in Eq. (9), 
which we denote by 

DN(P) = d(br,s + QP(P2 + 1)-*E2IA n
4

81), (12) 

where the argument of d( ) is the (r, s) element of the 
coefficient matrix, where E = [P + (P2 + 1)*]-1, and 
where br 8 is the Kronecker delta. The determinant 
DJ$l(P) is formed from DN(P) by replacing the jth 
column of DN(P) by the column vector 

Having obtained an explicit expression for $(A;, P), 
Eq. (11), we substitute it in Eq. (8) for r(¢, P) and 
then extract from r(¢, P) the following expression for 
$(S, P): 

$(S, P) = p-1(p2 + 1)-lE2In- s l 
N 

_ QP(P2 + l)-t'2, E2IA ;-sID}.P(P)/DN(P). 
j=l 

(13) 

In Appendix A it is shown that Eq. (13) can be greatly 
simplified. For example, when n < 0 and S> AN, 
one obtains 

$(S, P) = p-l(p2 + 1)-tE2(S+ln ll / DN(P), 

n < 0 and S > AN' (14) 

There is also some simplification of (13) in case 
particle S lies inside the array of defects, i.e., 
Al < S < ANand S ::;f A j ,j = 2, ... , N - 1 [see Eq. 
(AlO)]. The expression for $(S, P) in Eq. (14) is the 
Laplace transform of the position of particle S corre
sponding to the initial condition (4), in which each 
particle is at its equilibrium position and all particles 
are at rest except particle n. It can be shown in an 
identical way that the corresponding expression for 
~(S, P) in the case of the initial condition in which 
only particle n is displaced and all particles are at rest, 

( {
I, r=n and n::;fA j , j= 1,"',N, 

x r, 0) = 
0, r::;f n, 

xr(r, 0) =0, allr, (15) 

merely differs by a factor P from (14), namely, 

~(S, P) = (P2 + 1)-iE2(S+ln ll / DN(P), 

n < ° and S> AN' (16) 

From the results in (14) and (16), the Laplace 
transform of the displacement of particle S in the case 

iw 

-, 
l.. 

FIG, 1. Path of integration in the complex P plane and the semi
circular cut connecting +i, -i. 

of the semi-infinite incident wave (2) can be written as 

. + P E2S -R 
~(S, P) = W) -- '2, e-ikrE2lrl 

p(p2 + 1)* DJ\'(P) r=-a) 

iw + P (E2R+2S) ( e
ikR 

) 
= P(P2 + l)~ DN(P) 1 _ E2eik' (17) 

The amplitude of particle S at time T is determined 
from (17), 

xeS, T) = Re {_l_ f ePr iw + P 
27Ti Je P(P2 + 1)* 

(

E2R+2S) eikR } 

X DN(P) 1 _ E2eik dP, (18) 

where Re { } denotes the real part of the quantity in 
braces, and C, the path of integration, is parallel to 
and to the right of the imaginary P axis and is shown 
in Fig. 1. Except for poles on the imaginary P axis or in 
the left half-plane, the integrand in Eq. (18) is analytic 
off the semicircular cut connecting i and - i in Fig. 1. 
The poles on the imaginary P axis, which determine 
the asymptotic time behavior of the integral in (18), 
are of one or possibly two kinds. The important 
pole for the present problem arises from a zero of 
1 - E2eik at P = iw = i sin (k/2) and represents the 
persistent action of the incident wave. Other poles may 
be present on the imaginary P axis outside the interval 
(-i, i) in case the defects are light, i.e., M < m. 
These other poles, which are zeros of DN(P), corre
spond to the frequencies of localized modes. The 
number and position of these poles depends upon 
the number of defects, the details of the configuration 
of defects, and the value of the relative mass18 M < m. 
The contribution of this second type of pole to the 

18 M. D. Bacon, P. Dean, and J. L. Martin, Proc. Phys. Soc. 
(London) 80, 174 (1962). 
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asymptotic time behavior of xeS, T) can be made 
arbitrarily small by taking R sufficiently large (R is 
the number of lattice sites between the initial position 
of the wavefront and particle zero). The foregoing 
assertion is based on the fact that the localized-mode 
particle amplitudes must decrease exponentially with 
an increase in the distance from the region containing 
the defects because the localized-mode frequencies are 
greater than the maximum frequency which can be 
propagated in the host crystal. 

It can be verified that for the semicircular cut shown 
in Fig. I there is only one zero of 1 - E 2eik = 
(I - Eeik/2)(1 + Eeik/2) on the imaginary P axis, and 
that zero is a zero of 

ik/2 
1 - Eik/2 = 1 _ e = 0 (19) 

P + (P2 + l)t ' 

namely, 

P = i sin (k/2) = iw. (20) 

It follows from the above discussion that the asymp
totic time dependence of the contour integral in Eq. 
(18) is given by the residue of the integrand at P = iw: 

x [(d/dP)(1 _ Eeik/2)](l + Eik/2) P=iOJ 

,....., eiOJr-ikS/d(br.s + iQw(l - w2rte-ikIAr-A,I). (21) 

In obtaining Eq. (21), we have used Eqs. (12), (19), 
and (20). The reciprocal of the determinant in Eq. 
(21) can be written as bN(w)eiV'N, where 

'GN(w) = Id(OT.s + iQw(1 - w2)-te-ikIAr-Asl)I-I. (22) 

Thus we have 

Since the amplitude of the incident wave is one, we 
define b N( w) as the transmission coefficient of the 
array of N defects at the frequency w. The phase "PN 
is the phase shift of the array of defects. As M -+ m, 
Q -+ 0, and DN(iw) -+ 1 [see Eq. (12)]. Thus bN(w)-+ 
1 and "PN -+ O. 

Equation (22) is an explicit formal expression for the 
transmission coefficient bN( w). In Secs. 3 and 4 we 
obtain bounds on the limiting form of bjl,{W) as N 
approaches infinity in such a way that the fractional 

concentration of defects C = NjAN remains constant 
and there is no correlation in the spacings between 
defects. 

3. A GENERAL BOUND AND AN ESTIMATE 
FOR THE TRANSMISSION COEFFICIENT IN 

THE LIMIT C ->- 0 

The value of the transmission coefficient, Eq. (22). 
depends explicitly on the set of numbers {A j }, j = 
1, ...• N, which specifies the configuration of the 
array of defects. For periodic configurations of defects, 
bN(W) exhibits band structure which is characteristic 
of the infinite periodic array.19 Our principal problem 
is to estimate the value of bN(W) for a random 
configuration of defects. For this investigation we 
consider the following representation of the trans
mission coefficient 

bN(W) = exp [-N~N(W, Q. C)] 

and obtain estimates of the value of 

(23) 

~N(W, Q, C) = -N-Iln [bN(W)] (24) 

in the limit in which N -+ 00 and the over-all con
centration of defects remains fixed, i.e., N/AN = C. 
The quantity ~N(W, Q, C) is the attenuation of the 
incident wave per defect. On physical grounds, it is 
expected that when there is no correlation -"in the 
spacings between defects and when the average 
spacing is sufficiently large compared to the wave
length of the incident wave, then the attenuation per 
defect is equal to -In [bleW)], the attenuation of a 
single isolated defect. In the following, we verify this 
expectation and show that there is a range of con
centration 0 < C < C(w, Q) for which 

lim ~N(w, Q, C) = ~(w, Q, C) > 0, (25) 
N-oo 

N/AN=C 

provided only that the spacings between successive 
pairs of defects are statistically independent. Con
servation of energy insures that ~N(W, Q, C) ~ O. 
Therefore, the most significant aspect of the result 
stated in (25) is that the right-hand side is independent 
of N and strictly positive. It should be noted further 
that the limitation on the range of concentration is a 
sufficient condition which insures exponential attenua
tion. This sufficient condition is not the best possible. 

In order to obtain bounds on ~N(w, Q, C), we 
start with the following tridiagonal form of 

DN = d(bT•s + iQw(l - w2rteikIAr-A,I), 

19 In Appendix B it is shown that the asymptotic dependence of 
bN(W) on N for periodic configurations of defects is different de
pending upon whether the frequency of the incident wave lies in a 
band, in a band gap, or at a band edge of the periodic lattice. 
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which is obtained in Appendix A, Eq. (A3): 

-exp( -ka.i) 

-exp( -ka.i) 1 +i~+(l-i~)exp( -2ka.i) 

o 
-exp( -kaai) 

o 
o 

o 
o 
o o 

o 
-exp( -ka3i) 

o 
1 +i~+(l-i~)exp( -2kaai) 

o· .. •.. 0 

o 
-exp(-kaui) 

1 +i~+(l-i~)exp( -2kaui) 

(26) 

where f1 = Qw(l - w2)-i and an = An - A n- 1 • or 
Thus the determinant DN satisfies the two-term 
recurrence relation 

hN = _ 1f11 + (3hN_1 exp (ONi) , 
(3 + 1f11 hN- 1 exp (ONi) 

(32) 

DN = [1 + if1 + (1 - if1) exp (-2aNki)]DN- 1 

- exp ( - 2a.vki)DN_2' (27) 

with Do = 1 and D1 = 1 + if1. The sequence of 
determinants generated by the relation (27) leads to a 
sequence of values of the transmission coefficient. 
This connection has been used as a basis for obtaining 
Monte Carlo estimates of IX.v(w, Q, C); the results of 
some of these calculations are presented in Sec. 7. 

For our present purpose we obtain a more useful 
form of the recurrence equation (27) if we introduce 
the ratio 

(28) 

where 1 + if1 = (3e i4>. Then we can rewrite Eq. (27) as 

gN = [(3 + «(3 - gN-1) exp (-2aNki - 2cpi)]-1, (29) 

with g1 = (3-1. Equation (29) is an example of a 
linear fractional (or Mobius) transformation20 by 
which the complex number gN-1 is transformed into 
gN' Since the difference (3 - gN-1 appears explicitly 
in (29), it is convenient in discussing the properties of 
this transformation to introduce still another variable 
through the definition 

(30) 

In terms of hI!' Eq. (29) becomes21 

gN = [(3 + 1f11 hN- 1 exp (O.vi)]-1 (31) 

20 H. Schwerdtfeger, Geometry of Complex Numbers (The Univer
sity of Toronto Press, Toronto, Canada, 1962). 

21 In Sec. 4 it is shown that Ihnl is the amplitude of the wave 
reflected by an array of n defects. It should also be noted that the 
linear fractional transformation, Eq. (32), is an example of an 
"addition" law for the reflection coefficient of two inhomogeneities. 
See Refs. I, 5-8. 

where On = 1T - 2(aNk + cp). It is seen in Eq. (31) 
that the vector 1f11 hN - 1 is rotated through an angle ON' 
added to (3, and the resultant is reciprocated or 
inverted in the unit circle to produce the new vector 
gN = (3 + 1f1lhN. Various stages in the transformation 
are shown in Fig. 2. The set of values of ON, which 
corresponds to different spacings between the Nth and 
(N - l)th defects, results in a set of vectors 
(3 + 1f11 hN- 1 exp (iON) which all lie on the dashed 
circle K in Fig. 2. As the result of inversion, the circle 
K is transformed into the dotted circle K' on which the 
vectors (3 + 1f11 hN lie. Since the starting vector g1 = 
(3-1 = (3 - f12(3-1 lies inside the circle Ko whose center 
lies at (3 and whose radius is 1f11, and since Ko is its own 
inverse with respect to the unit circle20 C, all gn' n = 
2, ... , lie inside Ko. Consequently, the magnitude of 
every hn is less than unity. 

In terms of the gn's, the expression for the attenua
tion per defect is 

IXN(w, Q, C) = -N- In --' -- ... - . -1 (I DN- 1 DN- 2 D1 Do I) 
DN DN- 1 D2 D1 

N 

= _N-1 L In (lgnl)· (33) 
n=1 

Since the g n's are confined to the interior of the circle 

c 
FIG. 2. The complex g 

plane showing the unit circle 
C with its center at the origin 
and the circles K and Ko with 
their centers at 6 = 

R (l + ~2)~. The radius of Ko 
-+----2.0:;;;;;;o:::::irl-+~+f_ is I~I, and the angle SOR is 

</> = tan-1 (I~I). The three 
vectors OT, OT" and OT, are, 
respectively, 6 + hn-d~l, 6 
+ hn_, I~I exp (iOn), and 6 
+ I~I hn = [6 + hn_ll~lexp 
X (iQnWl. 
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Ko, we conclude that 

o ~ C1.N(W, Q, C) ~ In (0 + IAi). (34) 

The foregoing inequality is valid for any set of spacings 
of the defects, periodic or not. 

Expression for (XN(w, Q, C) in Case of Random 
Spacing between Defects 

In order to improve the bounds in (34) in the case 
where the spacings an are assumed to be independent, 
identically distributed, random integer variables, we 
substitute Eq. (31) in (33): 

C1.~w,Q, C) 
N 

= N-1ln 0 + N-1 L In (10 + IAI hn_ 1 exp (anOI). (35) 
n~2 

Subdivide the interior of Ko into small elements dan 
And group the terms of the sum in Eq. (35) according 
to the element of area dan in which 0 + IAI hn _ 1 lies. It 
is convenient to use a polar-coordinate representation 

h = reix 

for this purpose, where 0 ~ r < 1 and 0 ~ X < 21T. 
The indices on da'l then refer to r j and X! and the 
element ofareada j ; isrjdrjdXl' We denote by fhV)(j, l) 
the fraction of terms in (35) for which 0 + IAI hn_ 1 liesin 
da 'I' The group of terms which constitutes each 
fh~)(j, /) can be subdivided further a~cording to ~he 
fraction of this group of terms for whIch the spacmg 
has the value a. We assume that the spacings between 
defects are independent identically distributed, random 
integer variables with the probability distribution 
'ID(a). It follows from this assumption that, for suffi
ciently large N, the fraction of terms in (35) for 
which 0 + IAI hn- 1 lies in dan and for which the 
spacing parameter is a is fhV)(j, /) dajl'U)(a). Using 
fif)(j,l) dO'jl'ID(a), we replace Eq. (35) by the following 
approximate expression: 

00 

C1.N(W, Q, C) ""'-' L Lf~V)(j, l) dO'jl'ID(a) 

where 

and 

j,l a=l 

X In (10 + IAI h(j, I) exp [1Ti - 2(ak + cfo) i]J) , 
(36) 

Lf6N)(j, I) dajl = 1 
n 

00 

L'ID(a) = l. 
a=l 

In the following discussion, we assume that in the 
limit N --+ CIJ the weight functionfhV)(j, /) approaches 
a well-behaved limit feU, I). In particular, we assume 
that in the limit N = CIJ and as the subdivision of Ko 
is refined, the sum over j, I can be replaced by an 
integral over h (the interior of Ko). On this assumption 

Eq. (36) is an approximate version of the following 
exact expression for C1.(w, Q, C) = lim C1.N(W, Q, C): 

N-+oc 

C1.(W, Q, C) = II dh~/C<h)'ID(a) 
K. 

X In (10 + IAI h exp [1Ti - 2(ak + cfo)iJl), (37) 
where 

II dhfe(h) = 1. 

Ko 

Estimate of lim (X(W, Q, C) 
e-o 

We first consider Eq. (37) in the limiting case 
C = O. Two different forms of (37) are then appro
priate, depending upon whether k is an irrational or 
a rational fraction of 1T. In the limit C = 0, all values 
of the spacing a are equally probable; and if k is an 
irrational fraction of 1T, the sum over a in Eq. (37) 
can be replaced by an integra{22 over 0, the argument 
of the exponential function: 

00 

lim L'ID(a) In (10 + IAI h exp [1Ti - 2(ak + cfo)i]i) 
C--tO a~l 

= (21T)-ll2lT dO In (115 + IAI h exp (ia)!] 

= In b. (38) 

Substituting (38) in (37), we obtain 

lim C1.(w, Q, C) = In o. (39) 

This limiting value of C1.(w, Q, C) is identical with the 
attenuation coefficient of a single, isolated defect. 
The second modified form of Eq. (37) in the limiting 
case C = 0 arises if k = 1Tr/s, where rand s are 
relatively prime with r < s. Then the exponential in 
Eq. (37) assumes s values, each with the frequency 
rl. Consequently, in the limit C = 0, Eq. (37) 
becomes 

lim C1.[sin (1Tr/2s), Q, C] = ffdhfo(h) 
0-+0 

Ko 
s 

X S-1 L In (115 + IAI h exp [1Ti - 2( cfo + ar1T/s)ill) 
a~l 

or 

C1.[sin (1Trj2s), Q, 0] 

= II dhfo(h)s-lln (10' - (IAI he-24>i)SI). (40) 

K. 

The following upper and lower bounds on 

a[sin (1Tr/2s), Q, 0] 

22 G. Polya and G, Szego, Aufgaben und Lehrsiitze aus der Analysis 
(Springer-Verlag, Berlin, 1954), 2nd ed., Vol. I. pp. 70,71. 
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can be obtained from Eq. (40) by replacing the 
logarithmic term on the right-hand side by its largest 
and smallest values: 

s-11n (158 
- I~IS) ~ cx[sin (7TrI2s), Q, 0] 

~ s-11n (bS + I~IS), s 2: 2. (41) 

For s > 2, the lower bound in (41) is positive and is 
therefore an improvement on the general lower bound 
in Eq. (34). For s = 2, it should be noted that the 
minimum value of the logarithmic factor in the inte
grand of (40) is zero and is attained for only one value 
of h, namely, h = e2</Ji. Therefore, even in the case 
s = 2, the minimum value of (40) must be positive. 

4. THE DISTRIBUTION FUNCTION /dh) 

The foregoing estimate of the attenuation per 
defect in the limit C -+ 0 as well as the general 
expression for cx(w, Q, C) in Eq. (37) are obtained 
on the implicit assumption that fo(h), the limiting 
distribution of the gn's inside the circle Ko in Fig. 2, 
exists and that the sum on fJN)(j, /) dan in Eq. (36) 
approaches the integral over fdh) in Eq. (37). In this 
section we show that under conditions where 
IX(W, Q, C) > 0 the limiting distribution fo(h) is one
dimensional in the sense that fdh) is zero everywhere 
except on the circumference of Ko. Consider Eq. (32) 
and form the quantity 1 - Ihnl2 , where 0 S Ihnl < 1 
is the fraction of the distance of gn from the center of 
Ko. The expression for 1 - Ihnl2 can be written as 

1 - Ih n l
2 

= 115 + I~I h _ exp (in )1-2 
1 _ Ih 12 n 1 n n-1 

(42) 

Form the product 

Using the relation 1 - Ih112 = 15-2 = Ig11 2 , Eq. (43) 
simplifies to 

(44) 

Thus hN' which was introduced as an auxiliary variable 
in Eqs. (30)-(32), is directly related to the amplitude 
of the reflected wave. Equation (44) is simply a 
statement of the conservation of energy, i.e., the sum 
of the squares of the magnitudes of the transmitted 
and reflected waves is unity. It is clear in Eq. (44) 
that, if 'bMw) -+ 0 exponentially as N --+ 00, hx 
approaches the boundary of Ko exponentially in the 
same limit. Consequently, the limiting distribution 
of the gn's for the isotopically disordered lattice is 

nonzero only along the boundary of Ko, provided 
that cx(w, Q, C) > O. In Sec. 6 it will be shown that if 
the wavenumber k is a rational fraction of 7T and if Q 
is sufficiently large, then the limiting distribution of 
the gn's is nonzero only along that portion of the 
circumference of Ko lying inside the unit circle. Much 
stronger bounds can be obtained on the attenuation 
per defect in such a case. 

5. ESTIMATE OF rx(w, Q, C) FOR C > 0 

We now determine bounds23 on cx(w, Q, C) for 
C > O. In order to be explicit, we adopt the following 
form for the spacing distribution function: 

'\D(a) = C{l - C)a-l, a = 1,2, ... , (45) 

for which the average spacing is 
00 

(a) = C2 a(l - C)a-1 = C-1. 
a~1 

This mean spacing is consistent with the limit in 
which N -+ 00 while NIAN = C. The method which we 
use to obtain bounds on IX(W, Q, C) in Eq. (37) is 
based on the observation that in the case C = 0 and 
k = (rls)7T, the sum of s consecutive terms in (37) is 
positive for s > 2. Therefore, when C > 0 and k is 
expressed as k = [(rls) + E]7T with lEI < s-l, the sum 
of s consecutive terms will be positive for sufficiently 
small C and lEI for s > 2. The regrouped form for 
cx(w, Q, C) is 

cx(w, Q, C) = J J dhfcCh){C Jy - C)ns~p - C)a-1 

Ko 

x In (115 + I~I h exp {7Ti - 2a7T[(rls) + E]i 

- 27TnEi - 2c/>i}l)}. (46) 

We have already shown that the a sum in (46) is 
positive if E = C = O. Thus it is a straightforward 
matter to show that the a sum in (46) is positive for 
sufficiently small lEI and C. We denote the smallest 
value of the a sum by 

ls(w,Q, C) = min {~p - C)a-1 

X In (115 + I~I h exp {7Ti - 2a7T[(rls) + E] 

- 27TnEi - 2c/>i}J)}, (47) 

where the minimum is taken with respect to all values 
of h exp (-27Tnd) for fixed sand C. Similarly, we 
denote the maximum value of the a sum for fixed s 

23 Some of the results in this section were reported in R. J. Rubin, 
Bull. Am. Phys. Soc. (Series 11) 12, 117 (1967). 
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a 

w 

FIG. 3. The Q-w plane. The 
shaded area indicates those 
combinations of Q and 0> for 
which the lower bound in Eq. 
(49) is positive when C = 0.1, 
i.e., for which ;'(0), Q, 0.1) > O. 

and e by Ls(w, Q, e). In terms of liw, Q, e) and 
Ls(w, Q, C), we obtain the following bounds on 
("l(w, Q, C): 

el.(w, Q, C) < oc(w, Q, C) < CL.(w, Q, C) (48) 
1 - (1 - cy - - 1 - (1 - cy . 

The optimum values of I.(w, Q, C) and L.{w, Q, e) 
for use in the inequality (48) are obtained by direct 
evaluation of the minimum in Eq. (47) for liw, Q, e) 
and of the corresponding maximum for L.(w, Q, e). 
However, it should be noted that our representation 
of k by [(r/s) + E]rr, with lEI < S-l and r < s where 
rand s are relatively prime integers, is not unique. 
Therefore the best possible bounds in the inequality 
(48) are obtained by determining that value of s for 
which Cl.(w, Q, C)[l - (1 - C)81-1 is largest at a 
particular value of w (or k) and that value of s for 
which CL.(w, Q, C)[l - (1 - e)']-l is smallest. We 
denote these optimum bounds in (48) by J.(w, Q, C) 
and A(w, Q, e), respectively. Then the inequalities 
(48) and (34) can be combined in the single expression 

max {O, J.(w, Q, C)} ~ oc(w, Q, C) 

~ min {In (<5 + ILlI), A(w, Q, en. (49) 

In the limit C --+ 0 and E = 0, the inequality (49) 
reduces to the inequality (41) in which the lower bound 
is positive except at w = 2-!. For concentrations 
C > 0, the question arises as to when the lower bound 
in (49) is positive. A qualitative answer to this question 
is presented in a plot of the (w, Q) plane in Fig. 3. 
The shaded areas represent those points in the (w, Q) 
plane for which J.Cw, Q, 0.1) > O. It follows from the 
dependence of the expression for I.Cw, Q, C) on Ll in 
Eq. (47) that the shaded areas in the negative Q region 
are the mirror images of those in the positive Q region 
below the line Q = 1. In addition, the boundary curves 
ofthe shaded areas approach asymptotically the vertical 
lines through w = 0, 2-l , and 1 as Q --+ 00. As the con
centration decreases, the shaded areas expand subject 

to the above constraints so as to fill the entire figure. 
In the e = 0 limit, the wand Q axes are approached 
asymptotically. 

According to the above discussion, when Q = 1 
~nd c: ~ 0.1 the lower bound in the inequality (49) 
IS posItIve for all frequencies between A and Band 
between e and D. Consequently, in these frequency 
ranges the limiting value of -N-1In (1)N(W)] = 
ocN(W, Q, C) is positive and independent of N. The 
bounds in (49) have been evaluated explicitly for the 
case Q = 1 and e = 0.1. The results of these calcula
tions are presented in Fig. 5 along with Monte Carlo 
estimates of oc(w, 1,0.1) and will be discussed in Sec. 7. 
A slightly different way of summarizing the qualitative 
behavior of the lower bound in (49) is that for fixed Q 
and w oF ~-l there is a range of concentration 
o < C < C(w, Q) for which oc(w, Q, C) > O. The 
bounds implied in (49) are not the best possible and 
further improvement is desirable. We conjecture that 
for a random array of defects 

lim {-N-1 In [t).v(w)]} > 0 
N"'oo 

for any Q oF 0 and C < 1. 

6. THE TRANSMISSION COEFFICIENT IN THE 
CASE OF THE SPECIAL FREQUENCIES OF 

MATSUDA 

The existence of special frequencies of isotopically 
disordered harmonic crystals has been pointed out by 
Matsuda.24 He has shown that, for infinite disordered 
crystals containing finite concentrations of two iso
topes, the frequency w = sin (rrr/2s), where rand s are 
relatively prime, is not a normal-mode frequency of 
the crystal if 

Q ~ Qcrit(r, s), (50) 
where 

Qcrit(r, s) = cot (rr/2s) cot (rrr/2s). (51) 

In the context of our problem of determining the 
limiting value of the attenuation per defect of an 
isotopically disordered section of harmonic crystal, 
we have already seen in Sec. 5 that at frequencies of 
the form w = sin (rrr/2s), with s > 2, there is a finite 
range of concentration in which there is exponential 
attenuation of an incident wave. In this section we 
show that if Q satisfies the restriction Q > Q . (r s) _ ellt ' , 

then oc[sin Crrr/2s), Q, C1 > 0 in the entire concentra
tion range 0 < C < 1. The result that there is 
exponential attenuation for any value of the con
centration, provided that (50) is satisfied, is consistent 
with Matsuda's result that w = sin (rrr/2s) is not a 

so H. Matsuda, Progr. Theoret. Phys. (Kyoto) 31, 161 (1964). 
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FIG. 4. The complex g 
plane showing the unit circle 

/. C and the circle Ko in 
--+-.L+,;----h-----"'------.f-+,m-" the case 27Trl > 2(7T - 2</» 

I, A, when w = sin (7Tr/2s), and 
\ '" rls = i. 

B, 

Ii. , 
fE' 2 

normal-mode frequency of the infinite disordered 
crystal. 

Consider the transformation in Eq. (31), by which 
successive gn's are generated; and consider in Fig. 4 
the region of intersection AlBlAzBz between the unit 
circle and the circle Ko. Only S images of a point in 
region AlBlAzBz are generated by the rotation of 
/).h n- l when the spacing an ranges over all possible 
values, namely, 

tJ + /).h n- l exp [hr - 2(e/> + a1T/s)i], (52) 

for a = 1, ... , s. The point Al is at tJ + /).e irr ; and we 
denote the s images of Al by Aia' where a appears in 
the angle of rotation in (52). The point Ais' which is 
located at tJ + /).C-Zq,i is shown in Fig. 4. Since 1T - 2e/> 
is the angle subtended by region AlBlAzBz at the center 
of Ko, the image region Ais) Bis) A~s' B~s' is tangent to 
AlBlA2B2 at B2 • Moving clockwise around Ko from 
A (s'B(s'A(s' BI.,' the next image region is A (1) B(I' A (1) B(I). 
1122' 1 122 

If the angle of rotation 21T/S between successive image 
regions exceeds 2( 1T - 2e/», region Ail) Bil ) A~ll B~I) will 
not overlap A I B1A 2B2 • Thus, if 

21T/S ~ 2( 1T - 2e/», (53) 

all image regions lie outside the unit circle; and when 
the reciprocal in Eq. (31) is formed, every gn which 
is generated from agn- l which lies in AIBIA2Bz also lies 
inside AlBlA zB2. Since gl = tJ-l is inside AlBlAzB2 , 

all gn's lie inside A lBlAzB2, provided that condition 
(53) is satisfied. If the definition of e/> which was 
introduced in (28), 

e/> = tan-I/).= tan-l [Q tan (1Tr/2s)], 

is substituted in (53), the condition which is obtained 
is identical with Eqs. (50) and (51), the condition given 
by Matsuda for the existence of special frequencies. 
We now show that when the above condition is 
satisfied, the attenuation per defect cx[sin (1Tr/2s), Q, C] 
is positive for all C, 0 < C < 1. First recall that when 
gn is represented as tJ + /)'hn where 0 ~ Ihnl < 1, 
the magnitudes Ihnl and Ihn-ll satisfy Eq. (42), from 
which follows the inequality 

Ihnl2 > Ihn _ 1 12
• (54) 

Hence g n lies closer to the circumference of Ko in 
Fig. 4 than does gn-l' Consequently as N -+ oo,jo(h), 
the distribution function of the gn's inside Ko is zero, 
except in the neighborhood of the circumference of 
Ko between Bl and B2 • The expression for cx(w, Q, C) 
in Eq. (46) in the present case reduces to 

cx[sin (1Tr/2s), Q, C] 

= frr dX!o(X){C[1 - (1 - C)"]-laty - C)a-l 

X In (ltJ + /). exp [ix + 1Ti - 2(e/> + a1Tr/S)im}, 

(55) 

where 1dx) dX is the limiting fraction of g,,'s in the 
interval (X, X + dX) and h = eil.. The a sum in Eq. 
(55) is strictly positive because the argument of the 
logarithm corresponds to a partially transformed g 
which lies outside the unit circle. Therefore 

cx[sin (1Tr/2s), Q, C] > 0 for all C, 0 < C < 1. 

We now obtain explicit bounds on cx(sin (1T/4), 1, C). 
This is a simple case to treat and the procedure which 
we use can be adapted to other values of Q > 1 as 
well as other special frequencies. The expression for 
the attenuation per defect is 

cx(2-!, 1, C) 

= (srr/4d X!o(x){(_I_) In(I~2 + ei (x-rr/2'1) 
J3,,/4 2 - C 

+ G = ~) In (k/2 + eilX+,,/z'D}, (56) 

where /). = 1, tJ = /2, and e/> = 1T/4. The following 
bounds for cx(2-i , 1, C) can be obtained from Eq. (56) 
by replacing the term in braces by its minimum and 
maximum values: 

!(l - C) In 5 < cx(2-i, 1, C) 
22- C -

< 11n (_6_) + !(l - C) In (1 _ C). (57) 
_2 2-C 22-C 

Comparison of the zero-concentration limit of the 
bounds obtained in Eq. (57) with those obtained in 
Eq. (41) for this case (w = 2-!, s = 2, Q = 1) shows 
that the upper bounds are identical, but that the lower 
bound in Eg. (57), tin 5, is significantly larger than 
the lower bound in Eq. (41). Furthermore, the value of 
cx(w, 1,0+) for frequencies arbitrarily olose to w = 2-i 
is arbitrarily close to tin 2 according to Eqs. (38) 
and (41); and this value lies outside the range of pos
sible values obtained in (57). Thus we conclude that in 
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the zero-concentration limit IX(W, 1,0+) is a discon
tinuous function of frequency at the special frequency 
W = 2-i . 

7. MONTE CARLO CALCULATION OF 
rxN(w, Q, C) 

In this section we present some numerical results of 
the direct calculation of 

IXN(w, Q, C) = -N-Iln [bN(W)] 
N 

= -N-11 1n (Igni) (33) 
n=l 

for randomly generated configurations of defects. The 
gn's which appear on the right-hand side of Eq. (33) 
are formed recursively using Eq. (29): 

gn = [15 + (15 - gn-l) exp (-2anki - 24>i)]-1, 
n = 2, .. " (29) 

with gl = 15-1• The calculations were performed on a 
CDC 6600 at the Los Alamos Scientific Laboratory. 
The computing procedure requires the choosing of 
three parameters: an incident frequency W = sin (k/2), 
a reduced-mass ratio Q = (M/m) - 1, and a value of 
the concentration C. Then a sequence of random, 
integer values of the spacings an of the defects is 
generated in which each an has the frequency distrib~
tion C(l - c)an • As each value of\ an , n = 2, ... , IS 

generated, a value of gn is determined from Eq. (29) 
and a value of IXn(w, Q, C) from Eq. (33). The results 
of some of the calculations are presented in Figs. 5 
and 6 in the case Q = 1. The results in Fig. 5 corre
spond to the concentration C = 0.1 and those in Fig. 6 

w 
FIG. 5. Plot of the Monte Carlo estimates of the attenuatio~ 

constantrx(w, I, 0.1) based on arrays of defects consisting of3 X 10 
defects. The dots represent the values of rx3DDDD(W, I, 0.1). The solId 
curve is a plot of In 6, the attenuation constant for a single isolated 
defect. The dashed curves are a plot of the upper and nonzero lower 
bounds of the attenuation constant determined from Eq. (49) but 
with the restriction that s ~ 7. The bounds on rx(2-!, I, 0.1) obtained 
from Eq. (57) are indicated by the pair of open circles. 

1.2 

1.0 

.8 / 
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w 
FIG. 6. Plot of the Monte Carlo estimates of rx(w, I, 0.5) based on 

arrays of defects consisting of 3 X 10' defects. The dots represent 
the values of rx3DDDD(W, 1,0.5). The solid curve is a plot of In 6. The 
bounds on rx(2- t , 1,0.5) are indicated by a pair of open circles. 

to the concentration C = 0.5. Figure 5 presents cal
culated values of the attenuation constant IXN(W, 1,0.1) 
as a function of frequency for arrays of N = 3 X 104 

defects. Each computed value of lXaoooo(w, 1,0.1) 
corresponds to a different array of 3 x 104 defects. 
When values of lXaoooo(w, 1,0.1), for different arrays 
of defects but the same frequency w, are compared, 
there is no visible difference on the scale of Fig. 5. 
The solid curve plotted in Fig. 5 is In 15, the attenuation 
constant of a single, isolated defect. It is seen that 
this curve lies close to the computed values of 
lXaoooo(w, 1,0.1) over most of the frequency range. 
However, a striking anomaly in the values of 
lXaoooo(w, 1,0.1) can be seen in the vicinity of the 
special frequency W = sin (7T/4). This anomaly is the 
remnant of the discontinuity in 

lim lim IXN(w, 1, C) 
0--+0 N --+ 00 

in the vicinity of W = sin (7T/4) which was deduced in 
Sec. 6. The upper and lower bounds on IX(W, 1,0.1) 
obtained from Eq. (49) are indicated by the dashed 
curves in Fig. 5. The bounds on 1X(2-i , 1, 0.1) obtained 
from Eq. (57) are indicated by open circles. There is 
additional structure evident in the Monte Carlo esti
mates of IX(W, Q, C) in the vicinity of W ~ 0.8. 

Figure 6 presents calculated values of IXN(w, 1,0.5) 
for arrays of 3 x 104 defects. The solid curve is a plot 
of IXI = In 15. At this higher concentration, the com
puted values of lXaoooo(w, 1,0.5) are noticeably less 
than In 15 in the frequency range 0.2 < W < 0.66. 
There is a peak in the value of the attenuation constant 
in the vicinity of W = 2-i similar to the one found at 
the concentration C = 0.1. Compared to the sharp 
resonancelike peak in the plot of lXaoooo(w, 1,0.1) in 
the vicinity of W = 2-i , the present peak is much 
broader. This broadening is presumably due to an 
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interaction between groups of defects. The bounds on 
~(2-!, 1,0.5) from Eq. (57) are indicated by the open 
circles in Fig. 6. The analogs of the nonzero lower 
bounds at the other frequencies which are plotted in 
Fig. 5 cannot be obtained from Eq. (49). However, it 
appears from an examination of the Monte Carlo 
estimates of ~N(W, 1,0.5) as a function of N that 
~N(W, 1,0.5) > 0 and independent of N at all these 
frequencies. 

8. SUMMARY AND REMARKS 

The amplitude bN(w) of a wave of frequency W 

which is transmitted by a disordered array of N iso
topic defects in a one-dimensional crystal has been 
investigated. In particular, the limiting value 

a(w, Q, C) = lim {-N-1ln [bN(W)]} 
N->oo 

has been studied, where Q = (M/m) - 1 is the 
reduced mass difference between the defect and host 
particles, and where the spacings between successive 
defects are independent identically distributed integer 
random variables with the mean value C-l. 

There are two aspects of this investigation. First, 
it is established that the limiting value a(w, Q, C) 
satisfies the inequality 

max {O, A(w, Q, C)} ~ a(w, Q, C) 

~ min {A(w, Q, C), In (0 + IAI)}, (49) 

where 0 = (1 + A2)~, A = Qw(1 - (2)-! and where 
A(w, Q, C) and A(w, Q, C) are defined preceding Eq. 
(49) in Sec. 5. In addition, it is shown that the bounds 
in (49) can be considerably improved at the special 
frequencies of Matsuda provided that Q 2 Qcrit' 

where Qcrit is defined in Eq. (51). Second, Monte 
Carlo estimates of -N-lln [1J.",(w)] are obtained as 
a function of w for N = 3 X 104 in the cases Q = 1, 
C = 0.1 and Q = 1, C = 0.5. In the former case, 
these estimates are presented in Fig. 5 along with the 
values of the bounds obtained from Eq. (49). 

Finally, we list some remarks and some questions 
which have not been answered in this paper and which 
are of considerable interest in themselves. 

l+i.:l-i~exp(-2ka2i) -exp(-ka3i) 

- exp( - ka3i) 1 + i~ + (t - iA)exp( - 2ka3 i) 

o -exp(-ka.i) 

o 0 

0·· . 

(1) In establishing bounds on aNew, Q, C), we 
have not considered the question of how the values of 
aNew, Q, C) are distributed, as a function of N, 
between the bounds. The analysis in this paper is 
based on the representation of aNew, Q, C) as the 
average of a sum of N terms 

N 

aNew, Q, C) = -N-1.L In (Igni), 
n~l 

where the gn's are recursively related complex numbers 
confined to the interior of the circle Ko in Fig. 2. The 
linear fractional transformation of gn-l to gn is a 
random transformation depending upon the inde
pendent random variable an' In general, a sequence 
of two successive transformations do not commute. 

(2) It follows from Sec. 4 that IAI (1 - Ihnl), the 
distance of g n from the circle Ko, satisfies the inequality 

0< IAI (1 - IhnD ~ IAI b~(W). 

When the limiting value 

a(w, Q, C) = - lim {N-1ln [bN(W)]} 
i.V~CO 

is positive, so that b.V(W) -+ 0 and gn approaches the 
boundary circle Ko, an interesting question still 
remains as to the form of the limiting distribution 
of the gn's along the circumference of Ko. A functional 
equation for the approximately one-dimensional g 
distribution can be derived by a method analogous to 
that used by Dyson,9 Schmidt,lO and DeanY Approxi
mate solutions of the functional equation will be com
pared with the distribution of the g n's obtained in our 
Monte Carlo calculations in a separate paper. In this 
connection it should be noted that 'C;N(W), the ratio of 
the amplitude of the Nth defect to the amplitude of 
the first defect, can be obtained by using Eq. (A9) 
and the appropriate modification of the integrand in 
Eq. (18). The result, which is almost identical to the 
expression for b2\'(W), is 

1;;v(w) = IDNI-I, 
where DN is the following (N - l)th-order tri
diagonal determinant: 

'" 0 

-exp( -ka.i) 

•.. 0 

... -exp( -kaNi) 

o 
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The only difference between DN and the determinant 
in the definition of the transmitted amplitude bN(W) 
is in their starting values: 

Do = 1 and DI = 1 + if}. - if}. exp (-2ka2i), 
rather than 

Do = 1 and DI = 1 + if}.. 
Otherwise, DN and DN and iN = e</>iDN_1/DN and 
gn satisfy the same recurrence equations. Since the 
starting value il lies on the circle Ko, all in's lie on 
Ko, so that the i distribution function is exactly one
dimensional. In investigating the limiting transmission 
properties of a disordered array of defects, one can 
expect that there is no significant difference between 
Cl(W, Q, C) and 

&(w, Q, C) = - lim {N-1ln rGN(W)J}, 
N--+oo 

and consequently that the limiting gn and in distribu
tions should be identical. 

(3) It should be emphasized that the bounds in Eq. 
(49) are not the best possible ones. For example, 
these bounds are independent of the algebraic sign of 
Q for JQJ < 1. However, Monto Carlo estimates of 
Cl(W, JQJ, C) and Cl(W, -JQJ, C), while consistent 
with these bounds, are significantly different from 
each other. 

(4) From a physical point of view, there is a 
similarity between the two limiting cases C -+ 0 and 
1 - C -+ O. In the first case, the region containing 
the defect particles consists of widely spaced defect 
particles in a background of host particles. In the 
second case, the region containing the defects consists 
of widely spaced host particles in a background of 
defect particles. This similarity or symmetry in the 
two limits is not evident in the determinantal expres
sion for bN( w). Nevertheless, it is worthwhile to 
demonstrate its existence explicitly in the dependence 
of ClN(W, Q, C) on C. 

(5) Although we have only treated the transmission 
problem for a single type of isotopic defect, the analy
sis can be carried through when there are several 
types of isotopes. The result for the transmitted 
amplitude, which is a simple generalization of Eq. 

(22), is 

bN(w) = Jd[br,s + iQrw(l - W2)-! 
X exp (-ik JAr - AsJ)]J-I, 

where Q, = (M,lm) - 1 and M, is the mass of the 
rth defect located at lattice position A,. This deter
minant can also be written in a tridiagonal form. 

(6) We have not developed explicitly the connection 
between the present work and recent investigations 
of the localized nature of eigenmodes in disordered 
systems. 25 
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APPENDIX A: REDUCTION OF FORMULA 
~(S, P) IN EQ. (13) 

The expression for the response of particle S to 
the initial disturbance (4) at particle n when n ¥= A j' 
j = 1, ... ,N is given in Eq. (13): 

~(S, P) = p-\p2 + 1)-!E2In- s l 

X (DN - E-2In-S1JIE2IAI-SIDW) / DN , 

(AI) 

where E = [P + (P2 + l)!]-l, DN denotes the deter
minant d(b"s + QP(P2 + 1)-!£2IAr -

A.I], and Djp is 
the determinant formed from DN by replacing the 
jth column of DN by the column vector 

{yE2In-All, yE2In-A.I, ... , yE2In- ANI} 

with y = QP(P2 + l)-!. There is a major simplifica
tion in the expression for ~(S, P) in Eq. (AI) when 
n < 0 and S> AN: the expression in braces is equal 
to unity. To show this, transform the determinant 

1 + y yE2(A2-Al) yE2(A3-A 1 ) yE 2(Al>--Al) 

yE2(A.-Al) 1 + y yE 2(A3-A.) yE 2(AN-A.) 

d(br.s + yE2IAr-
A.I) = 

yE2(Aa-Al) yE 2(Aa-A.) l+y yE 2(AN-Aa) 
(A2) 

yE2(AN-A 1 ) yE2(AN-A.) yE2(AN-Aa) 1 + y 

.6 N. F. Mott and W. D. Twose, Advan. Phys. 10, 137 (1961); A. P. Roberts and R. E. B. Makinson, Proc. Phys. Soc. (London) 79, 
630 (1962); R. E. Borland, Proc. Roy. Soc_ (London) 274,529 (1963); N. F. Mott, Advan. Phys. 16,49 (1967); J. Hori and S. Minami, 
Proceedings of International Conference on Localized Excitations in Solids, University of California, Irvine, 1967 (Plenum Press, Inc., New 
York, 1968), p. 611. 
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by means of the following operations: (1) Multiply the rth row by E2(Ar+1-Ar ) and subtract from the r + lth 
row; (2) then repeat this procedure for the rth and r + 1 th columns. If these operations are performed 
in the order r = N - 1, N - 2, ... , 1, the determinant d(br s + yE2IAr-A81) assumes the continuant or 
tridiagonal form 

l+y -E2I.<1 2-.<I,) 0 0 0 

-E2lA 2-.<I,) 1 +y+(1_y)E4I.<12-.<I,) -E2IA 3-.<I 2) 0 

0 -E2IA3-.<I 2) 1 +y+(1_y)E4I.<1a-A2) _E2I.<1.-A3) 0 

d(Or •• +yE2IAr-A8 )) = 0 0 -E21A.-Aa) ••• 
(A3) 

0" . 

Next consider the determinant Djp and carry out the 
same pair of operations (1) and (2) in the order r = 
N - 1, ... ,j + 1. Then perform operation (1) for 
r = j. At this stage, the jth column has the form 
{yE2(A,-A ,l, ... ,yE2(A;_,-A;), y, 0,'" ,O}, and the 
(j + I)th through the Nth elements of the first column 
through the (j - 1 )th column are all zero. Finally, per-

o 

0·· . ···0 

where N - j is the order of the reduced determinant 
tN _; and N - j > 1. In the cases N - j = 1 and 
N - j = 0, we have 11 = 1 + y - yE4<AN-AN-') and 
to = 1. 

The term in braces in Eq. (AI) has thus been 
transformed to 

N 

{ } = DN - y 2: tN-i' (AS) 
j=1 

Now consider the difference DN - ytN- I • It is a 
simple matter to show that 

(A6) 

where DN- 1 is an (N - I)th order determinant 
identical in form with DN but with all reference to the 
defect at Al missing. As a result Eq. (AS) becomes 

N 

{ } = DN_1 - y2:tN-;' (A7) 
;=2 

Equation (A 7) now refers to the defects 2 through N. 

form the following set of operations: multiply column 
j by E2(A;-Ar) and subtract from the rth column for 
r = 1, ... ,j - 1. The diagonal elements of the first 
j - 1 columns are all equal to one, the diagonal ele
ment of column j is y, and all elements of these 
columns below the diagonal are zero. Consequently 
the determinant DW is reduced to tridiagonal form 

o o 

, (A4) 

o 

The foregoing reduction can be repeated N - 2 more 
times and 

{ } = Dl - yto = 1. 

Therefore the expression for the response ;(8, P) at 
particle 8> AN to the initial disturbance (4) at 
particle n < ° is 

;(S, P) = P-\p2 + 1)-iE2(s+ln pjDN . (A8) 

The response at defect A; to the initial disturbance 
(4) for n < ° is 

;(A;, P) = p-1(p2 + 1)-iE2(Ai+lnPtN_;jDN' (A9) 

In a similar fashion, it can be shown that the response 
at 8 to the initial disturbance (4) is 

~(S, P) = p-\p2 + 1)-iE2(s+ln p 

x {D . - y ~ E4(Ak-S)t }/D N-, "" N-k N 
k=J+l 

(AIO) 
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ifn < 0 and Ai < S < Ai+1; and 

~(S, P) = p-1(p2 + 1)-!E2 <1 n l+18P 

x {DN - Y Jl E4CAk+18PtN_k}/ DN (All) 

if n < 0 and S < o. 

APPENDIX B: TRANSMISSION COEFFICIENT 
OF A PERIODIC ARRAY OF DEFECTS 

The transmission coefficient of an array of N 
defects is expressed in terms of the magnitude of the 
determinant DN in Eq. (26). This determinant is a 
continuant and satisfies the two-term recurrence 

relation (27): 

DN = [1 + it::.. + (l - it::..) exp (-2kaNi)]DN_1 

- exp (-2kaNi)DN_2 , (Bl) 

with Do = 1 and Dl = 1 + it::... In this appendix, we 
derive an explicit expression for DN for the case of a 
periodic array of defects in which all nearest-neighbor 
spacings of defects are the same, ak == Ak - A k- 1 = 
a, k = 2, ... , N. In this case the difference equation 
(Bl) can be solved by introducing the generating 
function ::fez) = !~=o Dnzn. Multiplying the equation 
for Dn by zn and summing with respect to n, one 
obtains an algebraic equation for ::fez) which, when 
solved, yields 

::f(z) = _____ -"--1 _--,z(,-I_-_it::..--,),-e_x~p--,-(_-_2_k.:.-al-,-")----:-___ _ 
1 - [1 + it::.. + (1 - it::..) exp (-2kai)]z + Z2 exp (-2kai) 

(B2) 

The coefficient of zn in the expansion of (B2) is 

Dn = [Un(x) - (1 - it::..) exp (-kai) Un- 1 (x)] 

x exp (nkai), (B3) 

where U,,(x) = sin [en + l)1'J]/sin 1'J is a Tchebycheff 
polynomial, 1'J = cos-1 x, and 

x = HI + it::..) exp (kai) + t(I - it::..) exp (-kai) 

is real. If Ixl < 1, the two Tchebycheff polynomials in 
braces in (B3) are oscillatory functions of the order. 
However, when Ixl > 1, these polynomials grow 
exponentially with N. We illustrate this behavior 
by considering the periodic array in which a = 2. 
When t::.. = Qw(I - (2)-! and exp (ik/2) = iw + 
(1 - (2)! are substituted in the expression for x, it 
can be reduced to 

x = 8(Q + I)w4 
- 4(Q + 2)w2 + 1. (B4) 

At the transition values x = ± 1, the relations 
obtained between Q and ware 

W2 = (2 + Q)/2(I + Q) = HI + mM-l) 
and 

(B5) 

The frequencies in (B5) define the boundaries between 
frequency intervals where DN is either an oscillatory 
or exponentially growing function of N. These three 
frequencies correspond to the upper edge of the 
acoustical branch and the two edges of the optical 
branch of a diatomic lattice. When the defects are 
heavy, mM-l < 1 and all critical frequencies are less 
than unity. It can be readily verified that the frequen
cies outside the band correspond to values of Ixl > 1, 
and hence to exponentially decreasing values of the 
transmission coefficient. When the defects are light, 
either the frequency of the upper or the frequencies 
of the upper and lower edges of the optical band are 
"inaccessible." They are "inaccessible" in the sense 
that these frequencies exceed unity and hence cannot 
be propagated in the host crystal. 

At the critical frequencies, the transmission coeffi
cient exhibits a transitional behavior. For example, at 
w = 2-! or k = n/2, Eq. (B3) for DN reduces to 

DN = 1 + NQi, 

where the relation UN ( -1) = (-I)N(N + 1) has been 
used. In this case the transmission coefficient is 

bN(2-!) = (1 + N2Q2)-!. 
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The theory of electro-optical effects developed in previous papers is applied to the study of the reflec
tion-refraction of an electromagnetic wave at the interface between two isotropic centrosymmetric 
materials to which a static electric field is applied. The theory is developed initially for an arbitrary angle 
of incidence and arbitrary direction of the static field. Detailed implications are obtained in the case when 
the static field is norma1 to the interface and when it is parallel to the interface and in the plane formed by 
the normal to the interface and the direction of propagation. 

1. INTRODUCTION 

The theory of the propagation of electromagnetic 
waves in the presence of static electric and magnetic 
induction fields was formulated by Toupin and 
Rivlin. 1 They considered materials which are isotropic 
and centrosymmetric (i.e., holohedral isotropic) in the 
absence of any fields and assumed that the constitutive 
equations are linear with respect to the electro
magnetic fields, but not necessarily so with respect to 
the static fields. This theory provides a basis for the 
study of electro-optical effects, if the impressed static 
magnetic induction field is taken as zero. In Paper I 
of this series,2 we have discussed the refraction
reflection problem for a plane electromagnetic wave 
incident normally from free space on the plane 
interface between free space and a half-space occupied 
by a centrosymmetric isotropic material to which a 
static electric field in an arbitrary direction is applied. 
It was found that, in general, there are two refracted 
rays and their directions are not normal to the interface. 

In this paper, we again discuss the refraction
reflection problem. We consider the somewhat more 
general case of a plane interface between two material 
half-spaces to which uniform static electric fields of 
arbitrary direction are applied. Both materials are 
considered to be centrosymmetric isotropic in the 
absence of applied fields. The case of refraction
reflection at a plane interface between free space and a 
material half-space results as a special case. AlSo, the 
analysis of this paper is broader than that of the 
previous paper, 2 in that arbitrary directions of 
incidence of the wave are considered. 

In Sec. 2, the basic equations of the theory are set 
down and developed with the degree of generality 
required for the present analysis. 

1 R. A. Toupin and R. S. Rivlin, Arch. Ratl. Mech. Anal. 7 
434 (1961). ' 

2 M. M. Carroll and R. S. Rivlin, J. Math. Phys. 8,2088 (1967). 

In Sec. 3, the refraction-reflection problem is 
considered for arbitrary direction of incidence and 
arbitrary direction of the static field. 

For a specified direction of the forward-drawn 
normal to the wavefront of the incident wave, there 
are generally two possible waves which have different 
velocities. Each of these is, in general, elliptically 
polarized both as regards its electric and magnetic 
vectors. In the case when the direction of the static 
field lies in the plane formed by the normal to the 
interface and the direction of propagation, one of 
these waves becomes a wave with its electric vector 
polarized linearly in a direction normal to this plane 
and its magnetic vector elliptically polarized. We call 
such a wave transverse and, in the more general case 
when its electric vector is not linearly polarized, we 
call it a wave of the first kind. The other wave becomes 
a wave with its magnetic vector linearly polarized in a 
direction normal to the interface and the direction 
of wave propagation and, its electric vector elliptically 
polarized. We call such a wave planar, and in the more 
general case when the magnetic vector is not linearly 
polarized, we call it a wave of the second kind. 

In Sec. 3 we assume that corresponding to an 
incident wave which is either of the first or second kind 
there are, in general, two reflected waves and two 
transmitted waves. (This assumption is proven under 
restricted conditions later in the paper.) One of the 
reflected waves is of the first kind and the other is of 
the second kind, and one of the transmitted waves 
is of the first kind and the other is of the second kind. 
Equations are obtained for the calculation of the 
electromagnetic fields associated with these waves. 

In Secs. 4 and 5 these equations are solved for the 
cases when the static electric field is normal to the 
interface and when it is parallel to the interface and in 
the plane formed by the direction of propagation of 
the incident wave and the normal to the interface. 

2267 



                                                                                                                                    

2268 M. M. CARROLL AND R. S. RIVLIN 

In these cases waves of the first kind become transverse 
waves and those of the second kind become planar 
waves. 

In each case results are obtained for transverse and 
planar incident waves. It is found that in these cases 
there is only one reflected wave and one refracted 
wave and these are transverse or planar accordingly as 
the incident wave is transverse or planar. 

In Secs. 6 and 7 we discuss the ray directions of the 
waves (determined by their Poynting vectors) for each 
of the cases discussed in Secs. 4 and 5. The procedure 
is to calculate the components of the Poynting vector 
for an electromagnetic wave (transverse or planar) 
in the incident material, the electromagnetic field 
for which is specified as regards its dependence on 
position in any plane parallel to the interface. In each 

.case it is found that there are two ray directions. One 
of these corresponds to the incident wave and the other 
to the reflected wave, provided that their components 
normal to the interface have opposite signs. In the 
case when the static electric field is parallel to the 
interface, as described in Sec. 5, this is found to be 
the case quite generally, and the angle of reflection is 
found to be equal to the angle of incidence. On the 
other hand, when the static electric field is normal to 
the interface, the angle of reflection is not, in general, 
equal to the angle of incidence. It is, however, equal, 
when the material is nondissipative. The inequality 
between the angles of incidence and reflection thus 
appears to be associated with the existence in the 
material of a dissipation mechanism and one would 
presumably look for this effect at a wavelength lying 
in an absorption band for the material. 

In Sec. 7 we calculate the relations between the 
angles of incidence, refraction, and reflection explicitly 
in the cases when the material carrying the refracted 
wave is replaced by free space and when the material 
carrying the incident wave is replaced by free space. 

are planes normal to the direction '1)-. In the case 
when E, B, H, and D are constant on a wavefront, '1) 

takes the form 

'1) = '1]8, (2.2) 

where 8 is the unit normal to the wavefront, 'I] is the 
complex slowness, and '1) the complex vector slowness. 

Introducing (2.1) into Maxwell's equations, we 
obtain 

'1) x e - b = 0 and '1) x h + d = O. (2.3) 

We consider the propagation of the wave (2.1) in a 
centro symmetric isotropic material to which a static 
electric field t is applied. It has been shown1.2 that the 
constitutive equations relating d and h with e and b 
are 

d = cit • e + 'I' . b, h = n . e + 1\ • b, (2.4) 

where cit, '1', n, and 1\ are 3 x 3 matrices defined in a 
rectangular Cartesian system x by 

lPij = oc1bij + oc7EiEj, 

Aij = PI bij + P7Eif,j, 

'F i; = - OC3€i;kf,k , 

n ij = - {J2€ijkEk , 

(2.5a) 

(2.5b) 

(2.5c) 

(2.5d) 

where4 f,i are the components of t in the system x. In 
(2.5), the oc's and {J's are functions of tro and E2, where 
we employ the notation E2 = t . t. 

It is easily seen from (2.3) and (2.4) that e satisfies 
the equation 

(2.6) 

where 

Xi; = IP;; + (€;rs'Fir'l]s + €ipqnqj'l]p) 

+ €ipq€;rsAqr'l]p?}s· (2.7) 
From (2.6) we have 

!Xij! = O. (2.8) 

From (2.3)1 and (2.4)2 we readily obtain 

2. BASIC EQUATIONS hi = (Q ik + Ai;€jPk'l]p)e
k

• (2.9) 

We consider the propagation of a plane electro- Introducing (2.5) into (2.7), we have 
magnetic wave of angular frequency ro, in which the 
complex electric, magnetic induction, magnetic inten- Xi; = PEiE; + Q'I]i'l]; + R'I]iE; 

sity, and electric displacement fields E, B, H, D may + SEt?}; + Tb ii , (2.10) 
vary over the wavefront in the manner expressed by where 

(E, B, H, D) = (e, b, h, d)e""(Yl'x-t>, (2.1) 

where e, b, b, d, and '1) are complex vectors independ
ent of x and t. We note that the surfaces of constant 
phase (the wavefronts) are planes normal to the 
direction3 '1)+ and the surfaces of constant amplitude 

• We denote the real and imaginary parts of a complex quantity 
by using the superscripts + and -, respectively. 

P = OC7 + (J7'1) • '1), Q = {Jl + {J7 E2 , 

R = OCa - (J7t • '1), S = {J2 - (J7t • '1), (2.11) 

T = OC1 - (oca + (J2)t. '1) 

+ {J7(f, • '1))2 - ({Jl + P7f,2)'1) • '1). 

4 Throughout this paper we will use an analogous notation for the 
components in the system x of other vectors occurring in the 
theory. 
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Introducing (2.10) into (2.8) we obtain 

€i;iPbibl + Qr!i1')1 + R1')ibl + Sbi1')1 + Tt5i1) 

X (Pb;b2 + Q1');1')2 + R1');b2 + Sb;1')2 + Tt5;2) 

x (Pbkb3 + Q1')k1')3 + R1')kb3 + Sbk1')3 + Tt5k3) = O. 

(2.12) 

Carrying out the multiplication on the left-hand side 
it is seen that (2.12) may be rewritten as 

T[T2 + T{Pb2 + QY} • "I} + (R + S)t • "I)} 

+ (PQ - RS){b2("I) • "I}) - (t • "I))2}] = O. (2.13) 

Equation (2.13) yields 

(2. 14a) 

or 

T2 + T{PE2 + Q"I} • "I} + (R + S)t . "I)} 

+ (PQ - RS){b2("I) • "I}) - (t. "I))2} = O. (2. 14b) 

From (2.11) it is seen that (2.14a) is an equation of 
second degree in "I}. Also, with (2.11), it can be seen 
that in (2.14b) the coefficients of the terms of fourth 
and third degrees in "I} are zero, so that (2.14b) is also 
of second degree in "I}. 

Introducing (2.11) into (2.14), we obtain 

({Jl + {J7b2)"I} • "I) - {J7(t . "I})2 

+ (~3 + {J2)t'"I) - ~1 = 0 (2.15a) 

or 

(~I{Jl + ~3{J262)"I) • "I} + (~7{Jl - ~3{J2)(& • "I})2 

+ (~1 + ~7E2)[(~3 + {J2)t'"I) - ~1] = O. (2.15b) 

Introducing (2.5) into (2.9), we obtain 

hi = €;Pk[({J2bp + {Jl1')p)t5 i ; + {J76ib;1')p]ek. (2.16) 

Results having essentially the same physical signifi
cance as those obtained above can be derived through 
a slightly different path. We show in the Appendix 
that the constitutive equations (2.4) can be inverted 
to give 

e = 4» • d + qt . h, b = Q . d + .l\. • h, (2.17) 

where eft, qt, Q, and .l\. are 3 x 3 matrices defined in 
the system x by [cf. Eqs. (8.7) and (8.9)]: 

<D i ; = iil t5 i ; + ii7bib;, '¥i; = -ii3€i;kbk' 

Ai; = /31t5 i ; + /37bib;, Qi; = - /32€i;kbk , (2.18) 

and the ii's and /3's are functions of 62 and tW related 
to the ~'s and j3's by (8.8) and (8.10). 

From (2.3) and (2.17), we readily show that h 
satisfies the equation 

(2.19) 

where 

Xi; = Ai; - (€;rsQir1')s + €iPq'¥q;1')p) 

+ €ipq€;rs<Dqr1')p1')s. (2.20) 

We now have, from (2.19), 

IXi;1 = O. (2.21) 

From (2.17a) and (2.3b), we obtain 

ei = ('¥ik - €p;k<Dip1');)hk . (2.22) 

Introducing the expressions (2.18) into (2.20), we 
obtain 

Xii = P6i6; + Q1')i1'); + R1')ib; 

+ S6i1')i + tt5ii , (2.23) 
where 

P = /37 + ii7"1} '"1}, Q == iiI + ii7b2 , 

R = -/32 - ii7t'"I}, S = -ii3 - ii7t'"I}, 
(2.24) t = /31 + (ii3 + /32)t • "I) 

+ ii7(t. "I})2 ~ (iiI + iiP)"I) • "I}. 

U sing this expression for Xi;, it can be shown in a 
manner similar to that used to derive (2.15) that Eq. 
(2.21) consists of two sheets given by 

(iiI + ii7b2)"I) • "I} - ii7(t • "I})2 

- (ii3 + /32)t • "I) - /31 = 0 (2.25a) 
and 

(iil/31 + ii3/32b2)"I) • "I} + (iil/37 - ii3/32)(t. "I})2 

- (/31 + /3P)[(ii3 + /32)t. "I) + /3d = O. (2.25b) 

Using relations (A.8) and (A.10) to substitute for the 
ii's and /3's in terms of the IX'S and (J's, it is quite easy 
to show that Eq. (2.25a) is the same as (2.l5b) and 
(2.25b) is the same as (2.15a). 

From (2.18) and (2.22), we obtain 

ei = €iPk[(ii3bp - iil1')p)t5ii - ii76i6;1')p]hk• (2.26) 

In this paper we shall be largely concerned with the 
case when the direction of the static field & is per
pendicular to the line of intersection of the planes of 
constant phase and constant amplitude. Then, we 
may choose the coordinate system x so that the X 2 

direction is in the direction of this line of intersection 
and the vector & is in the X 1X 3 plane. We may then 
write 

bi = 61t5i1 + b3t5 i3 and, 1')i = 1')l t5il + 1')3t5i3' 

(2.27) 

Introducing (2.27) into (2.10), we see that 

X12 = X21 = X23 = X32 = 0, X22 = T, 
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and 

XllXaa - XlaX31 = T2 

+ T{pe2 + QY) • Y) + (R + S)t . Y)} + (PQ - RS) 

x {e2(Y) • Y) - (t· Y)2}. (2.28) 

Introducing (2.28) into (2.6), we obtain 

Xllel + X13ea = 0, 

X22e2 = 0, (2.29) 

Xalel + Xaaea = 0, 

while from (2.28) and (2.14), we have either 

X22 = ° (2.30a) 
or 

XllXaa - XlaXal = 0. (2.30b) 

We see from (2.29) and (2.30) that for the waves 
corresponding to values of Y) satisfying (2.30a), 
el = ea = ° and consequently they are polarized with 
their electric vectors parallel to the X 2 direction. We 
call such waves transverse waves. On the other hand, 
for the waves corresponding to values of Y) given by 
(2.30b), e2 = 0. Their electric vectors are therefore, 
in general, elliptically polarized in the XIX a plane. 
We shall call these waves planar waves. It can be shown 
that the magnetic vectors h for these waves are polar
ized in the X2 direction, while for the transverse waves 
they are elliptically polarized in the X 1X a plane. 

When the static field t is not perpendicular to the 
line of intersection of the planes of constant phase 
and of constant amplitude, the vectors e and h for the 
waves corresponding to values of Y) satisfying (2.15) 
are, in general, elliptically polarized. We shall refer 
to the waves for which Y) satisfies (2.15a) as .waves 
of the first kind and those for which Y) satisfies (2.l5b) 
as waves of the second kind. 

3. REFLECTION-REFRACTION OF 
A PLANE WAVE 

We consider the reflection and refraction of a 
plane electromagnetic wave at the plane boundary 
Xa = 0, in a rectangular Cartesian coordinate system x, 

between two centrosymmetric isotropic media occupy
ing the half-spaces Xa < ° and Xa > 0, respectively, 
to which a strong static electric field is applied. Let us 
suppose that the static electric field and associated 
electric displacement field are t and ~, respectively, 
for Xa < 0, and & and ~, respectively, for xa > 0. 
Since the tangential component of the electric field 
and the normal component of the electric displacement 
field are continuous at the interface Xa = 0, we have 

eo: = Bo: (~ = 1,2) and ~a = 15a , when Xa = 0. 
(3.1) 

We suppose that the electromagnetic wave is inci
dent on Xa = ° from the region Xa < ° and the 
complex electromagnetic fields E, B, H, D associated 
with the incident wave are given, at the point x and 
time t, by 

(E, B, H, D) = (e, b, h, d)e".<)(.,rx- tl , (3.2) 

where e, b, h, and d are constant complex vectors. 
We assume that there are P reflected waves in the 

region Xa < ° and Q refracted waves in the region 
Xa > O. Let 

E(A), B(A), H(A), D(A) and EW), B(B), ii(B), fi(B) 

be the complex electromagnetic fields associated with 
these waves in Xa < ° and Xa > 0, respectively. Then, 
we may write these in the forms 

(E(A), B(A), H(A), D(A») 

= (e(A), b(A), h(A), d(A»e""(1)(A)·x-tl 

and (3.3) 
(E(B), B(B), iiW), fi(B» 

= (e(B) 6(B) ii(B) (j(B»etW(Tj(B).x-t> , " , 
where 

e(A), b(A), h(A), d(A) and e(B), (jwl, ii(B), (j(B) 

are constant complex vectors. 
Since the tangential components of the electric and 

magnetic intensity fields and the normal components 
of the electric displacement and magnetic induction 
fields, at the interface Xa = 0, are continuous, we have 

P Q 
E + ~ E(A) = ~ E(B) 

~ ~ IX ~ IX , 
A~l B~l 

l' Q 
H + ~ H(A) = ~ HW) 

IX ~ a k a , 
A~l B~l 

P Q (3.4) 
D3 + I D~A) = L NB), 

A~l B~l 

P Q 
B3 + I B~AJ = L B~B), 

A~l B~l 

where5 the E's, B's, H's, and D's in (3.4) are given by 
(3.2) and (3.3) with Xa = 0. Since these relations are 
valid for all Xl and X 2 , it follows that 

1]~A) = 1]. and iJ~B) = 1]0:' (3.5) 

We then obtain, from (3.2)-(3.5), 

P Q 
e + ~ e(A) = ~ e (B) 

IX 4. IX £"17' (3.6a) 
A~l B~l 

P Q 

ho: + L h~A) = L h~B) (3.6b) 
A~l B~l 

5 We employ the convention that Greek subscripts take the values 
1,2. 
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and 
P Q 

da+ ~ d~A) = ~ d~El, (3.7a) 
A=l B=l 
P Q 

ba + ~ b~A) = ~ b~El. (3.7b) 
A=l B=l 

The incident wave and each reflected and trans
mitted wave satisfies Maxwell's equations. Thus, 
from (2.3), we have 

ba = 'YJ1 e2 - 'YJ2e1' 

da = -('YJ1h2 - 'YJ2h1), 

bCA) _ 'l1 CA )eCA ) _ 'l1 CA )e CA ) 
a - '/1 2 '/2 l' 

d~A) = _('YJiA)h~A) _ 'YJ~A)h~A», 

b-CEl _ ij(Ele-W) _ ijW)e-(El 
a - '/1 2 '/2 1 , 

d~El = -(i;iElh~El - i;iE>hiEl). 

(3.8) 

It is evident, from (3.8) and (3.5), that the conditions 
(3.6) imply the conditions (3.7). 

For the region Xa < 0, the constitutive equations 
are given by (2.4) and for the region Xa > 0, we adopt 
the constitutive equations 

aCEl = cI> • e(E> + 'I' .6W ), 

iiW ) = n . eW ) + X. 6W ), (3.9) 

where cI>, '1', n, and l\. are defined by relations 
similar to (2.5) with the oc's, f3's, and & replaced by 
~'s, ~'s, and t, respectively. 

For each of the reflected waves, an equation 
analogous to (2.6) is applicable. Thus, we have 

where 

(A) <I> ('Y (A) Xij = ij + E jrs ir'YJs 

A (A) (A) + EipqEjrs qr'YJ p 'YJs . 

Again, for the transmitted waves, we have 

iW)ejEl = 0 (B = 1,' . " Q), 

where iW) is defined by 

-(El - - -(El - -(El 
Xij = <l>ij + (Ejrs"lf"ir'YJs + EipqfJqj'YJp ) 

+ -A -(El -(El 
EipqEjrs qr'YJ 1J 'YJs . 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

Equation (3.10) enables us to determine the ratios 
between the components of erA) (A = 1, ... , P), and 
Eq. (3.12) enables us to determine those for 

eW ) (B = 1, ... , Q). 

We may therefore write 

erA) = A(A)E(A), e(E> = XCElE(El, (3.14) 

where E(A) and E(B) are considered determined from 
(3.10) and (3.12). 

Also, a relation of the type (2.16) must apply to the 
incident wave and to each of the reflected and trans
mitted waves. We have, therefore, with (3.14) and 
the notation en = AEn , 

hi = Ejkn[(f32Ek + f31'YJk)15ij + f37 EiEj'YJk] AEn, 

h~A) = Ejkn[(f32Ek + P1'YJ<,:»/Jii + f37EiEj'YJ~A)]A(A)E~), 
h;El = Ejkn[(~2ek + ~li;~El)15ij + ~7eJ;ji;~El]X(ElE;.s). 

(3.15) 

We make the assumption that there are two 
reflected waves and two transmitted waves, i.e., 
P = Q = 2. Then, introducing (3.15) into (3.6b), 
we obtain 

E jkn {[(f32Ek + f31'YJk)15aj + f37EaEj'YJk] AEn 
2 

+ ~ [(f32Ek + f31'YJ~A»15aj + f37t:aEj'YJ~A)]A(A)E~A) 
A=l 

2 

- ~ [(~28k + ~li;~El)/Jaj + ~7e)~ji;~El]XW)E~El} = O. 
B=l 

(3.16) 

Also introducing (3.14) into (3.6a), we obtain 

(3.17) 

Equations (3.16) and (3.17), with oc = 1,2, provide 
four equations which can be used to determine the 
four quantities A(A) (A = 1,2) and A(El (B = 1,2) in 
terms of A, provided that the values of 'YJk' '/}kA), and 
i;kE> are known. These can be determined in the 
following manner. 

In the interests of explicitness, we shall consider an 
incident wave in which the surfaces of constant field at 
fixed time are planes normal to the Xa axis. This 
requires, from (3.2), that 'YJl and 'YJ2 be real. It follows 
from (3.5) that 'YJiA) , 'YJ~A) and i;1B), i;~B) are all real. 

For the material occupying the region X3 < 0, the 
relation (2.lSa) between the components of YI for 
waves of the first kind may be rewritten as an equation 
for 'YJa if 'YJ1 and 'YJ2 are known; viz., 

[(f31 + f37 E2) - f37 Ei]'YJ; + [Coca + f32) - 2f3l;a'YJa]e3'YJ3 

+ {[(f31 + f37 E2)15ap - f37EaEP]'YJa'YJP 

+ (oc3 + f32)ea'YJa - OC1} = O. (3.18) 

The corresponding equation for waves of the 
second kind in the region X3 < 0, equation (2.2Sa), 
may similarly be rewritten as 

[(~1 + ~P) - ~7e:]'YJ: - [(~a + fI2) + 2iX7Ea'YJa]E3'YJ3 

+ {[(~1 + ~7e2)15aP - ~7EaEp]'YJa'YJp 

- (~3 + fI2)f.a'YJa - fI1} = O. (3.19) 
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The corresponding equations for waves of the first 
and second kinds in the region Xa > ° may be written 
by analogy with (3.18) and (3.19), respectively, by 
replacing the IX'S, f3's, and [;'s by <i's, (J's, and e's 
and the ii's and /J's by quantities defined in terms of the 
<i's and (J's in precisely the same way as the ii's and 
/J's are defined in terms of the IX'S and f3's. 

Suppose 'YJl and 'YJ2 are given values appropriate to 
the incident wave. Then (3.18) has two solutions for 
'YJa. We shall assume that the Poynting vector corre
sponding to one of these solutions has its 3-component 
in the positive direction of the Xa axis, while that 
corresponding to the other solution has its 3-compo
nent in the negative direction. Again, for specified 
values of 'YJl and 'YJ2' Eq. (3.19) yields two solutions 
for 'YJa. We shall assume that the 3-component of the 
Poynting vector corresponding to one of these is in the 
positive direction of the Xa axis, while that corre
sponding to the other solution is in the negative 
direction. We make precisely similar assumptions 
regarding the solutions of the corresponding equations 
for waves of the first and second kinds in the material 
occupying the region Xa > 0. These assumptions, 
which lead to P = Q = 2, are proven in Secs. 6 and 7 
for the case when the material is nondissipative and 
stable and the static field [; is normal to the interface, 
or in the direction of the Xl axis. 

If the incident wave is of the first kind, then the 
value of 'YJ3 appropriate to the incident wave is the so
lution of (3.18) for which the 3-component of the 
Poynting vector is positive. The values of 'YJ~I) and 'YJ~2) 
appropriate to the reflected waves are the solutions of 
(3.18) and (3.19) for which the 3-components of the 
Poynting vectors are negative. The values of ij~l) 
and ij~2) appropriate to the transmitted waves are the 
solutions of the equations corresponding to (3.18) 
and (3.19) for the material occupying Xa > 0, for 
which the 3-components of the Poynting vectors are 
positive. 

If the incident wave is of the second kind, the value 
of 'YJa appropriate to it is the solution of (3.19) for 
which the 3-component of the Poynting vector is 
positive, while the values appropriate to the two 
reflected and two transmitted waves remain the same 
as in the case when the incident wave is of the first 
kind. 

In Secs. 4 and 5 we carry out in detail the analyses 
indicated in this section, for the cases when [; is 
normal to the interface (i.e., parallel to xa) and when it 
is parallel to Xl' In both cases, the direction of 
propagation is in the XlXa plane. For these cases the 
waves of the first kind become transverse waves and 
those of the second kind become planar waves. 

4. STATIC FIELD NORMAL TO INTERFACE 

We choose the rectangular Cartesian system X so 
that the Xa axis is normal to the interface between the 
two media, as in Sec. 3, the direction of propagation 
lies in the xlxa plane, and the planes of constant 
amplitude are parallel to the interface. The static 
field [; is taken normal to the interface. Then we have 

'YJi = 'YJlbil + 'YJabia, [;i = [;0ia· (4.1) 

Introducing (4.1) into (2.10) and (2.11) and using 
the resulting expression for Xij in (2.6), we obtain 

{(lXlbij + 1X7[;20iabja) + [;['YJl(lXabilb ja + f32 biabjl) 

- 'YJa(lXa + (32)(bij - b;aoja)] + [f3l{'YJ~(bilOjl - 0ij) 

+ 'YJ:(oiabja - bij) + 'YJl'YJa(oilbja + biab ji)} 

- f37[;2'YJ:bi2bj2]}ej = 0. (4.2) 

Equation (4.2) may be written as the three equations 

[IXI - (lXa + (32)[;'YJa - f3l'YJ:]el + 'YJl(lXa[; + f31'YJa)ea ~ 0, 
(4.3a) 

[IXI - (lXa + (32)[;'YJa - {f3l('YJ~ + 17:) + f37l;2'YJD]e2 = 0, 
(4.3b) 

17l(f32[; + f3l'YJa)e l + (IXI + 1X7[;2 - f3l'YJ~)ea = 0. 

(4.3c) 

Introducing (4.1) into (3.18) and (3.19), we see 
that for the transverse waves (waves of the first kind) 
'YJa is given in terms of 'YJI by6 

f3l'YJ; + (lXa + (32)[;'YJa + (f3l + f37[;2)'YJ~ - 1X1 = 0, (4.4) 

and for the planar waves (waves of the second kind) 
by 

iil'YJi - (iia + /J2)[;'YJa + (iiI + ii7[;2)'YJ~ - /Jl = 0. (4.5) 

It is evident from the discussion of transverse waves 
at the end of Sec. 2 that, for them, we may take 

E j = (0, 1,0). (4.6) 

Similarly, from the discussion of planar waves, we 
may take, for them, 

(4.7) 

where, from (4.3c), 

Ea ea -=-= - (4.8) 2 2 • 
El el IXI + 1X7[; - f31'YJl 

Analogous results apply to the waves in the material 
occupying the region Xa > 0. 

• These results may also be obtained directly from (4.3) by 
equating its discriminant to zero and, in the case of Eq. (4.5), using 
(8.8) and (8.10). 
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We can now write Eq. (3.16) as 

2 

({J2f, + {J!'YJa)E:2A + I ({J2f, + (Jl1J~A»E:~A) A (A) 
A=l 

[({J2f, + {J1'YJa)E:1 - {Jl'YJlE:a]A 
2 

+ I [({J26 + (JI1J~A»EiA) - (Jl'YJi"-)E:~A)]A(A) 
A=l 

2 

= I [(Pi, + Plij~B»i~B) - P1ij~B)i~B)]~(B). (4.9) 
B=l 

We have also Eqs. (3.17), viz., 

2 2 
Ell. + I E:1A)A(A) = I ilB)~(B), 

A=1 B=1 

2 2 

E:2A + I E~A) A (A) = I i~B)~ (B). (4.10) 
A=1 B=1 

We have seen in Sec. 3 that one of the reflected 
waves is transverse and one is planar. We will take 
these to be given by A = 1 and 2, respectively. Then, 

(1) (1) 0 (1) 1 d (2) 0 (411) El = E:a = , E2 = , an E2 =. . 
Similarly, one of the transmitted waves is transverse 
and one is planar. We take these to be given by B = 1 
and 2, respectively. Then, 

.(1) _ -(1) _ 0 .(1) - 1 and -(2) - 0 (4 12) E:l - lOa - , E2 - , E2 -. . 

We now consider separately the cases when the 
incident wave is transverse and when it is planar. 

A. Incident Wave Transverse 

In this case 
(4.13) 

Introducing (4.11), (4.12), and (4.13) into (4.9) and 
(4.10), we obtain 

({Jl, + {Jl1Ja)A + ({Jl, + (J1n~1»A(l) 

= (P2~ + Plij~l»A(1), (4. 14a) 

[({J26 + (Jln~2»Ei2) - (J11Ji2)E~2)]A(2) 

= [(P2t; + Plij~2»ii2) - Pliji2)i~2)]~(2) (4. 14b) 
and 

Ei2)A(2) = ii2)~(2), 

1.+ 1.(1) = ;:(1). 

(4.15a) 

(4.15b) 

From (4.14a) and (4.15b), we obtain 
- - - (1) 

A(l) = _ ({J2f, + (JlnS) - ({J2f, + (J1iia ) A 

({J2f, + (Jl'YJ~1» - (p/> + Plij~1» 
and 

~n) = _ (J1('YJa - 1J~1) A 
({J2f, + (J11J~1» - (P2f, + P1ij~1» . (4.18) 

B. Incident Wave Planar 

In this case 
(4.19) 

Introducing (4.11), (4.12), and (4.19) into (4.9) and 
(4.10), we obtain 

({Jl, + (Jln~l)A(I) = (Pi, + Plij~I»X(I), (4.20a) 

[({J2f, + {J1'fJa)EI - {Jl'fJlE:a]A 

+ [({J26 + (J11J~2»Ei2) - (J11Ji2)E:~2)JA(2) 

= [(Pi; + Plij~2»i~2) - P1iji2)i~2)]~(2) (4.20b) 
and 

Ell. + Ei2)A (2) = ii2)~(2), 

A. (1) = X(1). 
(4.21a) 

(4.21b) 

From (4.8) and analogous relations for the other 
planar waves, we can rewrite (4.20b) as 

( CI.. + (X 62) (1. E A + _1_ E(2) A (2») 
1 7 3 (2) a 

fJI 'fJ1 
_ (- + - t;2) _1_ -(21'i'<2) 
- Cl..l Cl.. 7 -(2) Ea /I. • 

'YJI 

From (4.20a) and (4.21b), we obtain 

AU) = ~(1) = 0, 
unless 

(4.22) 

(4.23) 

From (4.14b) and (4.15a), we obtain 

1.(2) = ~(2) = 0, 
where ES/El' E~2)/E:i2), and i~2)/ii2) are given by expres

(4.16) sions of the type (4.8). 
unless 

ii2)[({J26 + fJlfJ~2»Ei2) - (JI'fJi2)E:~2)] 

= Ei2)[(P2& +Plija(2»ii2) - Pliji2)i~2)]. (4.17) 

5. STATIC FIELD IN Xl DIRECTION 

We again choose the rectangular Cartesian reference 
system x so that the Xa axis is normal to the interface 



                                                                                                                                    

2274 M. M. CARROLL AND R. S. RIVLIN 

between the two media and we take the static field & We have also Eqs. (3.17), viz., 
parallel to the Xl direction. We take the direction of 
propagation to lie in the x1xa plane and the planes 
Xa = const to be planes of constant amplitude. Then, 

'fJi = 'fJlOil + 'fJaOia and 6i = 60i1. (S.I) 

Introducing (S.l) into (2.10) and (2.11) and using 
the resulting expression for Xi; in (2.6), we obtain 

{( 1X1 01; + 1X7620il 0 j1) + 6[ 'fJa( lXaOiaO;l + P20il 0 ;a) 

- 'fJl(1X3 + PZ)(Oi; - 0i10jl)] + [Pl{1)~(OilOil - 0ij) 

+ 'fJi(OiaOja - 0i;) + 'fJl'fJ3(Oia0j1 + 0i10;3)} 

(S.2) 

Equation (S.2) may be written as the three equations 

(IXI + IXP - Pl'fJi)el + 'fJaCP26 + /3l'fJl)ea = 0, 
(S.3a) 

[IXI - (1X3 + (2)&'fJl - {/3l('fJ~ + 'fJ~) + P762'fJi}Je2 = 0, 
(S.3b) 

'fJ3(1X36 + PlrJl)e1 + (IXI - (1X3 + (2)brJl - PlrJ~]e3 = 0. 
(S.3c) 

Introducing (S.I) into (3.18) and (3.19), we see 
that for the transverse waves rJa is given in terms of rJI 
by 

(PI + Pl})'fJi + Pl'fJ; + (lXa + (2)6'fJl - 1X1 = ° (S.4) 

and for the planar waves by 

(iiI + ii7~?)'fJi + iil'fJ; - (iia + P2)6'fJl - PI = 0. (S.S) 

It is again evident, as in Sec. 4, that for the trans
verse waves we may take 

Ej = (0, 1,0) (S.6) 

and for the planar waves 

E; = (EU 0, E3), 

where, from (S.3a), 

E3 IXI + 1X7t? - PlrJi 
- =-
El 'fJa(P26 + Pl'fJl) 

From (S.1) and (3.16), we obtain 
2 

(PI + P7&2)rJ3E2A + I (PI + PP)1)~A) e~A) A (A) 
A=l 

2 

(S.7) 

(S.8) 

= I (PI + Pl,z)ij~B>E~B>J,.(B), (S.9a) 
B=l 

2 

+ I [f3l'fJ~A)EiA) - (f3zf; + f3l'fJiA»E~A)]A(A) 
A=l 

2 

= I [Plij~B>EiB) - (Pi, + filijiB»E~B)]J,.(B). (S.9b) 
R=l 

2 2 
ElA + I EiA);'<A) = I iiB)X(B), (5. lOa) 

A=l B=l 
2 ·2 

E2A + I E~A)A(A) = I i~B>X(B). (S.10b) 
A=l B=I 

Again, we adopt the notation of Sec. 4 to distinguish 
the transverse and planar reflected and transmitted 
waves. This implies (4.11) and (4.12). 

A. Incident Wave Transverse 

In this case 
(5.11) 

and we obtain, from (S.9b), (5. lOa), (4.11), and (4.12), 
the result that 

A(2) = X(2), (S.12) 
unless 

ii2)[PI'fJ~2) Ei2) - (P26 + PIrJi2»E~2)J 
= E~2)[Pl1j~2)Ei2) - (P2~ + PIiji2»i~2)]. (S.13) 

Equations (S.9a) and (S.lOb) then yield 

(PI + (762)(rJ3A + rJ~l)A(1) = (PI + Pl,2)ij~l)X(1) 
and (5.14) 
Whence 

2 - - -2 (1) 
il) __ A (PI +P76 )rJa - (PI + P76 )ij3 

- (PI + (762)1}~1) - (PI + P762)ij~1) , 
X(1) = -J. (PI + P7&2)('fJa - 1}1

1
» 

(PI + PP)1}11
) - (PI + P762)ij1l

) 

(S.lS) 

B. Incident Wave Planar 

In this case 
(5.16) 

and it follows from (S.9a), (S.10b), (4.11), and (4.12), 
that (S.17) 
unless 

(PI + (762)1}11) = (PI + Pl,2)ij1l ). (S.18) 
Equations (S.9b) and (S.lOa) then yield 

[PlrJaEl - (P26 + Pl1}1)E3]A 
+ [Pl1}~2)Ei2) - (P2[, + Pl1}i2»E~2)]A (2) 

= [Plij~2)ii2) - (Pl, + Pliji2»E~2)]J,.(2) (S.19a) 
and 

(S.19b) 

Employing (S.8) and analogous equations for the 
reflected and transmitted waves, we can rewrite 
(5.19a) as 

( 
1 e(Z)1(2») 

2 El"l. 1 /i. 
(IXI + 1X76) - + -(-2)-

1}a 173 
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Then, from (S.20) and (S.19b), we obtain 

,;:;(2)( + N <'2) '11 (N + N «2) . '11
3
(2) A(2)E"(2) = -AE" ·,3 !Xl "-7(> - ·,3 "'"1 ""7(> " 

1 1 ij~2)(!Xl + !X7&2) - 1]~2)(iXl + iXP) 1]3 

~(2) _(2) A (!Xl + !X7&2)( 1]~2) - 1]3) . ij~2) 
" €l = - €1 -(2) 2 (2) _ - 2 

1]3 (!Xl + !X7& ) - 1]3 (!Xl + !X7&) 1]3 

(S.21) 
6. RAY DIRECTIONS 

The ray direction for the propagation of a wave with 
electromagnetic field given by (2.1) is in the direction 
of the vector obtained from the Poynting vector by 
averaging it over a cycle. The averaged Poynting 
vector S is given by 

S =!!!... [21T/"'[(6 + E+) x H+] dt. 
27T Jo (6.1) 

As explained in Sec. 3, we shall consider waves for 
which 1]1 = 'rJ"2 = O. Since we are concerned only with 
the direction of the Poynting vectors associated with 
the various waves and not with their magnitudes, we 
shall calculate them at the interface X3 = O. Then, 
from (2.1) and (6.1), we have 

S = t(e+ x h+ + e- x h-). (6.2) 

For waves which are polarized with either their 
e or h vectors in a fixed direction, we may, without 
loss of generality and with considerable simplification 
of the analysis, take e or h to be real. In either case, 
Eq. (6.2) becomes 

(6.3) 

We consider separately the case when e is taken real 
and that when h is taken real. 

If e is real, we have from (2.16) 

hi = €ikn[(112&k + I1l1]k)15ii + 117&i&i1]k]+en · (6.4) 

Introducing this into (6.3), we obtain 

Sp = lEpqr€ ikn[(112&k + I1l1]k)15rj + 117&r&j1]k]+ eneq. 

(6.S) 
If h is real, we have from (2.26): 

ei = E"jknWi3&k - a.l1]k)15ij - a.7&i&j1]k]+h n . (6.6) 

Introducing this into (6.3), we obtain 

Sp = -1E"pqr€jkn[(a.3&k - a.11]k)15ri - a.7&r&j1]kthnhq. 

(6.7) 

We now consider the cases discussed in Secs. 4 and S 
when the electric field is in the X3 and Xl directions, 
respectively, the direction of wave propagation lying 
in the X 1X 3 plane. In each case we consider separately 
the transverse and planar waves. The main object of 
the analysis is to relate the directions of the reflected 

and transmitted waves to that of the incident wave. 
However, the calculations in this section are pre
liminary and these relations are derived from them in 
Sec. 7. 

A. Static Field Parallel to the X3 Direction 

For the transverse waves, we introduce the relations 
into (6.S): 

&i = &15i3, 1]i = 1]l15i1 + 1]315ia, ei = e215i2' (6.8) 

We obtain 

Sp = H(111 + 117&2)'rJ115P1 

+ (112& + 1111]3)15lla]+(e2)2. (6.9) 

The planar waves are polarized with their h vectors 
in the X2 direction. We have therefore, instead of (6.8), 
the relations 

&i = Mia, 1]i = 1]115i1 + 1]a15ia, hi = h215i2' (6.10) 

Introducing (6.10) into (6.7), we obtain, for the planar 
waves, 

Sp = H(a.1 + a.7&2)1]l15lll 

- (a.a& - a.11]a)15pa]+(h2)2. (6.11) 

We have seen in Sec. 4 that if 1]1 is specified for the 
transverse waves, then the two possible values of 1]a 
are given by Eq. (4.4) and if 1]1 is specified for the 
planar waves, the two possible values of 1]a are given 
by Eq. (4.S). 

Equation (4.4) yields 

1]3 = (1/2I1l)[-(!X3 + 112)& ± Btl, (6.12) 
where 

B = (!X3 + 112)2f} - 4Pl[(Pl + 117&2)1]~ - IXd. (6.13) 

Introducing (6.12) into the expression (6.9) for the 
averaged Poynting vector appropriate to transverse 
waves, we have,7 bearing in mind that 'rJ1 is real, 

Sp = [l(l1t + I1t&2)1]1 ' 0, i{(112 - 1X3)& ± Bt}+](e2)2. 

(6.14) 
Similarly, Eq. (4.S) yields 

1]3 = 2: {(a.3 + P2)& ± Bt }, 
1X1 

(6.lS) 

where 

B = (a.3 + P2W,2 - 4a.l [(OCl + OC7&2)1]i - PI]' (6.l6) 

Introducing (6.1S) into the expression (6.11) for the 
averaged Poynting vector appropriate to planar 

7 The values of e. appropriate in (6.14) are, of course, those for the 
waves considered and are generally different accordingly as the + 
and - signs are taken. Equations (6.17), (6.24), and (6.27) below 
must be interpreted analogously. 
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waves, we have 

S1J = [!(&: + &t&2)rJl' 0, H(P2 - &3)& ± Bt}+](h2)2. 

(6.17) 

The result (6.17) could, of course, be read off from 
(6.14) in view of the formal similarity between Eqs. 
(6.9) and (6.11) and between Eqs. (4.4) and (4.5). 

B. Static Field Parallel to Xl Direction 

For the transverse waves, we now have 

&i = bbil , rJi = rJl bil + rJ3bi3, ei = e2bi2 · (6.18) 

Introducing (6.18) into (6.5), we obtain 

S1J = H(,82& + fJlrJl)b1Jl + (fJl + fJ7&2) 173b1J3)+(e2)2. 

(6.19) 

Again for the planar waves we take, in (6.7), 

bi = Mil, 17i = 17lbil + 173bi3, hi = h2bi2 . (6.20) 

We obtain 

S1J = H -(ii3b - iil17l)b1Jl 
+ (iiI + ii7&2)173b1J3)+(h2}2. (6.21) 

We have seen in Sec. 5 that if 171 is specified for the 
transverse waves, then the two possible values of 173 
are given by Eq. (5.4) and if 171 is specified for the 
planar waves, the two possible values of 173 are given 
by Eq. (5.5). 

Equation (5.4) yields 

173 = ±Ct, (6.22) 
where 

C = 1X1 - (1X3 + fJ2)&17l - fJl17i . 

fJl + fJP 
(6.23) 

Introducing (6.22) into the expression (6.19) for the 
averaged Poynting vector appropriate to transverse 
waves, we obtain 

Sl' = [t(fJt& + rrJl), 0, ±{(fJl + fJ7&2)c!}+](e2)2. 

(6.24) 
Again, Eq. (5.5) yields 

1J3 = ±Ci, 
where 

C = PI + (&3 + P2)&17l - &117~ . 
iiI + ii7&2 

(6.25) 

(6.26) 

Introducing (6.25) into the expression (6.21) for the 
averaged Poynting vector appropriate to planar 
waves, we obtain 

S1J = [-Hiit& - ii:17l)' 0, ±!{(iil + ii7&2)C!}+](h2)2. 

(6.27) 

Let IX be the angle between the ray direction and the 
positive direction of the Xl axis. Then, in the case 

when & is parallel to the Xl direction, we see from 
(6.24) that, for a given value of 1Jl' the values of IX 

corresponding to the ray directions for the two 
transverse waves are equal and opposite. Similarly, 
from (6.27), the values of IX for the two planar waves 
are equal and opposite. Thus, whether the incident 
wave is transverse or planar, the angle of incidence 
and the angle of reflection are equal. If we take the 
components Sl to be positive, then the positive signs 
in the expression for S3 will apply to the incident waves 
and the negative signs to the reflected waves. 

On the other hand, in the case when & is normal to 
the interface, it does not appear, from (6.14) and (6.17), 
that there is any compelling reason, on purely phenom
enological grounds, why the values of IX for the two 
transverse waves should be equal and opposite, or 
why the values of IX for the two planar waves should 
be equal and opposite. A measurement of the differ
ence between the angle of incidence and the angle of 
reflection for the case of a transverse incident wave 
would, in fact, provide a measure of fJi - lXi, since 
equality of these angles implies fJt = IXt. In the case 
when the incident wave is planar, the difference 
between the angle of incidence and angle of reflection 
would provide a measure of Pi - iii, since equality 
of these angles implies fJt = lXi. We note, however, 
from (8.10), that if fJi = IXt and Pt = iit, then 
lXa = fJ'2 unless (lXlfJl + 1X3fJ2&2)- = 0. 

We have seen, in a previous paper,8 that for a 
nondissipative, stable material (at angular frequency 
wand static field &), lXI' fJl' 1X7' fJ7 are real and 1X3 
and fJ2 are complex conjugates. In this case we have, 
of course, IXt = fJt, and it follows that the angles of 
incidence and reflection are equal for transverse waves, 
both when & is normal to the interface and parallel 
to the Xl axis. Since, in this case, 1X1fJl + 1X3fJ2&2 is 
real, it follows from (8.10) that iit = Pi and hence the 
angles of incidence and reflection are equal for 
planar waves. 

We have made the assumption in this paper that 
corresponding to a given value of 1Jl' the two values of 
S3 for transverse waves are of opposite signs and the 
two values of S3 for planar waves are of opposite 
signs. The above discussion proves this to be the case 
for a stable, nondissipative material in both the cases 
when & is normal to the interface and parallel to the 
Xl axis. In the latter case it is proven to be true 
generally. In the former case when & is normal to the 
interface, it does not appear to be necessarily valid, 
unless fJi = IXt and Pt = iit, from purely phenom
enological reasoning, although it seems likely to be 
valid from heuristic considerations. 

8 M. M. Carroll and R. S. Rivlin, J. Math. Phys. 9, 1701 (1968). 
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7. REFLECTION-REFRACTION AT 
BOUNDARY WITH FREE SPACE 

In this section we discuss the reflection-refraction 
problem at the interface between a centrosymmetric 
isotropic material, to which a static electric field is 
applied, and free space. As before, the interface is the 
plane Xa = O. We will consider the two cases: 

(i) the material medium occupies the semi-infinite 
domain Xa < 0 and the domain Xa > 0 is free space; 

(ii) the material medium occupies the domain 
Xa > 0 and the domain Xa < 0 is free space. 

In both cases the wave is incident on the interface 
from Xa < 0 and we shall consider the cases when the 
static field applied to the material medium is parallel 
to Xa and when it is parallel to Xl' the direction of 
propagation lying in the XlXa plane. 

When the material medium occupies the region 
Xa < 0 (Case i), we shall consider the cases when the 
inoident wave is transverse and when it is planar. 
When the material medium occupies the region 
Xa > 0 (Case ii), we shall consider the corresponding 
cases when the electric vector of the incident wave is 
polarized in the direction of X 2 and when it is polarized 
in a direction in the XlXa plane, perpendicular to the 
direction of propagation. 

Case i 

The analysis of the previous sections applies in this 
case if we take 

al = PI = 1, a7 = P7 = a3 = P2 = O. (7.1) 

We have seen that in both the cases when the incident 
wave is transverse and when it is planar, there is one 
refracted wave and one reflected wave. In general, 
these are transverse if the incident wave is transverse 
and planar if the incident wave is planar. When the 
refracted wave is in free space and the incident 
wave is planar, the electric vector associated with the 
refracted wave will not, of course, be elliptically 
polarized, as is the more general case. However, its 
electric vector will be linearly polarized in a direction 
perpendicular to the direction of propagation in a 
plane containing the direction of propagation and the 
static field t in the material medium. 

We note that since X3 > 0 is free space, the vectors 
Yj(1) and Yj(2) of the previous analysis are the same and 
we shall denote them Yj (= ih, 0, i'ia). 

We then have 

iii + iii = 1 

and, of course [see Eqs. (3.5)], 

iil = rh· 

(7.2) 

(7.3) 

We denote the angle of incidence by 0, the angle of 
refraction by C/>, and the angle of reflection by 1p. 

We note that in free space the ray direction and 
direction of propagation are the same and in the case 
under consideration are both in the direction of Yj. 
Then, from (7.2) and (7.3), it follows that 

sin c/> = 'YJl' 

We now consider four cases. 

t Parallel to X3 , Incident Wave Transverse 

From (6.14) and (7.4), we have 

(7.4) 

2(f3i + f3i[,2) sin c/> 

tan () = [(f32 _ ~3)[, + B!]+ , (7.5) 

and 
2(f3i + f3i[,2) sin c/> 

tan ?f1 = [-(f32 - ~a)[, + Bi]+ , (7.6) 

where B is given by (6.13) and hence, with (7.4), by 

B = (~a + f32)2[,2 - 4f3l[Cf3l + f37[,2) sin2 c/> - ~t1. 

(7.7) 

With (7.7), Eq. (7.5) provides a relation between 
the angle of refraction and the angle of incidence and 
Eq. (7.6) provides a relation between the angle of 
reflection and the angle of refraction. 

t Parallel to Xa , Incident Wave Planar 

From (6.17) and (7.4), we have 

2( iX+ + iX+[,2) sin c/> 
tan()= 1 7 (7.8) 

[($2 - ,xa)[, + Bi]+ 

2(iX+ + ,x+[,2) sin c/> 
tan 1p = 1 7 

[-($2 - iX3)[, + Bit' 

and 

(7.9) 

where B is given by (6.16) and hence, with (7.4), by 

B = (iX3 + P2)2[,2 - 4iXl [(iXl + iX7[,2) sin2 c/> - $1]' 

(7.10) 

t Parallel to Xl' Incident Wave Transverse 

In this case we have, from (6.24), (6.23), and (7.4), 

where 

() f3t[, + f3i sin c/> 
tan = tan 1p = [(f3l + f3p)d]+ ' 

C = ~l - (~3 + f32)[, sin c/> - f3I sin 2 
c/> • 

f3l + f3P 

(7.1] ) 

(7.12) 

t Parallel to Xl' Incident Wave Planar 

Again, from (6.27), (6.26), and (7.4), we have 

(7.13) 
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where 

c = PI + (oca + P2)8 sin cp - OCl sin
2 cp. (7.14) 

OCI + OC7t? 

Case ii 

In this case we take 

for free space (i.e., in the region xa < 0) and for 
simplicity we replace ii's and P's by ~'s and {3's and 
ij's by r)'s. It is evident that the angle of incidence and 
angle of reflection are equal, whether the static field 
applied to the material medium is parallel to Xa or to 
Xl and whether the incident wave is polarized with its 
electric vector in the direction X2 or in the plane X IX 3 • 

It is also evident that the relations between the angle 
of .incidence and angle of refraction are given by 
(7.5), (7.8), (7.11), and (7.13), if we take cp to be the 
angle of incidence and (j the angle of refraction. 
Equations (7.5) and (7.8) apply to the cases when the 
static field applied to the material medium is parallel 
to Xa and the incident wave is polarized parallel to X 2 , 

or in the plane XIX3 , Equations (7.11) and (7.13) 
apply to the corresponding cases with the static field 
parallel to Xl . 
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APPENDIX: INVERSION OF THE CONSTI
TUTIVE EQUATIONS 

We take as our starting point the constitutive 
equations (2.4): 

d = ~ . e + 'I' • b, b = Q • e + A . b, (AI) 

where ~, '1', Q, and A are given by (2.5). If we 
invert these, they will take the form 

e = ci . d + ':ir • b, b = .Q • d + A . b. (A2) 

By using (AI) to substitute for d and h in (A2) and 
comparing coefficients, we see that 

ci~ + ':irQ = I, Si'l' + AA = I, 

ci'l' + qr A = 0, .Q~ + AQ = O. (A3) 

From these equations we readily obtain 

'I' = -(~ - 'I'A-IQ)-I'I'A-l, 

cj, = (<<I» - 'I' A-lQ)-t, 

Si = -(A - Q«I»-l'l')-lQ~-t, 

A = (A - Q«I»-l'l')-l. 

(A4a) 

(A4b) 

(A4c) 

(A4d) 

From (2.Sa) and (2.Sb), we obtain 

(<<1»-1) .. = 1..(<5 .. _ ~7 &&.) 
" ~1 " ~l + ~7&2 t 1 

and (AS) 

(A-I) _ 1..(<5 {37 & &) 
i1 - {JI i1 - {31 + {J7&2 i 1 ' 

where &2 = &j&}' Employing (AS) and (2.Sc) and 
(2.Sd) we obtain 

and 

(<<I» - 'I' A-IQ)ij = (11{JI)[(~dJI + ~3{J2&2)<5ij 
+ (~7{JI - ~3{J2)&i81J 

(A6) 

(A - ~Q-I'I')ij = (1/~I)[( 1X1{31 + 1X3{3282)lJij 

+ ({37~1 - lXaPz)&;&j]· 

From (A6), (A4b), and (A4d) we have 

¢ij = {(~ - 'I'A-IQ)-l};j = OCIOi} + OC7&i&j, 

Aii = {(A - Q«I»-I'I')-l}ij = PIO;) + P7&i&j, (A7) 

where 

- - 1X7{J1 - ~a{J2 1X7 = -IXI , 
{3l(lXl + 1X7&2) 

- ~I {J- - -{J- {371X1 - 1X3{J2 
{JI = {J {J '2' 7 - 1 2 . 

1X1 1 + 1X3 2& Cl.l({J1 + {37& ) 
(A8) 

With (A4a) and (A4c), (AS) and (2.5), we obtain 

'Yij = -OC3Eijk&k and Oij = -!J2Eiik&k, (A9) 

where 

- ~ - ~ 
IXs = - {J2 = - ----''--''---

1X1{31 + ~3{J2&2 ' 1X1{J1 + 1X3{Jl} 
(A10) 

We note that the oc's and P's are functions of &2 and 
twonly. 

In a previous paper,s it was shown that if the 
material is nondissipative and stable, lXI' {JI' 1X7' and 
{J7' are real, and lXa and {32 are complex conjugates. It 
follows from (A8) and (AIO) that for such a material, 
OCl' PI' OC7, and P7 are real, and OC3 and P2 are complex 
conjugates. 
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The requirement that the S matrix be unitary is expressed in simple form by use of its Cayley transform 
(K matrix), which is also of value for practical computations. Here the physical-region structure of the 
K matrix is analyzed, and it is used to derive the nature of the "simple" physical-region singularities of 
the S matrix. 

1. INTRODUCTION 

In a previous paper,! here referred to as I, two 
methods were given of analyzing the physical-region 
singularity structure of S-matrix elements. The first 
of the methods was less complete than the second, in 
that it involved an explicit assumption, related to a 
causality requirement, about the Riemann-sheet 
properties of the singularities. The second method also 
had the advantage over the first that it avoided the 
introduction of off-mass-shell amplitudes, but was con
siderably more complex. In this paper a third method 
is given, which is rather simpler than either of those 
in I, but which does, to some extent, make use of 
off-mass-shell amplitudes. The assumptions involved 
in this method are exactly the same as those of the 
second method of I, namely unitarity, connectedness 
structure, and some weak local analyticity properties. 

The complexity of the previous methods arises from 
the complexity of the unitarity equations when 
account is taken of the connectedness structure. Here 
the requirement of the unitarity of S is imposed by 
using its Cayley transform K, defined by 

S(1 - iK) = 1 + iK (1 a) 

or, formally, 

iK = (S - 1)(S + 1)-1. (1 b) 

The unitarity of the operator S corresponds to a 
requirement that the operator K be Hermitian. 

It was suggested in I that the operator K is of some 
practical interest, in that it might provide a method of 
performing numerical computations that would be 
rather simpler than the usual dispersion-relation 
approach. Some calculations on these lines have now 
been carried out, using two-particlejtwo-particle 
matrix elements of K, with very encouraging results. 2 

Hence, a further motivation for this paper is that 
further knowledge of the properties of K might be 
hoped to lead to further interesting calculations. 

1 P. V. Landshoff and D. I. Olive, J. Math. Phys. 7, 1464 (1966). 
• M. O. Taha, Nuovo Cimento 42, 201 (1966); J. Cordes, 

Phys. Rev. 156, 1707 (1967). 

It must be stressed that a matrix element of K 
between a given pair of states is not an analytic 
function. 3 Rather, it is piecewise analytic, the different 
pieces being separated by the physical-region Landau 
curves. This is easy to see for the case of the normal 
thresholds. On taking matrix elements, we obtain 
from (1) 

(BI S - 1 IA) = i l (BI K 1c)(CJ S + lIA), (2) 
c 

where we have inserted a complete set of intermediate 
states IC). The equations (2) are a set of integral 
equations for the matrix elements of K in terms of 
those of S. As the energy is increased to include a 
new state IC) in any of Eqs. (2), that integral 
equation changes form and its solution is not related 
to its previous solution by analytic continuation. We 
see below that similar nonanalytic behavior is also 
associated with physical-region singularities other than 
normal thresholds. 

This nonanalytic behavior should not be a bar to 
calculations, since, as we find below, its nature can be 
explicitly displayed, at least for a large class of singu
larities. This is the class of "simple" singularities, 
namely, those whose Landau-Cutkosky diagram con
sists of single internal lines joining its vertices. This 
class of singularities has also been analyzed4 by the 
second, highly complicated, method of 1. The non
simple singularities are much more difficult to cope 
with. 5 

In Sec. 2 a derivation is given of the physical
region one-particle singularities. In Sec. 3 this deriva
tion is simplified by making a series expansion. The 
latter method is extended, in Sec. 4, to triangle 
singularities, and applies equally to all the simple 
singularities at any energy. 

3 Throughout this paper the term analytic is taken to mean almost 
everywhere analytic, that is, analytic except for certain discrete 
singularities, in the same way as the connected parts of S-matrix 
elements are supposed to be analytic. 

4 M. Boxham, D. I. Olive and J. C. Polkinghorne, in preparation. 
5 P. V. Landshoff, D. I. Olive and J. C. Polkinghorne, J. Math. 

Phys. 7, 1600 (1966); J. K. Storrow, Nuovo Cimento 48, 593 
(1967). 
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2. ONE-PARTICLE SINGULARITIES 

Using the notation introduced by Olive,6 we write 
(2) in diagrammatic form. For simplicity, we consider 
a single type of particle having mass m and no intrinsic 
quantum numbers. We impose the usual connected
ness structure on the S-matrix elements.7 Then, when 
the total energy E satisfies 2m ~ E < 3m, we have 

::@ = 2 =®= + =®=@: (3) 

and when 3m ~ E < 4m, 

B . 2=:@::: + =@:::0: + ::®=CD= 

(=0 + L::@:) = 2:@ +:(D:@ 

+~+L~ 

and so on. 

(4) 

(5) 

The three terms in the sum on the left-hand side of 
(5) each contain a b function corresponding to one 
of the particles having its four-momentum unchanged 
by interaction. The right-hand side must have a 
similar b function structure in order for the equation 
to balance, and this leads us to impose on the K
matrix element the connectedness structure: 

(6) 

Here the amplitude Kc is supposed free of the straight
through b functions explicitly displayed in (6). We 
readily see that with (6) and (3) the terms in (5) 
containing straight-through b functions do balance. 
What remains of (5) is 

B = 2=©:+:®:@+~ 

+I:~+E~+E$ 
(7) 

Our notation implies that each of the terms in the 
last sum in (7) represents a straight product of the K 
and (+) amplitudes there appearing, times the factorS 

(8) 

where q is the four-momentum of the internal particle. 
Since the (+) amplitude on the left of (7) is, by 
supposition, an analytic function,3 it must be that the 
Kc amplitude contains some nonanalyticity at q2 = m2 
to make the right-hand side of the equation analytic. 
Let us concentrate on the singularity associated with 
the term displayed explicitly in the last sum in (7). 

• R. J. Eden, P. V. Landshoff, D. I. Olive and J. C. Polkinghorf\e, 
The Analytic S-Matrix (Cambridge University Press, New York 
1966). 

, Reference 6, Sec. 4.2. 
8 Cf. Ref. 6, Eq. (4.5.2). 

Picking out9 the terms that are singular at q2 = m2 and 
rearranging, we have 

2 :®=( + ~*) V' ( - =®=)=®= -~ . 
(9) 

If we "postmultiply" by 

=®= 
which, by (3), is the inverse of the factor in brackets 
on the left-hand side of (9), we obtain 

z~ V' (_ - ~)0(- - ~)- 2 ~ • 

(10) 

So far we have made no use of the unitarity of S, 
that is, the Hermiticity of the operator K. When S 
and thus K is symmetric, as might result from PT 
invariance, this means that the matrix elements of 
K are real functions. Then also, by the definition (6), 
the amplitude Kc is real. More generally, Kc suffers 
complex conjugation when initial and final states are 
interchanged. One property of a Hermitian amplitude 
we use below is that, if it is analytic,3 it can have no 
singularity. In the case where the matrix element is 
real, this follows very simply from the reflection 
principle of complex variable theory: If fez) is an 
analytic function of z = x + iy and is real for real z, 
the discontinuity associated with a possible singularity 
on the real axis would be 

lim [f(x + iy) - f(x - iy)] 

= lim [f(x + iy) - f*(x + iy)] 
1/ .... 0+ 

=0. 

In the more general case, the property can be seen as 
follows: Iff = g* on the real axis, and fez) and g(z) 
are both analytic functions of z, the above argument 
applied separately to the analytic functions [fez) + 
g(z)] and i[f(z) - g(z)] shows that neither can have a 
singularity on the real axis. 

Since the (+) amplitude is supposed to be analytic,3 
the first term on the right of (10) is analytic9 in the 
variable q2. The other term on the right of (10) is not 
Hermitian, because of the factor i in (8). The only 
analytic3 factor that can be combined with (8) to 
produce a Hermitian result is a pole, that is, we must 
have 

( - ::@::)=0=(- - =@=) V' 4~ (11) 

• The singularities of unitaritylike integrals are discussed in Ref. 
6, Sec. 4.10. This work applies equally to the cases here where the 
integrand is piecewise analytic, provided account is taken of the 
boundary surfaces separating the pieces. 
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where -- (12) 

so that 

(13) 

where 

= ±{ 1 + 1 } 
q2 _ m2 + ie q2 _ m2 - ie 

1 
= ±2P 2 2' (14) 

q - m 

A discussion of the apparent necessity of departing 
from the mass-shell in Eq. (11) may be found in Ref. 1. 

It has been known for some time that the one
particle singularities of the K-matrix elements corre
spon~ to principal parts of poles.lo If we "premultiply" 
and "postmultiply" (11) by 

+ .It=®:: • - + Y2.~ 

respectively, we obtain, on using (3), 

=@:J'S. (15) 

The ambiguity of sign in (12) is resolved essentially by 
convention,!l and the upper sign is usually chosen. 
This means. taking also the upper sign in (14). 

3. SERIES EXPANSION 

The foregoing analysis is scarcely simpler than 
Olive's original derivationll of the one-particle 
singularity structure. To achieve greater simplicity, 
we derive the result again using the iteration solution 
to (7).From (1) we have 

S = 1 + 2iK + 2i2K2 + 2i3K 3 + . . . (16a) 

= 1 + 2iK + 2i2.2KIA)(AI K 
A 

+ 2i3 .2 K IA)(AI K IB)(BI K + "', (16b) 
A.B 

where A, E, ... denote physical intermediate states. 
This gives 

B· 2=®=+2=®:W+l~ .... 
(17) 

and 

@ = z3KE + Z:©=®=+ 2~ + 2l:~ 

+2..r~ +2L~ +2L~ 

+2I:~ + 2.i:~ +2L~ 

(I 8) 

10 This was proved in perturbation theory by J. C. Polkinghorne, 
Proc. Cambridge Phil. Soc. 51,113 (\955). 

11 Reference 6, Sec. 4.5. 

An obvious criticism of this procedure is that the 
convergence of the series in (16) may be no more than 
formal. However, we have undertaken the expansion 
only in order to achieve simplicity, and any results 
derived from it may, if necessary, be checked by the 
rather more lengthy methods of the previous section, 
using the integral equations. Alternatively, if one 
accepts what is suggested by previous work,l,5 that 
the input to the analysis uniquely determines the 
singularity structure, a sufficient check would be 
simply to insert the results derived into the integral 
equations and verify consistency. 

An infinite subset of terms on the right-hand side 
of (18) manifestly contains the one-particle singularity 
studied above. This subset is 

2~+Z~+2~+·· 

+Z~+2~+···· 

(19) 

which, by (17), may be summed to give just 

(20) 

Now, as before, we see that the Kc amplitude must 
contain a nonanalytic one-particle structure to 
compensate this, if the (+) amplitude is to be 
analytic.3 In this case a further infinite subset of terms 
on the right of (18) contain the one-particle singularity, 
namely, 

2~+2~+2~+ .... 

+2~+2~+ .... 
(21) 

By (17), we see that the structure (13) for the Kc 
amplitude makes this series sum to 

(22) 

which, together with (20), gives the analytic result (15) 
for the structure of the (+) amplitude. To see that 
(17) is the only possibility, note that any additional 
one-particle singularity we might add to it would have 
to be nonanalytic, otherwise Kc would not be 
Hermitian. This would produce an additional non
analytic term in the sum of the series (21), and so 
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would produce a nonanalytic result for the (+) 
amplitude. 

4. THE SIMPLE SINGULARITIES 

The foregoing method may be immediately extended 
to build up all the simple singularities. Consider, as 
an example, the triangle singularity explicitly dis
played in (18). The infinite subset of terms in (18) that 
manifestly contain this singularity is 

2~+2~~2~ 

+' .. +2~+···+2~ 

+ ... +2.~+"'. 

By (17), these terms sum to 

k~+~~ 4~. 4~. 

Combining (24) and (25) we have 

~-%~ 
~4~ 

(25) 

(26) 

The first term in (26) is analytic,3 but the second is 
not. To compensate for this, if the (+) amplitude is 
to be analytic, we must give the Kc amplitude a non
analytic structure 

~J'~ --::®'"-- • (27) 

Again (27) is unique; any further triangle singularity 
added in would have to be analytic, or Kc could not 
be Hermitian, and this would yield a nonanalytic 
contribution to the (+) amplitude. So again we have 

(23) deduced that 

which, by (17), sums to 

y.~ 
4~, (24) 

The triangle singularity will further arise in (18) as 
a consequence of the one-particle singularities of the 
Kc amplitude. Thus we must also consider the subset 
of terms 

2~+2~+"" 

+2~+2~+"" 

+z~+· 

which, because of the result (13), yield the following 
triangle singularity structure: 

z~+z~+ ... 

+z.~+z~+ ... 

(28) 

as in J. 
In this way we can evidently build up all the simple 

physical-region singularities, both for the three
particle/three-particle and the highe, amplitudes. As 
in the example just considered, each singularity will 
manifestly appear in an infinite subset of terms of the 
series expansion of the appropriate (+) amplitude. 
It will also be generated in infinite subsets by the 
presence of lower singularities in the Kc amplitudes. 
Then the Kc amplitudes must be given some non
analyticity corresponding to the singularity itself, in 
order to make the (+) amplitude analytic.3 The 
result is then unique; any extra nonanalyticity added 
to Kc would make the (+) amplitude nonanalytic, 
while an analytic singularity would violate the required 
Hermiticity of Kc. 

A particular feature of the method is that it will 
go through equally well at higher energies. Then hosts 
of new terms appear in (18), because of the new 
allowed intermediate states; but the intermediate 
results (20), (22), (24), and (25) still hold, and so also 
the final results, because new terms appear similarly 
in (17). 

ACKNOWLEDGMENTS 

I am grateful to Dr. I. T. Drummond and Dr. J. C. 
Polkinghorne for some stimulating discussions. 


	JMP, Volume 09, Issue 12, Page 1993
	JMP, Volume 09, Issue 12, Page 2001
	JMP, Volume 09, Issue 12, Page 2007
	JMP, Volume 09, Issue 12, Page 2016
	JMP, Volume 09, Issue 12, Page 2018
	JMP, Volume 09, Issue 12, Page 2029
	JMP, Volume 09, Issue 12, Page 2032
	JMP, Volume 09, Issue 12, Page 2037
	JMP, Volume 09, Issue 12, Page 2039
	JMP, Volume 09, Issue 12, Page 2050
	JMP, Volume 09, Issue 12, Page 2056
	JMP, Volume 09, Issue 12, Page 2061
	JMP, Volume 09, Issue 12, Page 2064
	JMP, Volume 09, Issue 12, Page 2069
	JMP, Volume 09, Issue 12, Page 2075
	JMP, Volume 09, Issue 12, Page 2081
	JMP, Volume 09, Issue 12, Page 2087
	JMP, Volume 09, Issue 12, Page 2100
	JMP, Volume 09, Issue 12, Page 2109
	JMP, Volume 09, Issue 12, Page 2120
	JMP, Volume 09, Issue 12, Page 2132
	JMP, Volume 09, Issue 12, Page 2138
	JMP, Volume 09, Issue 12, Page 2146
	JMP, Volume 09, Issue 12, Page 2168
	JMP, Volume 09, Issue 12, Page 2173
	JMP, Volume 09, Issue 12, Page 2193
	JMP, Volume 09, Issue 12, Page 2211
	JMP, Volume 09, Issue 12, Page 2225
	JMP, Volume 09, Issue 12, Page 2237
	JMP, Volume 09, Issue 12, Page 2252
	JMP, Volume 09, Issue 12, Page 2267
	JMP, Volume 09, Issue 12, Page 2279

